JP2003031220A - Secondary power source - Google Patents

Secondary power source

Info

Publication number
JP2003031220A
JP2003031220A JP2001213561A JP2001213561A JP2003031220A JP 2003031220 A JP2003031220 A JP 2003031220A JP 2001213561 A JP2001213561 A JP 2001213561A JP 2001213561 A JP2001213561 A JP 2001213561A JP 2003031220 A JP2003031220 A JP 2003031220A
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
secondary power
carbon material
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001213561A
Other languages
Japanese (ja)
Inventor
Isamu Kuruma
勇 車
Takeshi Morimoto
剛 森本
Manabu Tsushima
学 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001213561A priority Critical patent/JP2003031220A/en
Publication of JP2003031220A publication Critical patent/JP2003031220A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary power source with high capacity, high breakdown voltage, and high charge/discharge cycle reliability. SOLUTION: This secondary power source has a positive electrode containing activated carbon, a negative electrode containing a composite carbon material in which graphitization retardant carbon is covered with carbon having grown turbulent layer structure, and an organic electrolyte containing a lithium salt. Preferably, the composite carbon material has the spacing between the [002] faces of 0.354-0.395 nm, the intensity ratio R (R=I1360 /I1580 ) of the peak value (I1360 ) at 1360 cm<-1> to the peak value (I1580 ) at 1580 cm<-1> , in argon ion Raman spectrum, of 0.5-1.8. Mass ratio of the graphitization retardant carbon and the carbon having the grown turbulent layer structure in the composite carbon material in the negative electrode is 100:2 to 100:30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧及び放電容
量が高く、大電流での充放電サイクルにおける信頼性に
優れる二次電源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power source which has a high withstand voltage and a high discharge capacity and is excellent in reliability in a charge / discharge cycle at a large current.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.3Vである。電気二重層キャパシタの
エネルギは耐電圧の2乗に比例するので、耐電圧の高い
有機系電解液の方が水系電解液より高エネルギである。
しかし、有機系電解液を使用した電気二重層キャパシタ
でもそのエネルギ密度は鉛蓄電池等の二次電池の1/1
0以下であり、さらなるエネルギ密度の向上が必要とさ
れている。
2. Description of the Related Art As electrodes of a conventional electric double layer capacitor, polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolytic solution is used, and 2.5 to 3.3 V when an organic electrolytic solution is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolytic solution having a higher withstand voltage has higher energy than the aqueous electrolytic solution.
However, the energy density of an electric double layer capacitor using an organic electrolyte is 1/1 times that of a secondary battery such as a lead storage battery.
It is 0 or less, and further improvement in energy density is required.

【0003】これに対し、特開昭64−14882号公
報には、活性炭を主体とする電極を正極とし、X線広角
回折法による[002]面の面間隔が0.338〜0.
356nmである炭素材料にあらかじめリチウムイオン
を吸蔵させた電極を負極とする上限電圧3. 0Vの二次
電源が提案されている。また、特開平8−107048
号公報には、リチウムイオンを吸蔵、脱離しうる炭素材
料にあらかじめ化学的方法又は電気化学的方法でリチウ
ムイオンを吸蔵させた炭素材料を負極に用いる電池が提
案されている。特開平9−55342号公報には、リチ
ウムイオンを吸蔵、脱離しうる炭素材料をリチウムと合
金を形成しない多孔質集電体に担持させる負極を有す
る、上限電圧4. 0Vの二次電源が提案されている。
On the other hand, in Japanese Unexamined Patent Publication No. 64-14882, an electrode mainly composed of activated carbon is used as a positive electrode, and the [002] plane spacing by X-ray wide angle diffraction is 0.338-0.
A secondary power supply with an upper limit voltage of 3.0 V has been proposed in which a negative electrode is an electrode in which a lithium material is occluded in a carbon material having a wavelength of 356 nm. In addition, JP-A-8-107048
The publication proposes a battery using a carbon material capable of occluding and desorbing lithium ions in advance as a negative electrode by occluding the lithium ions by a chemical method or an electrochemical method. Japanese Unexamined Patent Publication No. 9-55342 proposes a secondary power source having an upper limit voltage of 4.0 V, which has a negative electrode in which a carbon material capable of absorbing and desorbing lithium ions is supported on a porous current collector that does not form an alloy with lithium. Has been done.

【0004】正極に活性炭を用い、負極にリチウムイオ
ンを吸蔵、脱離しうる炭素材料を用いた二次電源は、従
来の正極、負極ともに活性炭を用いた電気二重層キャパ
シタより高電圧で作動できかつ高容量とすることができ
る。特に、この二次電源において負極にリチウムイオン
を吸蔵・脱離する電位の卑な黒鉛系炭素材料を用いる
と、より高容量にできる。また、電気二重層キャパシ
タ、上記二次電源以外に、高性能な二次電源としては正
極にリチウム含有化合物、負極に炭素材料を用いるリチ
ウムイオン二次電池がある。リチウムイオン二次電池は
電気二重層キャパシタに比べて高電圧かつ高容量という
性質を有するが、抵抗が高く、急速充放電サイクルによ
る寿命が電気二重層キャパシタに比べ著しく短い問題が
あった。
A secondary power source using activated carbon for the positive electrode and a carbon material capable of absorbing and desorbing lithium ions for the negative electrode can operate at a higher voltage than conventional electric double layer capacitors using active carbon for both the positive electrode and the negative electrode. It can have a high capacity. In particular, in this secondary power source, a higher capacity can be obtained by using a base graphite-based carbon material having a potential for inserting and extracting lithium ions in the negative electrode. In addition to the electric double layer capacitor and the secondary power source, there is a lithium ion secondary battery using a lithium-containing compound for the positive electrode and a carbon material for the negative electrode as a high-performance secondary power source. The lithium-ion secondary battery has a higher voltage and a higher capacity than the electric double layer capacitor, but has a problem that the resistance is high and the life due to the rapid charge / discharge cycle is significantly shorter than that of the electric double layer capacitor.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、急速
充放電が可能で高耐電圧かつ高容量でエネルギ密度が高
く、充放電サイクルにおける信頼性の高い二次電源を提
供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a secondary power source which can be charged and discharged rapidly, has a high withstand voltage, a high capacity, a high energy density, and is highly reliable in a charge and discharge cycle. To do.

【0006】[0006]

【課題を解決するための手段】本発明は、活性炭を含む
正極と、難黒鉛化性炭素が乱層構造の発達した炭素によ
り被覆されてなる複合炭素材料を含む負極と、リチウム
塩を含む有機電解液と、を有することを特徴とする二次
電源を提供する。本明細書において、リチウムイオンを
吸蔵、脱離しうる炭素材料を主体とする負極と集電体と
を接合して一体化させたものを負極体という。正極体に
ついても同様の定義とする。また、二次電池も電気二重
層キャパシタも二次電源の1種であるが、本明細書で
は、正極に活性炭を含み、負極にリチウムイオンを吸
蔵、脱離しうる炭素材料を含む特定の構成の二次電源を
単に二次電源という。
The present invention is directed to a positive electrode containing activated carbon, a negative electrode containing a composite carbon material in which non-graphitizable carbon is coated with carbon having a disordered structure, and an organic material containing a lithium salt. An electrolytic solution is provided, and a secondary power source is provided. In the present specification, a negative electrode body is formed by joining and integrating a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions and a current collector. The same definition is applied to the positive electrode body. Further, both the secondary battery and the electric double layer capacitor are one kind of the secondary power source, but in the present specification, a positive electrode containing activated carbon and a negative electrode containing a carbon material capable of absorbing and desorbing lithium ions have a specific structure. The secondary power source is simply called the secondary power source.

【0007】リチウムイオン二次電池は、正極はリチウ
ム含有遷移金属酸化物を主体とする電極、負極はリチウ
ムイオンを吸蔵、脱離しうる炭素材料を主体とする電極
であり、充電によりリチウムイオンが正極のリチウム含
有遷移金属酸化物から脱離し、負極のリチウムイオンを
吸蔵、脱離しうる炭素材料へ吸蔵され、放電により負極
からリチウムイオンが脱離し、正極にリチウムイオンが
吸蔵される。したがって、本質的には電解液中のリチウ
ムイオンは電池の充放電に関与しない。一方、本発明の
二次電源は、充電により電解液中のアニオンが正極の活
性炭に吸着し、電解液中のリチウムイオンが負極のリチ
ウムイオンを吸蔵、脱離しうる炭素材料へ吸蔵される。
そして放電により負極からリチウムイオンが脱離し、正
極ではアニオンが脱着する。すなわち、本発明の二次電
源では充放電に電解液の溶質が本質的に関与しており、
リチウムイオン二次電池とは充放電の機構が異なってい
る。そしてリチウムイオン二次電池のように、正極活物
質自体にリチウムイオンが吸蔵、脱離することがなく、
リチウムイオンの吸蔵、脱離にともなう正極の劣化がな
いため、本発明の二次電源は充放電サイクルによる劣化
が少なく、長期的信頼性に優れている。
In the lithium ion secondary battery, the positive electrode is an electrode mainly composed of a transition metal oxide containing lithium, the negative electrode is an electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions, and the lithium ions are positively charged by charging. Is desorbed from the lithium-containing transition metal oxide, the lithium ion of the negative electrode is occluded and occluded by the desorbable carbon material, the lithium ion is desorbed from the negative electrode by the discharge, and the lithium ion is occluded in the positive electrode. Therefore, the lithium ions in the electrolytic solution do not essentially participate in the charging and discharging of the battery. On the other hand, in the secondary power source of the present invention, anions in the electrolytic solution are adsorbed by the activated carbon of the positive electrode by charging, and lithium ions in the electrolytic solution are occluded by the carbon material capable of absorbing and desorbing the lithium ions of the negative electrode.
Then, the lithium ions are desorbed from the negative electrode by the discharge, and the anions are desorbed from the positive electrode. That is, in the secondary power source of the present invention, the solute of the electrolytic solution is essentially involved in charging and discharging,
The charging / discharging mechanism is different from that of the lithium ion secondary battery. Then, unlike a lithium ion secondary battery, lithium ions do not occlude and desorb in the positive electrode active material itself,
Since there is no deterioration of the positive electrode due to occlusion and desorption of lithium ions, the secondary power supply of the present invention is less deteriorated by charge / discharge cycles and is excellent in long-term reliability.

【0008】二次電源における負極のリチウムイオンを
吸蔵、脱離しうる炭素材料としては、一般に黒鉛系炭素
材料( X線広角回折法による[002]面の面間隔が
0.337nm以下) と難黒鉛化性炭素と易黒鉛化性炭
素とを含む低結晶性の炭素材料( X線広角回折法による
[002]面の面間隔が0.337超〜0.395n
m) がある。黒鉛系炭素材料はリチウムイオン吸蔵、脱
離の電位が特に卑で、平坦な充放電曲線を示すため、実
用的使用条件における放電容量は、低結晶性炭素材料の
実用的使用条件における放電容量より大きい。ところ
が、急速充放電に対するサイクル特性を考えた場合、本
発明者らは次のような相関関係を見出した。すなわち、
急速充放電に対するサイクル特性は負極炭素材料のX線
広角回折法による[002]面の面間隔に依存し、負極
炭素材料のX線広角回折法による[002]面の面間隔
が大きいほど急速充放電に対するサイクル特性が良いこ
とを見出した。つまり、[002]面の面間隔の小さい
黒鉛系負極に比べて、[002]面の面間隔の大きい乱
層構造の発達した炭素負極のサイクル特性が良いことに
なる。
As carbon materials capable of occluding and desorbing lithium ions of the negative electrode in the secondary power source, generally graphite-based carbon materials (the plane spacing of [002] plane by X-ray wide angle diffraction is 0.337 nm or less) and non-graphite A low crystalline carbon material containing volatile carbon and graphitizable carbon (the interplanar spacing of [002] planes by the X-ray wide angle diffraction method exceeds 0.337 to 0.395n.
m) Graphite-based carbon materials have a particularly low potential for lithium ion absorption and desorption, and show a flat charge-discharge curve.Therefore, the discharge capacity under practical use conditions is lower than that under low-crystalline carbon materials. large. However, when considering the cycle characteristics for rapid charge / discharge, the present inventors found the following correlation. That is,
The cycle characteristics for rapid charging / discharging depend on the interplanar spacing of the [002] plane of the negative electrode carbon material by the X-ray wide-angle diffraction method. It was found that the cycle characteristics for discharge are good. In other words, the cycle characteristics of the carbon negative electrode with the developed disordered layer structure having a large [002] plane spacing are better than those of a graphite-based negative electrode having a small [002] plane spacing.

【0009】また、炭素材料のバルクの性質と共に炭素
材料の表面の特徴も材料のサイクル特性に多いに寄与し
ていると考える。[002]面の面間隔は主にバルクの
性質を反映する一方、アルゴンイオンラマンスペクトル
は炭素材料表面の性質を反映している。アルゴンイオン
ラマンスペクトルの1580cm-1におけるピーク値
(I1580)に対する1360cm-1におけるピーク値
(I1360)の強度比R (R=I1360/I1580) は表面のアモ
ルファス構造と黒鉛的構造の割合を表すパラメータであ
り、Rが大きいほど表面の黒鉛化度が低下し、より乱層
度の高い構造になることを意味する。一般的には表面が
バルクの性質によって決められているため、バルクの性
質に依存している。
Further, it is considered that the characteristics of the surface of the carbon material as well as the bulk property of the carbon material largely contribute to the cycle characteristics of the material. The interplanar spacing of the [002] plane mainly reflects the properties of the bulk, while the argon ion Raman spectrum reflects the properties of the carbon material surface. Ratio of the intensity ratio R (R = I 1360 / I 1580) is an amorphous structure of the surface and graphite structure of the peak value in 1360 cm -1 peak value in 1580 cm -1 in the argon ion Raman spectrum for (I 1580) (I 1360) It means that the larger R is, the lower the graphitization degree of the surface becomes, and the more the structure has a higher degree of disorder. Generally, the surface is determined by the properties of the bulk, and thus depends on the properties of the bulk.

【0010】一般的に、均一な構造を有する炭素材料に
おいては[002]面の面間隔が大きいほどラマンスペ
クトルのRも大きくなるという相関関係が存在し、これ
らを独立なパラメータとしてバルクと表面との性質をそ
れぞれ評価することは困難である。一方最近、従来の炭
素材料を様々な手法によって改質し、材料に新たな性能
をもたらす試みがされている。例えば、ホウ素添加黒鉛
や黒鉛からなる核が低結晶性炭素により被覆されてなる
コアシェル型炭素などがある。これらの新規炭素は、従
来の面間隔とRとが相互に関連する相関関係から外れて
いる。ホウ素添加炭素は黒鉛系材料にホウ素を添加する
ことにより、バルクの黒鉛化度が更に発達した一方、表
面構造は逆に乱層構造となっているため、面間隔が小さ
い値のまま、Rの高い材料になっている。また、コアシ
ェル型炭素はバルクに黒鉛化度の高い炭素材料を用い、
表面を乱層構造の発達した炭素シェルで被覆することに
よって、バルクの黒鉛的な性質を維持したまま、表面を
アモルファスの構造に改質している。これらの材料の場
合は、面間隔およびRにより炭素材料のバルクおよび表
面の性能をそれぞれ独立に評価することができる。この
評価方法を用いて鋭意研究の結果、発明者らは、バルク
としては面間隔の大きい乱層構造の発達した材料が大電
流充放電に対するサイクル特性が良く、表面特性として
はRの高いアモルファスの構造を有する材料がサイクル
特性が良いという関係を見出し、本発明に至った。
Generally, in a carbon material having a uniform structure, there is a correlation that the larger the [002] plane spacing, the larger the R of the Raman spectrum, and these are used as independent parameters for the bulk and the surface. It is difficult to evaluate each property of. On the other hand, recently, attempts have been made to modify conventional carbon materials by various methods to bring new performance to the materials. For example, there is core-shell type carbon in which boron-added graphite or a nucleus made of graphite is covered with low crystalline carbon. These novel carbons deviate from the conventional correlation between the interplanar spacing and R. Boron-added carbon has a further graphitization degree of bulk developed by adding boron to the graphite-based material, while the surface structure is conversely a disordered structure. It is a high-quality material. In addition, the core-shell type carbon uses a carbon material with a high degree of graphitization in the bulk,
By coating the surface with a carbon shell with a well-developed turbostratic structure, the surface is modified to an amorphous structure while maintaining the properties of bulk graphite. In the case of these materials, it is possible to independently evaluate the bulk and surface performances of the carbon material by the interplanar spacing and R. As a result of earnest research using this evaluation method, the inventors have found that a material having a large disordered layer structure having a large interplanar spacing as a bulk has a good cycle characteristic for large current charge / discharge and an amorphous material having a high R as a surface characteristic. The present invention has been found out that a material having a structure has a good cycle characteristic.

【0011】本発明における負極複合材料は、難黒鉛化
性炭素が乱層構造の発達した炭素により被覆されてなる
複合炭素材料であることが特徴である。該複合材料の核
の原料となる難黒鉛化性炭素は、面間隔やクーロン効率
が比較的に高く、X線広角回折法による[002]面の
面間隔が0.337nm超〜0.395nmである。そ
の難黒鉛化性炭素粒子の表面をさらにアモルファス度の
高い乱層構造の発達した炭素により被覆することによ
り、大電流充放電サイクル特性に優れた負極材料が得ら
れた。本発明における複合炭素材料のX線広角回折法に
よる[002]面の面間隔は、核である難黒鉛化炭素に
基づき、好ましくは0.354〜0.395nmであ
り、なかでも、0.360〜0.390nmがより好ま
しい。この範囲であると、耐電圧および放電容量を下げ
ることなく大電流での充放電サイクルにおける容量変化
率が低い。難黒鉛化性炭素としては、例えばフルフリル
アルコール樹脂を1000〜1500℃で熱処理したフ
ルフリル樹脂焼成品、ノボラック樹脂を700℃以下の
温度で熱処理したノボラック樹脂焼成品、フェノール樹
脂を熱処理して得られるフェノール樹脂焼成品が挙げら
れる。
The negative electrode composite material in the present invention is characterized in that it is a composite carbon material obtained by coating non-graphitizable carbon with carbon having a disordered layer structure. The non-graphitizable carbon, which is a raw material of the core of the composite material, has relatively high interplanar spacing and Coulombic efficiency, and the interplanar spacing of [002] plane by X-ray wide angle diffraction method is more than 0.337 nm to 0.395 nm. is there. By coating the surface of the non-graphitizable carbon particles with carbon having a highly disordered turbostratic structure, a negative electrode material excellent in large-current charge / discharge cycle characteristics was obtained. The interplanar spacing of the [002] plane of the composite carbon material according to the present invention measured by the X-ray wide-angle diffraction method is preferably 0.354 to 0.395 nm based on the non-graphitizable carbon that is the nucleus, and particularly 0.360. ~ 0.390 nm is more preferred. Within this range, the capacity change rate in a charge / discharge cycle at a large current is low without lowering the withstand voltage and the discharge capacity. The non-graphitizable carbon is obtained, for example, by heat-treating a furfuryl resin obtained by heat-treating a furfuryl alcohol resin at 1000 to 1500 ° C., a fired novolak resin obtained by heat-treating a novolac resin at a temperature of 700 ° C. or lower, and heat-treating a phenol resin. Examples include fired products of phenol resin.

【0012】難黒鉛化性炭素粒子を乱層構造の発達した
炭素で被覆する方法としては、難黒鉛化性炭素粒子を予
め各種の樹脂やタールまたはピッチで難黒鉛化性炭素粒
子を被覆した後、樹脂やタールまたはピッチを炭化する
方法や、難黒鉛化性炭素粒子表面に有機ガスを流し、こ
のガスの熱分解により難黒鉛化性炭素粒子表面に乱層構
造の発達した炭素被膜を形成するという化学気相蒸着法
(CVD)や、さらに、条件によっては難黒鉛化性炭素
粉末塊の内部まで均一に処理できる化学気相含浸法(C
VI)法もとることができるが、より完全に均一に被覆
することができるCVD法とCVI法が望ましい。CV
D、CVI法の処理温度は700〜1200℃が望まし
く、更に望ましくは800〜1100℃である。
As a method for coating the non-graphitizable carbon particles with carbon having a disordered layer structure, the non-graphitizable carbon particles are coated with various resins, tar or pitch in advance. , A method of carbonizing resin, tar or pitch, or flowing an organic gas on the surface of the non-graphitizable carbon particles, and thermally decomposing this gas to form a carbon film having a disordered structure on the surface of the non-graphitizable carbon particles. Chemical vapor deposition method (CVD), or a chemical vapor impregnation method (C) capable of uniformly treating the inside of a non-graphitizable carbon powder lump depending on conditions.
VI) method can be used, but the CVD method and the CVI method are preferable because they can provide more complete and uniform coating. CV
The processing temperature of the D and CVI methods is preferably 700 to 1200 ° C, more preferably 800 to 1100 ° C.

【0013】作製後の難黒鉛化性炭素/乱層構造の発達
した炭素構造をもつ複合炭素材料の粉末の形状は粒子状
であり、粒径は5〜40μmであることが好ましい。こ
の複合炭素材料は、ラマンスペクトルによる炭素表面解
析を行った場合、1580cm-1におけるピーク値(I
1580)に対する1360cm-1におけるピーク値(I1
360 )の強度比R (R=I1360/I1580) は好ましくは0.
5〜1.8、より好ましくは、0.6〜1.5さらに好
ましくは、0.7〜1.4である。この理由は、Rが小
さすぎると、表面の乱層度が小さくなり、充放電サイク
ルでの劣化が大きくなり、Rが大きすぎるとクローン効
率が低くなるからである。また、本発明における複合炭
素材料粒子に対してX線広角回折法による測定を行う
と、低結晶性構造を表すブロードなピークが確認され、
つまり、難黒鉛化性炭素バルクの表面が乱層度の高い炭
素で覆われた構造になっていることが確認できる。複合
炭素材料中、難黒鉛化性炭素と乱層構造の発達した炭素
の質量比は100:2〜100:30であることが好ま
しく、より好ましくは100:5〜100:30であ
り、さらに好ましくは100:10〜100:20であ
る。乱層構造の発達した炭素の割合が2質量部より少な
い場合は難黒鉛化性炭素の核が被覆する乱層構造の発達
した炭素に完全に覆われないおそれがあり、一方、30
質量部より多くなっても、サイクル特性の更なる向上に
効果がない。
The shape of the powder of the composite carbon material having a non-graphitizable carbon / carbon structure with a developed turbostratic structure after the preparation is particulate, and the particle diameter is preferably 5 to 40 μm. The composite carbon material, when subjected to the carbon surface analysis by Raman spectrum, the peak value at 1580 cm -1 (I
Peak value in 1360 cm -1 for 1580) (I 1
The intensity ratio R (R = I 1360 / I 1580 ) of 360 ) is preferably 0.
It is 5 to 1.8, more preferably 0.6 to 1.5, still more preferably 0.7 to 1.4. The reason for this is that if R is too small, the degree of disorderedness of the surface will be small and the deterioration in the charge / discharge cycle will be large, and if R is too large, the cloning efficiency will be low. Further, when the composite carbon material particles in the present invention are measured by the X-ray wide angle diffraction method, a broad peak showing a low crystalline structure is confirmed,
That is, it can be confirmed that the surface of the non-graphitizable carbon bulk has a structure covered with carbon having a high degree of disorder. In the composite carbon material, the mass ratio of the non-graphitizable carbon and the carbon having a disordered layer structure is preferably 100: 2 to 100: 30, more preferably 100: 5 to 100: 30, and further preferably Is 100: 10 to 100: 20. If the proportion of carbon having a disordered structure is less than 2 parts by mass, the carbon having a disordered structure covered by the non-graphitizable carbon core may not be completely covered.
Even if the amount is more than the mass part, there is no effect in further improving the cycle characteristics.

【0014】本発明の負極は上述の必須の複合炭素材料
以外に、導電剤のカーボンブラック、気相成長炭素等の
炭素材料をさらに含んでもよくその量は、負極の炭素材
料中の30質量%以下とすることが好ましい。
The negative electrode of the present invention may further contain a carbon material such as carbon black as a conductive agent or vapor grown carbon in addition to the above-mentioned essential composite carbon material, the amount of which is 30% by mass in the carbon material of the negative electrode. The following is preferable.

【0015】本発明における正極に含まれる活性炭は、
比表面積が800〜3000m2 /gであることが好ま
しい。活性炭の原料、賦活条件は限定されないが、例え
ば原料としてはやしがら、フェノール樹脂、石油コーク
ス等が挙げられ、賦活方法としては水蒸気賦活法、溶融
アルカリ賦活法等が挙げられる。特にやしがら又はフェ
ノール樹脂を原料として水蒸気賦活して得られる活性炭
が好ましい。正極の抵抗を低くするために、正極中に導
電材として導電性のカーボンブラック又は黒鉛を含ませ
ておくのも好ましく、このとき導電材は正極中に0.1
〜20質量%含まれることが好ましい。正極体の作製方
法としては、例えば活性炭粉末と導電材との混合物にバ
インダとしてポリテトラフルオロエチレンを混合し、混
練した後シート状に成形して正極とし、これを集電体に
導電性接着剤を用いて固定する方法がある。また、バイ
ンダとしてポリフッ化ビニリデン、ポリアミドイミド、
ポリイミド等を溶解したワニスに活性炭粉末と導電材粉
末とを分散させ、この液をドクターブレード法等によっ
て集電体上に塗工し、乾燥して得てもよい。正極中に含
まれるバインダの量は、正極体の強度と容量等の特性と
のバランスから1〜20質量%であることが好ましい。
The activated carbon contained in the positive electrode of the present invention is
The specific surface area is preferably 800 to 3000 m 2 / g. The raw material and activation conditions for the activated carbon are not limited, but examples of the raw material include coconut husk, phenol resin, petroleum coke, and the like, and examples of the activation method include a steam activation method and a molten alkali activation method. In particular, activated carbon obtained by activating steam with coconut husk or phenol resin as a raw material is preferable. In order to reduce the resistance of the positive electrode, it is also preferable to include conductive carbon black or graphite as a conductive material in the positive electrode.
It is preferably contained in an amount of -20% by mass. As a method for producing the positive electrode body, for example, a mixture of activated carbon powder and a conductive material is mixed with polytetrafluoroethylene as a binder, and the mixture is kneaded and then molded into a sheet to form a positive electrode. There is a method of fixing using. Further, as a binder, polyvinylidene fluoride, polyamide imide,
It may be obtained by dispersing activated carbon powder and conductive material powder in a varnish in which polyimide or the like is dissolved, applying this liquid on a current collector by a doctor blade method or the like, and drying. The amount of the binder contained in the positive electrode is preferably 1 to 20 mass% from the balance of the strength of the positive electrode body and the characteristics such as capacity.

【0016】本発明における負極体は、正極同様ポリテ
トラフルオロエチレンをバインダとして混練してシート
状に成形して負極を形成し、導電性接着剤を用いて集電
体に接着させて得ることができる。また、ポリフッ化ビ
ニリデン、ポリアミドイミド又はポリイミドをバインダ
とし、バインダとなる樹脂又はその前駆体を有機溶媒に
溶解させた溶液に前記炭素材料を分散させ、集電体に塗
工し、乾燥させて得る方法もある。これらの方法のうち
集電体に塗工する方法がより好ましい。集電体に前記溶
液を塗工して負極体を得る方法において、バインダとな
る樹脂又はその前駆体を溶解させる溶媒は限定されない
が、バインダを構成する樹脂又はその前駆体を容易に溶
解でき、入手も容易であることからN−メチル−2−ピ
ロリドン(以下、NMPという)が好ましい。ここで、
ポリフッ化ビニリデンの前駆体、ポリアミドイミドの前
駆体又はポリイミドの前駆体とは、加熱することにより
重合してそれぞれポリフッ化ビニリデン、ポリアミドイ
ミド又はポリイミドとなるものをいう。
Like the positive electrode, the negative electrode of the present invention can be obtained by kneading polytetrafluoroethylene as a binder to form a sheet, forming a negative electrode, and adhering it to a current collector using a conductive adhesive. it can. In addition, polyvinylidene fluoride, polyamide imide or polyimide as a binder, a resin or a precursor of the binder is dissolved in an organic solvent to disperse the carbon material in a solution, coated on a current collector, and obtained by drying. There is also a method. Of these methods, the method of coating on the current collector is more preferable. In the method for obtaining the negative electrode body by applying the solution to the current collector, the solvent for dissolving the binder resin or its precursor is not limited, but can easily dissolve the resin constituting the binder or its precursor, N-methyl-2-pyrrolidone (hereinafter referred to as NMP) is preferable because it is easily available. here,
The precursor of polyvinylidene fluoride, the precursor of polyamideimide, or the precursor of polyimide means that they are polymerized by heating to be polyvinylidene fluoride, polyamideimide or polyimide, respectively.

【0017】本発明において、負極におけるリチウムイ
オンを吸蔵、脱離しうる炭素材料とバインダとの重量比
は70:30〜96:4が好ましい。より好ましくは7
5:25〜90:10である。バインダが30質量%よ
り多いと、負極容量が小さくなる。バインダが4質量%
未満であると、バインダとしての効果が弱くなり、負極
と集電体との剥離が多くなる。
In the present invention, the weight ratio of the carbon material capable of inserting and extracting lithium ions in the negative electrode to the binder is preferably 70:30 to 96: 4. More preferably 7
It is 5:25 to 90:10. When the binder content is more than 30% by mass, the negative electrode capacity becomes small. 4% by mass of binder
If it is less than the above range, the effect as a binder is weakened, and peeling between the negative electrode and the current collector increases.

【0018】本発明における有機電解液に含まれるリチ
ウム塩は、LiPF6 、LiBF4、LiClO4 、L
iN(SO2 CF3 2 、CF3 SO3 Li、LiC
(SO 2 CF3 3 、LiAsF6 及びLiSbF6
らなる群から選ばれる1種以上が好ましい。電解液中の
リチウム塩の濃度は0.1〜2.5mol/L、さらに
は0.5〜2mol/Lが好ましい。また、本発明にお
ける電解液の溶媒としては、プロピレンカーボネート(
以下PCと略す) 、エチレンカーボネート( 以下ECと
略す) 、ブチレンカーボネート、ジメチルカーボネー
ト、エチルメチルカーボネート、ジエチルカーボネー
ト、スルホラン、ジメトキシエタン等が挙げられ、これ
らを単独で、又は2種以上の混合溶媒として使用でき
る。なかでもPC、EC、ジメチルカーボネート、エチ
ルメチルカーボネート、ジエチルカーボネートの群から
選ばれる1種以上が好ましい。 この理由は、これらは電
気化学的に安定でかつ溶質を溶解すると高い電気伝導度
を示すからである。
Lithium contained in the organic electrolyte of the present invention
Umium salt is LiPF6, LiBFFour, LiClOFour, L
iN (SO2CF3)2, CF3SO3Li, LiC
(SO 2CF3)3, LiAsF6And LiSbF6Or
One or more selected from the group consisting of In electrolyte
The concentration of lithium salt is 0.1-2.5 mol / L,
Is preferably 0.5 to 2 mol / L. In addition, in the present invention
The solvent of the electrolyte solution is propylene carbonate (
Hereinafter abbreviated as PC), ethylene carbonate (hereinafter referred to as EC
Abbreviated), butylene carbonate, dimethyl carbonate
G, ethyl methyl carbonate, diethyl carbonate
, Sulfolane, dimethoxyethane, etc.
Can be used alone or as a mixed solvent of two or more kinds.
It Among them, PC, EC, dimethyl carbonate, ethi
From the group of rumethyl carbonate and diethyl carbonate
At least one selected is preferable. The reason for this is that they are
Gas-chemically stable and has high electrical conductivity when solute is dissolved
This is because

【0019】[0019]

【実施例】次に、実施例(例1〜2)と比較例(例3〜
4)により本発明をさらに具体的に説明するが、本発明
はこれらにより限定されない。なお、例1〜4のセルの
作製及び測定は、すべて露点が−60℃以下のアルゴン
グローブボックス中で行った。 [例1]平均粒径10μm、X線広角回折法による[0
02]面の面間隔が0.380nmの難黒鉛化性炭素粒
子をフェノール樹脂溶液に浸し、真空脱気してから濾過
し、アルゴンガス雰囲気下で、室温から800℃まで1
2時間かけて焼成した炭素材料を、ポリフッ化ビニリデ
ンをNMPに溶解した溶液に分散させて、銅からなる集
電体に塗布して乾燥し、集電体上に負極を形成した。負
極中のリチウムイオンを吸蔵、脱離しうる炭素材料とポ
リフッ化ビニリデンとは質量比で9:1であった。これ
をさらにロールプレス機でプレスし、負極の面積を1c
m×1cm、厚さを15μmとし、減圧下で150℃で
10時間熱処理し、負極体とした。なお上記炭素材料は
[002]面の面間隔が0.380nmであり、ラマン
スペクトルによるRは0.90であった。
EXAMPLES Next, Examples (Examples 1-2) and Comparative Examples (Examples 3-)
The present invention will be described in more detail with reference to 4), but the present invention is not limited thereto. The cells of Examples 1 to 4 were all manufactured and measured in an argon glove box with a dew point of -60 ° C or lower. [Example 1] Average particle size of 10 μm, measured by X-ray wide angle diffraction method [0
[02] The non-graphitizable carbon particles having a surface spacing of 0.380 nm are immersed in a phenol resin solution, deaerated in vacuum, and then filtered, and the temperature is increased from room temperature to 800 ° C. under an argon gas atmosphere.
The carbon material fired for 2 hours was dispersed in a solution of polyvinylidene fluoride dissolved in NMP, applied on a current collector made of copper and dried to form a negative electrode on the current collector. The mass ratio of the carbon material capable of inserting and extracting lithium ions in the negative electrode and polyvinylidene fluoride was 9: 1. This is further pressed by a roll press machine to reduce the area of the negative electrode to 1c.
It was m × 1 cm and had a thickness of 15 μm, and was heat-treated under reduced pressure at 150 ° C. for 10 hours to obtain a negative electrode body. The carbon material had a [002] plane spacing of 0.380 nm and an R of Raman spectrum of 0.90.

【0020】次に、フェノール樹脂を原料として水蒸気
賦活法によって得られた比表面積2000m2 /gの活
性炭80重量%、導電性カーボンブラック10重量%、
及びバインダとしてポリテトラフルオロエチレン10重
量%からなる混合物を、エタノールを加えて混練し、圧
延した後、200℃で2時間真空乾燥して厚さ150μ
mの電極シートを得た。この電極シートから1cm×1
cmの電極を得て、ポリアミドイミドをバインダとする
導電性接着剤を用いてアルミニウム箔に接合し、減圧下
で260℃で10時間熱処理し、正極体とした。上記正
極体と上記負極体とを、ポリプロピレン製セパレータを
介してそれぞれの電極面を対向させ、挟持板で挟持して
素子を作製した。PCとエチルメチルカーボネートと
(質量比1:1)の混合溶媒を用い、LiBF4 を1m
ol/Lの濃度で溶解した溶液を電解液とし、前記素子
を充分に含浸させて、4.2Vから2.75Vまでの範
囲で初期容量を測定した。その後、充放電電流10mA
/cm2 で、4.0Vから2.75Vまでの範囲で充放
電サイクルを行い、2000サイクル後の容量を測定
し、容量の変化率を算出した。結果を表1に示す。
Next, 80% by weight of activated carbon having a specific surface area of 2000 m 2 / g and 10% by weight of conductive carbon black obtained by a steam activation method using a phenol resin as a raw material,
And, a mixture of 10% by weight of polytetrafluoroethylene as a binder was kneaded by adding ethanol, rolled, and then vacuum dried at 200 ° C. for 2 hours to give a thickness of 150 μm.
m electrode sheet was obtained. 1 cm x 1 from this electrode sheet
cm electrode was obtained and bonded to an aluminum foil using a conductive adhesive having polyamide imide as a binder, and heat-treated at 260 ° C. for 10 hours under reduced pressure to obtain a positive electrode body. The positive electrode body and the negative electrode body were made to face each other with a polypropylene separator interposed therebetween and sandwiched by sandwiching plates to fabricate an element. Using a mixed solvent of PC and ethyl methyl carbonate (mass ratio 1: 1), 1 mL of LiBF 4 was used.
The device was sufficiently impregnated with a solution dissolved at a concentration of ol / L as an electrolytic solution, and the initial capacity was measured in the range of 4.2V to 2.75V. After that, charge / discharge current 10mA
/ Cm 2 , the charge and discharge cycle was performed in the range of 4.0 V to 2.75 V, the capacity after 2000 cycles was measured, and the rate of change of capacity was calculated. The results are shown in Table 1.

【0021】[例2]X線広角回折法による[002]
面の面間隔が0.380nmの難黒鉛化性炭素粒子を原
料に、800℃でベンゼン蒸気を導入し、所定期間でC
VDを行い、得た炭素材料を負極活物質として用いた以
外は例1と同様にして二次電源を得て、例1と同様に評
価した。結果を表1に示す。なお上記炭素材料は[00
2]面の面間隔が0.380nmであり、ラマンスペク
トルによるRは0.85であった。 [例3]X線広角回折法による[002]面の面間隔が
0.336nmの黒鉛系粒子を原料に、800℃でベン
ゼン蒸気を導入し、所定期間でCVDを行い、得た炭素
材料を負極活物質として用いた以外は例1と同様にして
二次電源を得て、例1と同様に評価した。結果を表1に
示す。なお上記炭素材料は[002]面の面間隔が0.
336nmであり、ラマンスペクトルによるRは0.6
0であった。 [例4]X線広角回折法による[002]面の面間隔が
0.373nmの難黒鉛化性炭素を負極活物質として用
いた以外は例1と同様にして二次電源を得て、例1と同
様に評価した。結果を表1に示す。なお上記炭素材料は
[002]面の面間隔が0.373nmであり、ラマン
スペクトルによるRは0.51であった。
[Example 2] X-ray wide-angle diffraction method [002]
Using non-graphitizable carbon particles having a surface spacing of 0.380 nm as a raw material, benzene vapor was introduced at 800 ° C., and C
A secondary power source was obtained in the same manner as in Example 1 except that VD was performed and the obtained carbon material was used as the negative electrode active material, and the same evaluation as in Example 1 was performed. The results are shown in Table 1. The carbon material is [00
The interplanar spacing of the [2] plane was 0.380 nm, and the R according to Raman spectrum was 0.85. [Example 3] A carbon material obtained by introducing benzene vapor at 800 ° C and performing CVD for a predetermined period from graphite-based particles having a spacing of [002] planes of 0.336 nm by X-ray wide-angle diffraction method as a raw material A secondary power source was obtained in the same manner as in Example 1 except that it was used as the negative electrode active material, and evaluated in the same manner as in Example 1. The results are shown in Table 1. The carbon material has a [002] plane spacing of 0.
336 nm, R by Raman spectrum is 0.6
It was 0. [Example 4] A secondary power source was obtained in the same manner as in Example 1 except that non-graphitizable carbon having a [002] plane spacing of 0.373 nm determined by the X-ray wide-angle diffraction method was used as the negative electrode active material. It evaluated similarly to 1. The results are shown in Table 1. The carbon material had a [002] plane spacing of 0.373 nm and an R of Raman spectrum of 0.51.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明によれば、活性炭正極と、難黒鉛
化性炭素が乱層構造の発達した炭素により被覆されてい
る複合炭素材料を含む負極を用いるため、容量が大き
く、耐電圧が高く、かつ急速充放電サイクル信頼性の高
い二次電源を提供できる。
According to the present invention, since the activated carbon positive electrode and the negative electrode containing the composite carbon material in which the non-graphitizable carbon is coated with the carbon having the disordered layer structure are used, the capacity is large and the withstand voltage is high. It is possible to provide a secondary power supply which is highly reliable and has high reliability in rapid charge / discharge cycles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 對馬 学 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 Fターム(参考) 4G046 EA03 EA05 EC05 5H029 AJ02 AJ03 AJ05 AK08 AL06 AM02 AM03 AM04 AM05 AM07 DJ16 DJ17 HJ01 HJ13 5H050 AA02 AA07 AA08 BA17 CA16 CB07 FA18 FA19 HA01 HA13   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor, Keima             1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa             Asahi Glass Co., Ltd. F-term (reference) 4G046 EA03 EA05 EC05                 5H029 AJ02 AJ03 AJ05 AK08 AL06                       AM02 AM03 AM04 AM05 AM07                       DJ16 DJ17 HJ01 HJ13                 5H050 AA02 AA07 AA08 BA17 CA16                       CB07 FA18 FA19 HA01 HA13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】活性炭を含む正極と、難黒鉛化性炭素が乱
層構造の発達した炭素により被覆されてなる複合炭素材
料を含む負極と、リチウム塩を含む有機電解液と、を有
することを特徴とする二次電源。
1. A positive electrode containing activated carbon, a negative electrode containing a composite carbon material in which non-graphitizable carbon is coated with carbon having a turbostratic structure, and an organic electrolyte containing a lithium salt. Characteristic secondary power supply.
【請求項2】前記複合炭素材料は、X線広角回折法によ
り測定される[002]面の面間隔が0.354〜0.
395nmである請求項1に記載の二次電源。
2. The composite carbon material has a [002] plane spacing of 0.354 to 0..0 measured by an X-ray wide angle diffraction method.
The secondary power source according to claim 1, which has a wavelength of 395 nm.
【請求項3】前記複合炭素材料は、アルゴンイオンラマ
ンスペクトルにおいて、1580cm-1におけるピーク
値(I1580)に対する1360cm-1におけるピーク値
(I 1360)の強度比R (R=I1360/I1580) が0.5〜
1.8である請求項1又は2に記載の二次電源。
3. The composite carbon material is an argon ion llama.
In the spectrum, 1580 cm-1Peak in
Value (I1580) To 1360 cm-1Peak value at
(I 1360) Intensity ratio R (R = I1360/ I1580) Is 0.5-
The secondary power source according to claim 1 or 2, which is 1.8.
【請求項4】前記負極の複合炭素材料中、前記難黒鉛化
性炭素と前記乱層構造の発達した炭素の質量比は10
0:2〜100:30である請求項1〜3のいずれかに
記載の二次電源。
4. The mass ratio of the non-graphitizable carbon and the carbon having the disordered layer structure developed is 10 in the composite carbon material of the negative electrode.
The secondary power source according to any one of claims 1 to 3, which is 0: 2 to 100: 30.
JP2001213561A 2001-07-13 2001-07-13 Secondary power source Withdrawn JP2003031220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001213561A JP2003031220A (en) 2001-07-13 2001-07-13 Secondary power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001213561A JP2003031220A (en) 2001-07-13 2001-07-13 Secondary power source

Publications (1)

Publication Number Publication Date
JP2003031220A true JP2003031220A (en) 2003-01-31

Family

ID=19048512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001213561A Withdrawn JP2003031220A (en) 2001-07-13 2001-07-13 Secondary power source

Country Status (1)

Country Link
JP (1) JP2003031220A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118120A1 (en) * 2005-04-26 2006-11-09 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
JP2007035770A (en) * 2005-07-25 2007-02-08 Tdk Corp Manufacturing method of electrode for electrochemical element and manufacturing method of electrochemical element
JP2010098020A (en) * 2008-10-15 2010-04-30 Hitachi Powdered Metals Co Ltd Negative electrode coating film and coating composition for forming electrode coating film of lithium ion capacitor
JP2011204901A (en) * 2010-03-25 2011-10-13 Asahi Kasei Corp Negative electrode material for nonaqueous lithium type energy storage element, and nonaqueous lithium type energy storage element using the same
JP2012134236A (en) * 2010-12-20 2012-07-12 Jsr Corp Lithium ion capacitor
WO2012121031A1 (en) * 2011-03-04 2012-09-13 国立大学法人 熊本大学 Nitrogen-containing carbon compound
JP2015011870A (en) * 2013-06-28 2015-01-19 Jsr株式会社 Electrode active material, electrode and power storage device
JP2015220152A (en) * 2014-05-20 2015-12-07 本田技研工業株式会社 Negative electrode active material, alkaline ion secondary battery and electric capacitor
CN105612640A (en) * 2013-10-02 2016-05-25 尤米科尔公司 Carbon coated electrochemically active powder
WO2016147607A1 (en) * 2015-03-13 2016-09-22 Sharp Kabushiki Kaisha Anode for sodium-ion and potassium-ion batteries
US9742027B2 (en) 2012-03-28 2017-08-22 Sharp Laboratories Of America, Inc. Anode for sodium-ion and potassium-ion batteries
JP2018081753A (en) * 2016-11-14 2018-05-24 マクセルホールディングス株式会社 Negative electrode for nonaqueous electrolyte solution based electrochemical element, method for manufacturing the same, lithium ion secondary battery, and method for manufacturing the same
CN114424383A (en) * 2019-09-27 2022-04-29 松下知识产权经营株式会社 Secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118120A1 (en) * 2005-04-26 2006-11-09 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
US8142930B2 (en) 2005-04-26 2012-03-27 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
JP2007035770A (en) * 2005-07-25 2007-02-08 Tdk Corp Manufacturing method of electrode for electrochemical element and manufacturing method of electrochemical element
JP4581888B2 (en) * 2005-07-25 2010-11-17 Tdk株式会社 Electrode element manufacturing method and electrochemical element manufacturing method
JP2010098020A (en) * 2008-10-15 2010-04-30 Hitachi Powdered Metals Co Ltd Negative electrode coating film and coating composition for forming electrode coating film of lithium ion capacitor
JP2011204901A (en) * 2010-03-25 2011-10-13 Asahi Kasei Corp Negative electrode material for nonaqueous lithium type energy storage element, and nonaqueous lithium type energy storage element using the same
JP2012134236A (en) * 2010-12-20 2012-07-12 Jsr Corp Lithium ion capacitor
WO2012121031A1 (en) * 2011-03-04 2012-09-13 国立大学法人 熊本大学 Nitrogen-containing carbon compound
US9742027B2 (en) 2012-03-28 2017-08-22 Sharp Laboratories Of America, Inc. Anode for sodium-ion and potassium-ion batteries
JP2015011870A (en) * 2013-06-28 2015-01-19 Jsr株式会社 Electrode active material, electrode and power storage device
CN105612640A (en) * 2013-10-02 2016-05-25 尤米科尔公司 Carbon coated electrochemically active powder
JP2015220152A (en) * 2014-05-20 2015-12-07 本田技研工業株式会社 Negative electrode active material, alkaline ion secondary battery and electric capacitor
WO2016147607A1 (en) * 2015-03-13 2016-09-22 Sharp Kabushiki Kaisha Anode for sodium-ion and potassium-ion batteries
KR20170104574A (en) * 2015-03-13 2017-09-15 샤프 가부시키가이샤 Anode for sodium-ion and potassium-ion batteries
CN107431204A (en) * 2015-03-13 2017-12-01 夏普株式会社 Sodium ion and kalium ion battery anode
JP2018081753A (en) * 2016-11-14 2018-05-24 マクセルホールディングス株式会社 Negative electrode for nonaqueous electrolyte solution based electrochemical element, method for manufacturing the same, lithium ion secondary battery, and method for manufacturing the same
CN114424383A (en) * 2019-09-27 2022-04-29 松下知识产权经营株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
JP3689948B2 (en) Electric double layer capacitor
JP4096438B2 (en) Secondary power supply
JP2003168429A (en) Nonaqueous electrolyte secondary battery
JP2002270175A (en) Secondary power source
JP2003031220A (en) Secondary power source
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP2002298849A (en) Secondary electric power source
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JP2001345122A (en) Secondary power source and method of manufacturing secondary power source
JP2000306609A (en) Secondary power supply
JP2000036325A (en) Secondary power supply
JP2002008657A (en) Negative electrode material for secondary power source, manufacturing method of secondary power source and negative electrode material
EP1239527B1 (en) Secondary power source
JP4042187B2 (en) Secondary power supply
JPH1154384A (en) Electric double layer capacitor
JP2006303118A (en) Lithium ion capacitor
JP4099970B2 (en) Secondary power supply
JP4284934B2 (en) Secondary power supply
JPH11102708A (en) Negative electrode body, and secondary electric source
JP4352532B2 (en) Secondary power supply
JP4039071B2 (en) Secondary power supply
JP2001236960A (en) Method of manufacturing secondary power supply
JP2002033102A (en) Secondary power source and method for manufacturing negative electrode for secondary power source
JP2001266872A (en) Secondary power source and its manufacturing method
JP2003017118A (en) Secondary power source

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007