JPH1154384A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JPH1154384A
JPH1154384A JP9212274A JP21227497A JPH1154384A JP H1154384 A JPH1154384 A JP H1154384A JP 9212274 A JP9212274 A JP 9212274A JP 21227497 A JP21227497 A JP 21227497A JP H1154384 A JPH1154384 A JP H1154384A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
capacity
carbon
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9212274A
Other languages
Japanese (ja)
Inventor
Manabu Tsushima
学 對馬
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9212274A priority Critical patent/JPH1154384A/en
Publication of JPH1154384A publication Critical patent/JPH1154384A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To reduce deterioration of a negative pole by mixing non-graphite baked material and graphite based material to form the negative pole. SOLUTION: An electric double layer capacitor is provided with the following; a positive pole composed of a polarizable electrode whose main body is active carbon, a negative pole whose main body is carbon material capable of occluding and desorbing lithium ions, and organic electrolyte using lithium salt as salute. In the carbon material, lithium ions are desorbed in the mixture of graphite based material and non-graphite based material wherein the spacing of a [002] face is 0.34-0.41 nm, by a chemical method or an electrochemical method. As the non-graphite based material, carbon of easy graphitization, carbon of difficult graphitization, etc., are used. As the graphite based material, natural graphite, artificial graphite, etc., are used. The weight ratio of graphite based material of the negative pole to the non-graphite based material is 0.1-1. The ratio C<+> /C<-> of the electric double layer capacitor is 0,001-0.9. The specific surface area of active carbon used in the positive pole is 800-3000 m<2> /g.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、充放電サイクルに
優れ、耐電圧が高く、容量の大きい電気二重層キャパシ
タに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor having excellent charge / discharge cycles, high withstand voltage, and large capacity.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極は、
正極負極とも活性炭を主体とする分極性電極からなって
いた。この場合の耐電圧は、水系電解液を使用すると
1.2V、有機系電解液で2.5〜3.3Vである。
2. Description of the Related Art The electrodes of a conventional electric double layer capacitor are:
Both the positive and negative electrodes consisted of a polarizable electrode mainly composed of activated carbon. In this case, the withstand voltage is 1.2 V when an aqueous electrolyte is used, and is 2.5 to 3.3 V when an organic electrolyte is used.

【0003】電気二重層キャパシタのエネルギは耐電圧
の2乗に比例するので、耐電圧の高い有機電解液を使用
した方が水系電解液を使用するより高エネルギである。
しかし、有機電解液を使用し、正極と負極がともに活性
炭を主体とする分極性電極である電気二重層キャパシタ
のエネルギ密度は、鉛蓄電池、リチウムイオン二次電池
等の二次電池の10分の1以下であり、さらなるエネル
ギ密度の向上が必要とされている。
Since the energy of an electric double layer capacitor is proportional to the square of the withstand voltage, the use of an organic electrolyte having a high withstand voltage is higher than the use of an aqueous electrolyte.
However, the energy density of an electric double layer capacitor using an organic electrolyte and having a positive electrode and a negative electrode both of which are polarizable electrodes mainly composed of activated carbon is 10 minutes less than that of a secondary battery such as a lead storage battery or a lithium ion secondary battery. 1 or less, and further improvement in energy density is required.

【0004】特開昭64−14882には活性炭を主体
とする電極を正極とし、X線回折により測定した[00
2]面の面間隔が0.338〜0.356nmである炭
素材料に、あらかじめリチウムイオンを吸蔵させた電極
を負極とする上限電圧が3Vの二次電池が提案されてい
る。特開平8−107048には、リチウムイオンを吸
蔵、脱離しうる炭素材料に、あらかじめ化学的方法又は
電気化学的方法でリチウムイオンを吸蔵させた炭素材料
を負極に用いる電気二重層キャパシタが提案されてい
る。特開平9−55342には、リチウムイオンを吸
蔵、脱離しうる炭素材料をリチウムと合金を形成しない
多孔質集電体に担持させた負極を有する上限電圧が4V
の電気二重層キャパシタが提案されている。
Japanese Patent Application Laid-Open No. 64-14882 discloses a method in which an electrode mainly composed of activated carbon is used as a positive electrode and measured by X-ray diffraction.
2] A secondary battery with an upper limit voltage of 3 V has been proposed, in which an electrode in which lithium ions are previously absorbed in a carbon material having a plane spacing of 0.338 to 0.356 nm is used as a negative electrode. JP-A-8-107048 proposes an electric double layer capacitor in which a carbon material capable of absorbing and desorbing lithium ions and a carbon material in which lithium ions are previously absorbed by a chemical method or an electrochemical method is used for a negative electrode. I have. Japanese Patent Application Laid-Open No. 9-55342 discloses that the maximum voltage of a negative electrode having a carbon material capable of absorbing and desorbing lithium ions supported on a porous current collector that does not form an alloy with lithium is 4 V
Has been proposed.

【0005】上記のようなリチウムイオンを吸蔵、脱離
しうる炭素材料にあらかじめリチウムイオンを吸蔵させ
た負極は、活性炭を主体とする負極より電位がより卑に
なるので、前記負極と、活性炭を主体とする正極を組み
合わせた電気二重層キャパシタの耐電圧は、正極、負極
ともに活性炭を主体とする電気二重層キャパシタの耐電
圧より高くなる。
A negative electrode in which lithium ions are previously stored in a carbon material capable of storing and releasing lithium ions as described above has a lower potential than a negative electrode mainly composed of activated carbon. The withstand voltage of the electric double layer capacitor in which the positive electrode is combined is higher than the withstand voltage of the electric double layer capacitor mainly composed of activated carbon for both the positive electrode and the negative electrode.

【0006】[0006]

【発明が解決しようとする課題】リチウムイオンを吸
蔵、脱離しうる炭素材料を作用極とし、リチウムを対極
及び参照極とする3極式で放電特性をみると、放電初期
から電位が一定であるが放電末期に電位が急激に上昇す
るものと終始なだらかに電位が上昇するものがある。
The discharge characteristics of a three-electrode system using a carbon material capable of absorbing and desorbing lithium ions as a working electrode and lithium as a counter electrode and a reference electrode show that the potential is constant from the beginning of discharge. There are two types, one in which the potential rises sharply at the end of discharge and the other in which the potential rises gently throughout.

【0007】前者は黒鉛系材料であり、後者は易黒鉛化
性炭素、難黒鉛化性炭素、低温焼成炭素材料等の非黒鉛
系材料である。ここで、難黒鉛化性炭素とはフルフリル
アルコール樹脂やフェノール樹脂等を焼成したもので、
結晶子サイズが数nm以下、密度が1.5〜1.8g/
cm3 の炭素材料をいう。また、易黒鉛化性炭素とはコ
ークス、メソカーボンマイクロビーズ、メソフェーズピ
ッチ系炭素繊維、熱分解気相成長炭素繊維等であり、結
晶子サイズが1.5〜5nm、密度が1.8〜2.1g
/cm3 の炭素材料をいう。黒鉛系材料は初期のクーロ
ン効率が高く、非黒鉛系材料は初期のクーロン効率が低
い。
The former is a graphite-based material, and the latter is a non-graphite-based material such as graphitizable carbon, non-graphitizable carbon, and low-temperature fired carbon material. Here, the non-graphitizable carbon is obtained by firing a furfuryl alcohol resin or a phenol resin.
The crystallite size is several nm or less, and the density is 1.5 to 1.8 g /
cm 3 carbon material. The easily graphitizable carbon is coke, mesocarbon microbeads, mesophase pitch-based carbon fiber, pyrolytic vapor growth carbon fiber, etc., having a crystallite size of 1.5 to 5 nm and a density of 1.8 to 2. .1g
/ Cm 3 carbon material. Graphite-based materials have high initial Coulomb efficiency, and non-graphite-based materials have low initial Coulomb efficiency.

【0008】そのため、非黒鉛系材料を主体とする負極
を、活性炭を主体とする正極と組み合わせて電気二重層
キャパシタ素子を作製して放電容量を測定すると、負極
の電位が上昇するために放電時間が短くなる問題があっ
た。また、黒鉛系材料を主体とする負極を、活性炭を主
体とする正極と組み合わせて電気二重層キャパシタ素子
を作製して放電容量を測定すると、放電時間は非黒鉛系
炭素材料よりは長くなるが、放電末期になるとリチウム
参照極に対し急激に電位が変化するために負極の劣化を
引き起こしやすい問題があった。
[0008] Therefore, when an electric double layer capacitor element is manufactured by combining a negative electrode mainly composed of a non-graphite material with a positive electrode mainly composed of activated carbon, and the discharge capacity is measured, the discharge time is increased because the potential of the negative electrode increases. There was a problem that became shorter. Also, when a negative electrode mainly composed of a graphite material is combined with a positive electrode mainly composed of activated carbon to produce an electric double layer capacitor element and the discharge capacity is measured, the discharge time is longer than that of the non-graphite carbon material. At the end of discharge, the potential changes abruptly with respect to the lithium reference electrode.

【0009】[0009]

【課題を解決するための手段】本発明者等は上記課題を
解決するために検討を重ねた結果、非黒鉛系材料と黒鉛
系材料とを混合させて負極とすると、放電初期には黒鉛
系材料の特性があらわれて電位が平坦で高容量が発現で
き、また放電後半になると非黒鉛系材料の特徴があらわ
れてなだらかな電位の変化がみられ、負極の劣化が少な
くなることが判明した。
Means for Solving the Problems As a result of repeated studies to solve the above-mentioned problems, the present inventors have found that when a non-graphite material and a graphite material are mixed to form a negative electrode, graphite It was found that the characteristics of the material appeared, the potential was flat and a high capacity could be developed, and in the latter half of the discharge, the characteristics of the non-graphite material appeared, and a gradual change in the potential was observed, and the deterioration of the negative electrode was reduced.

【0010】本発明は、活性炭を主体とする分極性電極
からなる正極と、リチウムイオンを吸蔵、脱離しうる炭
素材料を主体とする負極と、リチウム塩を溶質とする有
機電解液とを有する電気二重層キャパシタにおいて、前
記炭素材料が、黒鉛系材料と[002]面の面間隔が
0.34〜0.41nmである非黒鉛系材料との混合物
に化学的方法又は電気化学的方法でリチウムイオンを吸
蔵させた炭素材料であることを特徴とする電気二重層キ
ャパシタを提供する。
The present invention provides an electric power comprising a positive electrode composed of a polarizable electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material capable of occluding and releasing lithium ions, and an organic electrolyte containing a lithium salt as a solute. In the double-layer capacitor, the carbon material is formed by mixing a graphite-based material with a non-graphite-based material having a [002] plane spacing of 0.34 to 0.41 nm by a chemical method or an electrochemical method. The present invention provides an electric double layer capacitor characterized by being a carbon material having occluded therein.

【0011】本発明において、使用する非黒鉛系材料の
[002]面の面間隔は0.34〜0.41nmであ
る。0.34nm未満では、黒鉛化度が大きいため放電
後半に電位の変化がなだらかにならない。0.41nm
を超えると、充放電サイクルを繰り返したときに電気二
重層キャパシタの劣化が大きくなる。好ましくは、0.
34〜0.37nmである。
In the present invention, the spacing between [002] planes of the non-graphite material used is 0.34 to 0.41 nm. If it is less than 0.34 nm, the degree of graphitization is large, so that the potential does not change smoothly in the latter half of the discharge. 0.41 nm
When the charge / discharge cycle is repeated, the electric double layer capacitor deteriorates greatly when the charge / discharge cycle is repeated. Preferably, 0.
34 to 0.37 nm.

【0012】本発明におけるX線回折による[002]
面の面間隔が0.34〜0.41nmである非黒鉛系材
料としては、易黒鉛化性炭素、難黒鉛化性炭素、低温焼
成炭素材料等が挙げられる。ここで易黒鉛化性炭素とし
ては、例えばピッチ、コークス等を900〜2000℃
で熱処理したもので、黒鉛化の過程にある炭素材料が挙
げられる。難黒鉛化性炭素としては、例えばポリパラフ
ェニレンを700〜900℃で焼成したものが挙げられ
る。低温焼成炭素材料としては、例えばフルフラール樹
脂、フェノール樹脂、ピッチ等を不活性ガス中で500
〜1000℃で熱処理したものが挙げられる。
[002] X-ray diffraction in the present invention
Examples of the non-graphite-based material having a plane spacing of 0.34 to 0.41 nm include graphitizable carbon, non-graphitizable carbon, and low-temperature fired carbon materials. Here, as the graphitizable carbon, for example, pitch, coke or the like is used at 900 to 2000 ° C.
And carbon materials in the process of graphitization. Examples of the non-graphitizable carbon include those obtained by firing polyparaphenylene at 700 to 900 ° C. As the low-temperature calcined carbon material, for example, furfural resin, phenol resin, pitch,
Heat treated at 10001000 ° C. is exemplified.

【0013】本発明における黒鉛系材料としては、天然
黒鉛、人造黒鉛、メソカーボンマイクロビーズ黒鉛化
物、ピッチ系炭素繊維黒鉛化物等が挙げられる。
Examples of the graphite-based material in the present invention include natural graphite, artificial graphite, graphitized mesocarbon microbeads, and graphitized pitch-based carbon fiber.

【0014】本発明における負極の黒鉛系材料と非黒鉛
系材料との重量比(黒鉛系材料重量/非黒鉛性材料重
量)は、0.1〜1が好ましい。0.1未満であると、
非黒鉛系材料の性質が負極の性能を支配し、放電時に電
位が平坦にならない。また、1を超えると、負極の放電
末期の電位変化が大きくなり、充放電サイクルを繰り返
すことにより劣化が大きくなる。
In the present invention, the weight ratio of the graphite material to the non-graphite material (weight of the graphite material / weight of the non-graphite material) of the negative electrode is preferably 0.1 to 1. If less than 0.1,
The properties of the non-graphite material dominate the performance of the negative electrode, and the potential does not become flat during discharge. On the other hand, if it exceeds 1, the potential change of the negative electrode at the end of discharge becomes large, and the deterioration becomes large by repeating the charge / discharge cycle.

【0015】電気二重層キャパシタの容量は式1で与え
られる。ただし、Cはセル容量、C+ は正極容量、C-
は負極容量である。 1/C=1/C+ +1/C- ・・・式1
The capacity of the electric double layer capacitor is given by equation (1). Where C is the cell capacity, C + is the positive electrode capacity, C
Is the negative electrode capacity. 1 / C = 1 / C + + 1 / C - ··· Formula 1

【0016】正極、負極ともに活性炭を主体とする電気
二重層キャパシタは、正極と負極の容量がほぼ同じなの
で、電気二重層キャパシタセルとしての容量は式2で表
される。 1/C=1/C+ +1/C- ≒2/C+ ・・・式2
In the electric double layer capacitor mainly composed of activated carbon for both the positive electrode and the negative electrode, the capacitances of the positive electrode and the negative electrode are almost the same. 1 / C = 1 / C + + 1 / C - ≒ 2 / C + ··· type 2

【0017】すなわち、電気二重層キャパシタセルとし
ての容量は、正極又は負極の容量の半分である。ところ
が、正極の容量が一定である場合は、式1を書き換えた
式3より明らかなように、負極の容量が正極の容量より
大きいほど電気二重層キャパシタセルの容量は大きくな
る。 C=C+ {1/(1+C+ /C- )} ・・・式3
That is, the capacity of the electric double layer capacitor cell is half of the capacity of the positive electrode or the negative electrode. However, when the capacity of the positive electrode is constant, as is apparent from Equation 3 obtained by rewriting Equation 1, the capacity of the electric double layer capacitor cell increases as the capacity of the negative electrode becomes larger than the capacity of the positive electrode. C = C + {1 / ( 1 + C + / C -)} ··· Equation 3

【0018】そして、C- ≫C+ である場合はC+ /C
- ≒0となり、セルとしての容量は正極の容量とほぼ等
しくなり、正極、負極ともに活性炭を主体とする電気二
重層キャパシタに比較して容量は2倍になる。
When C - ≫C + , C + / C
- ≒ 0, the capacity of the cell is almost equal to the capacity of the positive electrode, and the capacity of both the positive electrode and the negative electrode is twice as large as that of an electric double layer capacitor mainly composed of activated carbon.

【0019】本発明の電気二重層キャパシタのC+ /C
- は、有機電解液中において電流1mAの条件で0.0
01〜0.9であることが好ましい。0.001未満と
するには正極容量を小さくしなくてはならないので、そ
の結果セル容量が小さくなる。また、0.9を超える
と、正極と負極の容量がほぼ等しくなりセル容量を大き
くできず、そのような炭素材料では負極の電位が正極に
比べてあまり卑にならないので、セルとしての耐電圧も
高くならず、充放電サイクルによる劣化が顕著であり、
さらには急速充放電も困難になる。より好ましくはC+
/C- は0.01〜0.2である。
C + / C of the electric double layer capacitor of the present invention
- is at a current 1mA in the organic electrolytic solution 0.0
It is preferably from 01 to 0.9. Since the positive electrode capacity must be reduced in order to make it less than 0.001, the cell capacity is reduced as a result. On the other hand, if the value exceeds 0.9, the capacity of the positive electrode and that of the negative electrode are almost equal, and the cell capacity cannot be increased. With such a carbon material, the potential of the negative electrode is not so low as compared with the positive electrode, so the withstand voltage as a cell Is not high, and deterioration due to charge / discharge cycles is remarkable,
Furthermore, rapid charging and discharging also becomes difficult. More preferably C +
/ C - is 0.01 to 0.2.

【0020】本発明においては、負極炭素材料にリチウ
ムイオンを化学的又は電気化学的に吸蔵させる。化学的
方法としては、例えば負極炭素材料とリチウム金属を接
触させた状態で電解液中に浸漬し、リチウムをイオン化
させて負極炭素材料に吸蔵させる方法がある。電気化学
的方法としては負極炭素材料とリチウム金属をセパレー
タを介して対向させ、電解液中で定電流又は定電圧で前
記負極炭素材料を充電する方法がある。
In the present invention, the negative electrode carbon material chemically or electrochemically stores lithium ions. As a chemical method, for example, there is a method of immersing the negative electrode carbon material in contact with lithium metal in an electrolytic solution to ionize lithium and occlude the lithium in the negative electrode carbon material. As an electrochemical method, there is a method in which a negative electrode carbon material and lithium metal are opposed via a separator, and the negative electrode carbon material is charged at a constant current or a constant voltage in an electrolytic solution.

【0021】負極炭素材料は、例えばバインダとして含
フッ素重合体樹脂を加え、エタノールを添加して混練し
た後シート成形し、銅、ニッケル等の集電体に導電性接
着剤を用いて接着すると、高容量が得られ充放電サイク
ル特性も良好である。この場合の含フッ素重合体樹脂は
耐熱性、耐溶剤性の面からポリテトラフルオロエチレン
(以下、PTFEという)が好ましい。
For example, a negative electrode carbon material is prepared by adding a fluoropolymer resin as a binder, adding ethanol, kneading the mixture, forming a sheet, and adhering to a current collector such as copper or nickel using a conductive adhesive. High capacity is obtained and charge / discharge cycle characteristics are also good. In this case, the fluoropolymer resin is preferably polytetrafluoroethylene (hereinafter referred to as PTFE) from the viewpoint of heat resistance and solvent resistance.

【0022】バインダの量は、負極炭素材料の重量に対
して1〜20重量%が好適である。1重量%に満たない
とシート成形するのが困難であり、20重量%を超える
と電解液の吸液性が乏しくなる。より好ましくは3〜1
5重量%である。
The amount of the binder is preferably 1 to 20% by weight based on the weight of the negative electrode carbon material. If it is less than 1% by weight, it is difficult to form a sheet, and if it exceeds 20% by weight, the liquid absorbing property of the electrolytic solution is poor. More preferably, 3 to 1
5% by weight.

【0023】正極に用いられる活性炭は特に限定されな
いが、やしがら、フェノール樹脂、石油コークス等を水
蒸気賦活又は溶融KOH賦活したもの等が好適に使用で
きる。また、活性炭の比表面積が800〜3000m2
/gであると容量が大きく好適である。
Activated carbon used for the positive electrode is not particularly limited, but one obtained by activating steam, molten KOH, or the like of coconut, phenolic resin, petroleum coke, or the like can be suitably used. The activated carbon has a specific surface area of 800 to 3000 m 2.
/ G is preferable because the capacity is large.

【0024】正極には導電材及びバインダを含有させる
ことが好ましい。バインダは負極に使用するバインダと
同様に含フッ素重合体樹脂が使用できる。正極の作製方
法は、活性炭、導電材としてカーボンブラック、及びバ
インダをエタノール等の溶媒を用いて混練し、シート成
形した後、例えば導電性接着剤を用いて集電体に接着さ
せる方法が高容量を発現でき好適である。
It is preferable that the positive electrode contains a conductive material and a binder. As the binder, a fluoropolymer resin can be used in the same manner as the binder used for the negative electrode. A method for producing a positive electrode is to knead activated carbon, carbon black as a conductive material, and a binder using a solvent such as ethanol, form a sheet, and then bond the sheet to a current collector using, for example, a conductive adhesive. Is preferred.

【0025】本発明における有機電解液の溶質のリチウ
ム塩としては、LiPF6 、LiBF4 、LiClO
4 、LiN(CF3 SO22 、CF3 SO3 Li、L
iC(SO2 CF33 、LiAsF6 及びLiSbF
6 等が挙げられる。溶媒としてはエチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ジメチルカーボネート、エチルメチルカーボネート、ジ
エチルカーボネート、スルホラン及びジメトキシエタン
から選ばれる1種以上を含むことが好ましい。
The solute lithium salt of the organic electrolyte in the present invention includes LiPF 6 , LiBF 4 , LiClO
4 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, L
iC (SO 2 CF 3 ) 3 , LiAsF 6 and LiSbF
6 and the like. As a solvent, ethylene carbonate, propylene carbonate, butylene carbonate,
It is preferable to include at least one selected from dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, and dimethoxyethane.

【0026】上記の溶質と溶媒とからなる有機電解液
は、耐電圧が高く電気伝導度が高い。また、本発明の有
機電解液におけるリチウム塩の濃度は0.1〜2.5m
ol/lが好ましく、より好ましくは0.5〜2mol
/lである。
The organic electrolyte comprising the above-mentioned solute and solvent has a high withstand voltage and a high electric conductivity. The concentration of the lithium salt in the organic electrolyte of the present invention is 0.1 to 2.5 m.
ol / l is preferable, and more preferably 0.5 to 2 mol
/ L.

【0027】[0027]

【実施例】以下、実施例(例1〜7)及び比較例(例8
〜10)により本発明をさらに具体的に説明するが、本
発明は下記実施例に限定されない。
The following examples (Examples 1 to 7) and comparative examples (Example 8)
The present invention will be described more specifically with reference to Examples 10 to 10, but the present invention is not limited to the following Examples.

【0028】[例1]水蒸気賦活法によって得られた比
表面積2000m2 /gの活性炭80重量部と導電性カ
ーボンブラック10重量部とバインダとしてPTFE1
0重量部とを混合し、エタノールを用いて混練し、圧延
して得られたシートを200℃で2時間真空乾燥後、ア
ルミニウム箔に導電性接着剤を用いて接着して集電体と
一体化された正極を得た。この正極の有効電極面積は1
cm2 、活性炭を主体とする電極層の厚さは250μm
であった。
Example 1 80 parts by weight of activated carbon having a specific surface area of 2000 m 2 / g obtained by a steam activation method, 10 parts by weight of conductive carbon black, and PTFE1 as a binder
0 parts by weight, kneaded with ethanol, rolled, and vacuum-dried at 200 ° C. for 2 hours, and then adhered to an aluminum foil with a conductive adhesive to be integrated with the current collector. A positive electrode was obtained. The effective electrode area of this positive electrode is 1
cm 2 , the thickness of the electrode layer mainly composed of activated carbon is 250 μm
Met.

【0029】負極は、石油コークスを1000℃で熱処
理した炭素材料80重量部と天然黒鉛10重量部とPT
FE10重量部をエタノールを用いて混練し、圧延して
得られたシートを200℃で2時間真空乾燥後、銅箔に
導電性接着剤を用いて接着して集電体と一体化された負
極を得た。有効電極面積は1cm2 、電極層の厚さは2
00μmであった。
The negative electrode was composed of 80 parts by weight of a carbon material obtained by heat-treating petroleum coke at 1000 ° C., 10 parts by weight of natural graphite, and PT.
A negative electrode integrated with a current collector by kneading 10 parts by weight of FE using ethanol, vacuum-drying a sheet obtained by rolling at 200 ° C. for 2 hours, and adhering to a copper foil using a conductive adhesive. I got The effective electrode area is 1 cm 2 and the thickness of the electrode layer is 2
It was 00 μm.

【0030】正極、負極をそれぞれ単極で、エチレンカ
ーボネートとエチルメチルカーボネートとの容積比が
1:1の混合溶媒に1mol/LのLiBF4 を溶解し
た溶液中でリチウム参照極を用い電流1mAで評価した
ところ、正極容量は4.25Vから2.75Vの範囲で
0.583mAh、負極容量は0.005Vから2Vの
範囲で8.684mAhで正極の負極に対する容量比は
0.0677であった。
The positive electrode and the negative electrode were each a single electrode, and a current of 1 mA was used using a lithium reference electrode in a solution in which 1 mol / L of LiBF 4 was dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate having a volume ratio of 1: 1. As a result of the evaluation, the positive electrode capacity was 0.583 mAh in the range of 4.25 V to 2.75 V, the negative electrode capacity was 8.684 mAh in the range of 0.005 V to 2 V, and the capacity ratio of the positive electrode to the negative electrode was 0.0677.

【0031】次に、負極にあらかじめリチウム金属を対
極として、電気化学的方法で1mAの定電流で5mAh
となるまで充電することによってリチウムイオンを吸蔵
させ、セパレータを介して正極と対向させモデルセルを
作製し、4Vから2.5Vの範囲で初期容量を測定し
た。その後、これを充放電電流10mAで充放電サイク
ルを行い、2000サイクル後の容量を測定した。
Next, a lithium electrode was previously used as a counter electrode, and a constant current of 1 mA and a current of 5 mAh were obtained by an electrochemical method.
Then, lithium ions were occluded by charging the battery until it reached, and a model cell was fabricated by facing the positive electrode via a separator. The initial capacity was measured in the range of 4 V to 2.5 V. Thereafter, this was subjected to a charge / discharge cycle at a charge / discharge current of 10 mA, and the capacity after 2000 cycles was measured.

【0032】[例2]天然黒鉛のかわりに人造黒鉛を用
いた以外は例1と同様にして集電体と一体化された負極
を得た。この負極の容量を例1と同様にして測定したと
ころ8.219mAhであり、正極の負極に対する容量
比は0.0709であった。上記の負極を用いた以外は
例1と同様にして負極の充電、セルの製作を行い、例1
と同様にして初期容量と2000サイクル後の容量を測
定した。
Example 2 A negative electrode integrated with a current collector was obtained in the same manner as in Example 1 except that artificial graphite was used instead of natural graphite. When the capacity of this negative electrode was measured in the same manner as in Example 1, it was 8.219 mAh, and the capacity ratio of the positive electrode to the negative electrode was 0.0709. A negative electrode was charged and a cell was fabricated in the same manner as in Example 1 except that the above-described negative electrode was used.
The initial capacity and the capacity after 2,000 cycles were measured in the same manner as described above.

【0033】[例3]天然黒鉛のかわりにメソフェーズ
ピッチを3000℃で熱処理した炭素材料を用いた以外
は例1と同様にして集電体と一体化された負極を得た。
この負極の容量を例1と同様にして測定したところ8.
210mAhであり、正極の負極に対する容量比は0.
0710であった。上記の負極を用いた以外は例1と同
様にして負極の充電、セルの製作を行い、例1と同様に
して初期容量と2000サイクル後の容量を測定した。
Example 3 A negative electrode integrated with a current collector was obtained in the same manner as in Example 1 except that a carbon material heat-treated at 3000 ° C. in mesophase pitch was used instead of natural graphite.
7. The capacity of the negative electrode was measured in the same manner as in Example 1.
210 mAh, and the capacity ratio of the positive electrode to the negative electrode was 0.1 mAh.
0710. A negative electrode was charged and a cell was manufactured in the same manner as in Example 1 except that the above-described negative electrode was used, and the initial capacity and the capacity after 2,000 cycles were measured in the same manner as in Example 1.

【0034】[例4]負極は、石油コークスを1000
℃で熱処理した炭素材料を50重量部とし、導電性カー
ボンブラック10重量部のかわりに天然黒鉛40重量部
とした以外は例1と同様にして集電体と一体化された負
極を得た。この負極の容量を例1と同様にして測定した
ところ6.540mAhであり、正極の負極に対する容
量比は0.0891であった。上記の負極を用いた以外
は例1と同様にして負極の充電、セルの製作を行い、例
1と同様にして初期容量と2000サイクル後の容量を
測定した。
Example 4 The negative electrode was made of petroleum coke of 1000
A negative electrode integrated with a current collector was obtained in the same manner as in Example 1, except that 50 parts by weight of the carbon material heat-treated at 0 ° C. and 40 parts by weight of natural graphite instead of 10 parts by weight of conductive carbon black were used. When the capacity of this negative electrode was measured in the same manner as in Example 1, it was 6.540 mAh, and the capacity ratio of the positive electrode to the negative electrode was 0.0891. A negative electrode was charged and a cell was manufactured in the same manner as in Example 1 except that the above-described negative electrode was used, and the initial capacity and the capacity after 2,000 cycles were measured in the same manner as in Example 1.

【0035】[例5]正極の厚さを500μmとし、負
極の厚さを130μmとした以外は例1と同様にして集
電体と一体化された負極を得た。正極、負極それぞれの
容量を例1と同様にして測定したところそれぞれ1.1
01mAh、5.52mAhであり、正極の負極に対す
る容量比は0.199であった。上記の正極及び負極を
用いた以外は例1と同様にして負極の充電、セルの製作
を行い、例1と同様にして初期容量と2000サイクル
後の容量を測定した。
Example 5 A negative electrode integrated with a current collector was obtained in the same manner as in Example 1, except that the thickness of the positive electrode was changed to 500 μm and the thickness of the negative electrode was changed to 130 μm. When the capacities of the positive electrode and the negative electrode were measured in the same manner as in Example 1, each was 1.1.
01 mAh and 5.52 mAh, and the capacity ratio of the positive electrode to the negative electrode was 0.199. A negative electrode was charged and a cell was manufactured in the same manner as in Example 1 except that the above-described positive electrode and negative electrode were used, and the initial capacity and the capacity after 2,000 cycles were measured in the same manner as in Example 1.

【0036】[例6]石油コークスを1000℃で熱処
理した炭素材料のかわりに、ポリパラフェニレンを70
0℃で熱処理した炭素材料を用いた以外は例1と同様に
して集電体と一体化された負極を得た。この負極の容量
を例1と同様にして測定したところ9.812mAhで
あり、正極の負極に対する容量比は0.0594であっ
た。上記の負極を用い、あらかじめ電気化学的方法で1
mAの定電流で6mAhとなるまで充電することによっ
てリチウムイオンを吸蔵させ、例1と同様にして初期容
量と2000サイクル後の容量を測定した。
[Example 6] Polyparaphenylene was used instead of carbon material obtained by heat-treating petroleum coke at 1000 ° C.
A negative electrode integrated with a current collector was obtained in the same manner as in Example 1 except that a carbon material heat-treated at 0 ° C. was used. When the capacity of the negative electrode was measured in the same manner as in Example 1, it was 9.812 mAh, and the capacity ratio of the positive electrode to the negative electrode was 0.0594. Using the above negative electrode, 1
The battery was charged at a constant current of mA until the current reached 6 mAh to absorb lithium ions, and the initial capacity and the capacity after 2,000 cycles were measured in the same manner as in Example 1.

【0037】[例7]石油コークスを1000℃で熱処
理するかわりに700℃で熱処理した炭素材料を用いた
以外は例1と同様にして集電体と一体化された負極を得
た。この負極の容量を例1と同様にして測定したところ
9.268mAhであり、正極の負極に対する容量比は
0.0629であった。上記の負極を用い、あらかじめ
電気化学的方法で1mAの定電流で5mAhとなるまで
充電することによってリチウムイオンを吸蔵させ、例1
と同様にして初期容量と2000サイクル後の容量を測
定した。
Example 7 A negative electrode integrated with a current collector was obtained in the same manner as in Example 1 except that a carbon material heat-treated at 700 ° C. was used instead of heat-treating petroleum coke at 1000 ° C. When the capacity of this negative electrode was measured in the same manner as in Example 1, it was 9.268 mAh, and the capacity ratio of the positive electrode to the negative electrode was 0.0629. Using the above negative electrode, lithium ions were occluded by being charged in advance with an electrochemical method at a constant current of 1 mA until the current reached 5 mAh.
The initial capacity and the capacity after 2,000 cycles were measured in the same manner as described above.

【0038】[例8]石油コークスを1000℃で熱処
理した炭素材料を90重量部とし、天然黒鉛を加えなか
った以外は例1と同様にして集電体と一体化された負極
を得た。この負極の容量を例1と同様にして測定したと
ころ6.871mAhであり、正極の負極に対する容量
比は0.0848であった。上記の負極を用いた以外は
例1と同様にして負極の充電、セルの製作を行い、例1
と同様にして初期容量と2000サイクル後の容量を測
定した。
[Example 8] A negative electrode integrated with a current collector was obtained in the same manner as in Example 1 except that 90 parts by weight of a carbon material obtained by heat-treating petroleum coke at 1000 ° C was used and natural graphite was not added. When the capacity of the negative electrode was measured in the same manner as in Example 1, it was 6.871 mAh, and the capacity ratio of the positive electrode to the negative electrode was 0.0848. A negative electrode was charged and a cell was fabricated in the same manner as in Example 1 except that the above-described negative electrode was used.
The initial capacity and the capacity after 2,000 cycles were measured in the same manner as described above.

【0039】[例9]天然黒鉛を90重量部とし、石油
コークスを1000℃で熱処理した炭素材料を加えなか
った以外は例1と同様にして集電体と一体化された負極
を得た。この負極の容量を例1と同様にして測定したと
ころ8.740mAhであり、正極の負極に対する容量
比は0.0667であった。上記の負極を用いた以外は
例1と同様にして負極の充電、セルの製作を行い、例1
と同様にして初期容量と2000サイクル後の容量を測
定した。
Example 9 A negative electrode integrated with a current collector was obtained in the same manner as in Example 1 except that 90 parts by weight of natural graphite was used, and no carbon material obtained by heat-treating petroleum coke at 1000 ° C. was added. When the capacity of this negative electrode was measured in the same manner as in Example 1, it was 8.740 mAh, and the capacity ratio of the positive electrode to the negative electrode was 0.0667. A negative electrode was charged and a cell was fabricated in the same manner as in Example 1 except that the above-described negative electrode was used.
The initial capacity and the capacity after 2,000 cycles were measured in the same manner as described above.

【0040】[例10]厚さを250μmとした以外は
例1と同様にして正極を得た。次いで、厚さを70μm
とした以外は例1と同様にして負極を得た。正極、負極
それぞれの容量を例1と同様にして測定したところそれ
ぞれ2.531mAh、2.62mAhであり、正極の
負極に対する容量比は0.966であった。上記の正極
及び負極を用いた以外は例1と同様にして負極の充電、
セルの製作を行い、例1と同様にして初期容量と200
0サイクル後の容量を測定した。
Example 10 A positive electrode was obtained in the same manner as in Example 1 except that the thickness was changed to 250 μm. Then, the thickness is 70 μm
A negative electrode was obtained in the same manner as in Example 1, except that When the capacities of the positive electrode and the negative electrode were measured in the same manner as in Example 1, they were 2.531 mAh and 2.62 mAh, respectively, and the capacity ratio of the positive electrode to the negative electrode was 0.966. Charge of the negative electrode in the same manner as in Example 1 except that the above positive electrode and negative electrode were used,
A cell was manufactured, and the initial capacity and 200 were obtained in the same manner as in Example 1.
The capacity after 0 cycles was measured.

【0041】例1〜10の電気二重層キャパシタの初期
容量及び2000サイクル後の容量変化率を表1に示
す。
Table 1 shows the initial capacity of the electric double layer capacitors of Examples 1 to 10 and the rate of change in capacity after 2000 cycles.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明により、初期容量が大きく、充放
電サイクルを繰り返しても容量変化率が小さい電気二重
層キャパシタが得られる。
According to the present invention, it is possible to obtain an electric double layer capacitor having a large initial capacity and a small rate of change in capacity even when charge / discharge cycles are repeated.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】活性炭を主体とする分極性電極からなる正
極と、リチウムイオンを吸蔵、脱離しうる炭素材料を主
体とする負極と、リチウム塩を溶質とする有機電解液と
を有する電気二重層キャパシタにおいて、前記炭素材料
が、黒鉛系材料と[002]面の面間隔が0.34〜
0.41nmである非黒鉛系材料との混合物に化学的方
法又は電気化学的方法でリチウムイオンを吸蔵させた炭
素材料であることを特徴とする電気二重層キャパシタ。
An electric double layer comprising a positive electrode comprising a polarizable electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions, and an organic electrolyte containing a lithium salt as a solute. In the capacitor, the carbon material has a surface distance between the graphite-based material and the [002] plane of 0.34 to 0.34.
An electric double layer capacitor comprising a carbon material in which a mixture with a non-graphite material having a thickness of 0.41 nm is made to occlude lithium ions by a chemical method or an electrochemical method.
【請求項2】前記負極炭素材料は、黒鉛系材料と非黒鉛
系材料との重量比が1/10〜1/1である請求項1記
載の電気二重層キャパシタ。
2. The electric double layer capacitor according to claim 1, wherein the weight ratio of the graphite-based material to the non-graphite-based material is 1/10 to 1/1.
【請求項3】正極の容量の負極の容量に対する比率は、
0.001〜0.9である請求項1又は2記載の電気二
重層キャパシタ。
3. The ratio of the capacity of the positive electrode to the capacity of the negative electrode is:
The electric double layer capacitor according to claim 1, wherein the value is 0.001 to 0.9.
【請求項4】正極は、比表面積が800〜3000m2
/gの活性炭、導電性カーボンブラック及びバインダか
らなる請求項1、2又は3記載の電気二重層キャパシ
タ。
4. The positive electrode has a specific surface area of 800 to 3000 m 2.
4. The electric double layer capacitor according to claim 1, wherein the electric double layer capacitor comprises activated carbon, conductive carbon black and a binder.
JP9212274A 1997-08-06 1997-08-06 Electric double layer capacitor Pending JPH1154384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9212274A JPH1154384A (en) 1997-08-06 1997-08-06 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9212274A JPH1154384A (en) 1997-08-06 1997-08-06 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JPH1154384A true JPH1154384A (en) 1999-02-26

Family

ID=16619892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9212274A Pending JPH1154384A (en) 1997-08-06 1997-08-06 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPH1154384A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097836A1 (en) * 2001-05-31 2002-12-05 Nippon Petroleum Refining Company, Limited Material composition of electric double-layer capacitor- use carbon material and production method therefor and electric double-layer capacitor and production method therefor
WO2006109909A1 (en) * 2005-04-15 2006-10-19 Enerland Co., Ltd. Hybrid electrical energy storage system
JP2009026508A (en) * 2007-07-18 2009-02-05 Nissin Electric Co Ltd Power storage device
JP2009130066A (en) * 2007-11-22 2009-06-11 Sanyo Electric Co Ltd Lithium ion capacitor
JP2010507917A (en) * 2006-10-25 2010-03-11 ナノテクテューレ リミテッド Mesoporous electrodes for electrochemical cells
JP2010140941A (en) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd Capacitor
JP2010171154A (en) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd Capacitor
JP2011009609A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2015230915A (en) * 2014-06-03 2015-12-21 旭化成株式会社 Negative electrode for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by using thereof
JP2019153800A (en) * 2012-10-08 2019-09-12 マックスウェル テクノロジーズ インコーポレイテッド Electrolyte for three-bolt ultra capacitor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097836A1 (en) * 2001-05-31 2002-12-05 Nippon Petroleum Refining Company, Limited Material composition of electric double-layer capacitor- use carbon material and production method therefor and electric double-layer capacitor and production method therefor
US6882517B2 (en) 2001-05-31 2005-04-19 Nippon Oil Corporation Raw material composite for carbon material used in electric double layer capacitor, manufacturing method of the same, electric double layer capacitor, and manufacturing method of the same
WO2006109909A1 (en) * 2005-04-15 2006-10-19 Enerland Co., Ltd. Hybrid electrical energy storage system
JP2010507917A (en) * 2006-10-25 2010-03-11 ナノテクテューレ リミテッド Mesoporous electrodes for electrochemical cells
JP2009026508A (en) * 2007-07-18 2009-02-05 Nissin Electric Co Ltd Power storage device
JP2009130066A (en) * 2007-11-22 2009-06-11 Sanyo Electric Co Ltd Lithium ion capacitor
JP2010140941A (en) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd Capacitor
JP2010171154A (en) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd Capacitor
JP2011009609A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2019153800A (en) * 2012-10-08 2019-09-12 マックスウェル テクノロジーズ インコーポレイテッド Electrolyte for three-bolt ultra capacitor
US11302488B2 (en) 2012-10-08 2022-04-12 Ucap Power, Inc. Carbon surface modification for three-volt ultracapacitor
JP2015230915A (en) * 2014-06-03 2015-12-21 旭化成株式会社 Negative electrode for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by using thereof

Similar Documents

Publication Publication Date Title
JP2008294314A (en) Capacitor
JPH0955342A (en) Electric double layer capacitor
JP2008177346A (en) Energy storage device
JP4096438B2 (en) Secondary power supply
JPH1154383A (en) Electric double layer capacitor
JPH1154384A (en) Electric double layer capacitor
JP2003031220A (en) Secondary power source
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JP2000228222A (en) Secondary power supply
JP4042187B2 (en) Secondary power supply
JP2000306609A (en) Secondary power supply
JP2000200624A (en) Nonaqueous electrolyte secondary battery
JP2000036325A (en) Secondary power supply
JP2000090971A (en) Secondary power source
JP3807854B2 (en) Electric double layer capacitor
JP4284934B2 (en) Secondary power supply
JPH11329492A (en) Secondary power source
JP2009130066A (en) Lithium ion capacitor
JP4352532B2 (en) Secondary power supply
JPH11102708A (en) Negative electrode body, and secondary electric source
JP2008117623A (en) Lithium secondary battery
JP5150080B2 (en) Lithium secondary battery
JP2001236960A (en) Method of manufacturing secondary power supply
JP4039071B2 (en) Secondary power supply
JP2000003729A (en) Manufacture of secondary power supply