JP4352532B2 - Secondary power supply - Google Patents

Secondary power supply Download PDF

Info

Publication number
JP4352532B2
JP4352532B2 JP30010099A JP30010099A JP4352532B2 JP 4352532 B2 JP4352532 B2 JP 4352532B2 JP 30010099 A JP30010099 A JP 30010099A JP 30010099 A JP30010099 A JP 30010099A JP 4352532 B2 JP4352532 B2 JP 4352532B2
Authority
JP
Japan
Prior art keywords
carbon material
negative electrode
secondary power
carbon
graphitized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30010099A
Other languages
Japanese (ja)
Other versions
JP2001118576A (en
Inventor
学 對馬
剛 森本
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP30010099A priority Critical patent/JP4352532B2/en
Publication of JP2001118576A publication Critical patent/JP2001118576A/en
Application granted granted Critical
Publication of JP4352532B2 publication Critical patent/JP4352532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary cell having superior characteristics in high withstanding voltage, high capacity or high speed charging and discharging cycles. SOLUTION: A secondary cell has a positive electrode which has active carbon as main body, a negative electrode having carbon material which can adsorb or emit lithium ions whose intensity ratio I1360/I1580 of the peak near 1,360 cm-1 to the peak near 1,580 cm-1 in Lyman spectrum is 0.12∼1.0 and carbon material which became graphite, its I1360/I1580 ratio being 0.01∼0.115, and organic electrolyte including lithium base.

Description

【0001】
【発明の属する技術分野】
本発明は、耐電圧が高く、容量が大きく、急速充放電サイクル信頼性の高い二次電源に関する。
【0002】
【従来の技術】
従来の電気二重層キャパシタの電極には、正極、負極ともに活性炭を主体とする分極性電極が使用されている。電気二重層キャパシタの耐電圧は、水系電解液を使用すると1.2V、有機系電解液を使用すると2.5〜3.3Vである。電気二重層キャパシタのエネルギは電圧の2乗に比例するので、耐電圧の高い有機電解液の方が水系電解液より高エネルギである。しかし、有機電解液を使用した電気二重層キャパシタでもそのエネルギ密度は鉛蓄電池等の二次電池の1/10以下であり、さらなるエネルギ密度の向上が必要とされている。
【0003】
これに対し、特開昭64−14882には、活性炭を主体とする電極を正極とし、X線回折による[002]面の面間隔が0.338〜0.356nmである炭素材料にあらかじめリチウムイオンを吸蔵させた電極を負極とする上限電圧3Vの二次電源が、また、特開平8−107048には、リチウムイオンを吸蔵、脱離しうる炭素材料にあらかじめ化学的方法又は電気化学的方法でリチウムイオンを吸蔵させた炭素材料を負極に用いる電池が、また、特開平9−55342には、リチウムイオンを吸蔵、脱離しうる炭素材料をリチウムと合金を形成しない多孔質集電体に担持させる負極を有する、上限電圧4Vの二次電源が、提案されている。しかしこれらの二次電源は、負極の炭素材料にあらかじめリチウムイオンを吸蔵させる工程を必要とする問題があった。
【0004】
また、電気二重層キャパシタ以外に大電流充放電可能な電源にはリチウムイオン二次電池がある。リチウムイオン二次電池は電気二重層キャパシタに比べて高電圧かつ高容量という性質を有するが、抵抗が高く、急速充放電サイクルによる寿命が電気二重層キャパシタに比べ著しく短い問題があった。
【0005】
【発明が解決しようとする課題】
そこで本発明は、急速充放電が可能で、高耐電圧かつ高容量でエネルギ密度が高く、充放電サイクル信頼性の高い二次電源を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、活性炭を主体とする正極と、ラマンスペクトルにおける1360cm-1近傍のピーク強度I1360と1580cm-1近傍のピーク強度I1580の比I1360/I1580が0.12〜1.0であるリチウムイオンを吸蔵、脱離しうる炭素材料とI1360/I1580が0.01〜0.115である黒鉛化した炭素材料とを含む負極と、リチウム塩を含む有機電解液と、を有し、前記黒鉛化した炭素材料が、気相成長炭素繊維を黒鉛化したものであることを特徴とする二次電源を提供する。
【0007】
また、本発明は、活性炭を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を含む負極と、リチウム塩を含む有機電解液と、を有する二次電源において、前記負極には、ラマンスペクトルにおける1360cm-1近傍のピーク強度I1360と1580cm-1近傍のピーク強度I1580の比I1360/I1580が0.01〜0.115である黒鉛化した気相成長炭素繊維が5〜20質量%含まれることを特徴とする二次電源を提供する。
【0008】
本明細書において、リチウムイオンを吸蔵、脱離しうる炭素材料を主体とする負極と集電体とを接合して一体化させたものを負極体という。正極体についても同様の定義とする。また、二次電池も電気二重層キャパシタも二次電源の1種であるが、本明細書では、正極に活性炭を含み、負極にリチウムイオンを吸蔵、脱離しうる炭素材料を含む特定の構成の二次電源を単に二次電源という。
【0009】
一般に炭素のラマンスペクトルでは、1360cm-1近傍と1580cm-1近傍とにピークが現れる。1360cm-1近傍のピークはDバンドのピークであり乱層構造に起因する。1580cm-1近傍のピークはGバンドのピークであり炭素の黒鉛構造に起因する。したがって黒鉛構造のエッジ面が多いとこのピーク強度比I1360/I1580は大きくなり、ベーサル面が多いと強度比は小さくなる。また、I1360/I1580は炭素の黒鉛化度を示すパラメータでもあり、この値が小さいほど黒鉛化が進んでいる。本発明では導電剤として黒鉛化炭素を使用するので、黒鉛化が進んでいる炭素の方が好ましい。
【0010】
そのため、本発明の二次電源においては、I1360/I1580が0.01〜0.115の炭素材料を使用する。この値が0.115超の炭素材料では黒鉛化が進んでいないため、負極の抵抗低減の効果がほとんど見られない。一方、0.01未満の炭素材料は得ることが困難である。好ましくは0.03〜0.115であり、さらに好ましくは0.05〜0.11である。
【0011】
なお、本明細書において1580cm-1近傍のピーク及び1360cm-1近傍のピークは、それぞれ1565〜1595cm-1に現れるピーク及び1345〜1375cm-1に現れるピークを示すものとする。
【0012】
本発明における特定のラマンスペクトル特性を有する黒鉛化した炭素材料(以下、本発明における黒鉛化炭素という。)の原料、製法等は特に限定されない。例えば石油系、石炭系のコークス、ピッチ等を原料として最終的に2800℃以上で熱処理すると黒鉛化した炭素材料が得られる。本発明における黒鉛化炭素としては、原料として気相成長炭素繊維(以下、VGCFという。)を用いて、黒鉛化したものであることが好ましい。VGCFは、鉄微粒子を触媒としてベンゼン蒸気を1000℃付近で熱分解させることにより得られる。得られたVGCFを不活性雰囲気中、2800℃以上で熱処理すると黒鉛化できる。
【0013】
本発明では、負極中に本発明における黒鉛化炭素が含まれることにより、負極の抵抗が低減でき、その結果二次電源の抵抗を低減できるため、高出力放電に適する二次電源を得られる。負極の抵抗が低減する機構としては、黒鉛化炭素自体の抵抗が低いことに加え、黒鉛化炭素の存在によりリチウムイオンを吸蔵、脱離しうる炭素材料間の導電性を高められるためと思われる。特に黒鉛化したVGCFを用いると前記炭素材料間の導電性を高める効果が大きい。黒鉛化したVGCFを使用する場合、その効果を高めるためには実質的に繊維径が0.1〜20μm、特に1〜10μmであることが好ましく、実質的に繊維長が1〜100μm、特に5〜50μmであることが好ましい。
【0014】
負極中の、本発明における黒鉛化炭素の量は、5〜20質量%が好ましい。5質量%未満では、負極の抵抗を低減できない。一方、20質量%超では、特に黒鉛化したVGCF等の繊維を添加する場合、負極の密度を上げることができず、負極容量が低下する。より好ましくは、8〜15質量%である。
【0015】
一般にリチウムイオン二次電池の場合は、正極はリチウム含有遷移金属酸化物を主体とする電極、負極はリチウムイオンを吸蔵、脱離しうる炭素材料を主体とする電極であり、充電によりリチウムイオンが正極のリチウム含有遷移金属酸化物から脱離し、負極のリチウムイオンを吸蔵、脱離しうる炭素材料へ吸蔵され、放電により負極からリチウムイオンが脱離し、正極にリチウムイオンが吸蔵される。したがって、本質的には電解液中のリチウムイオンは電池の充放電に関与しない。
【0016】
一方、本発明の二次電源は、充電により電解液中のアニオンが正極の活性炭に吸着し、電解液中のリチウムイオンが負極のリチウムイオンを吸蔵、脱離しうる炭素材料へ吸蔵される。そして放電により負極からリチウムイオンが脱離し、正極では前記アニオンが脱着される。すなわち、本発明の二次電源では充放電に電解液の溶質が本質的に関与しており、リチウムイオン電池とは充放電の機構が異なっている。また、リチウムイオン二次電池のように正極活物質自体にリチウムイオンが吸蔵、脱離することがないため、本発明の二次電源は充放電サイクル信頼性に優れている。
【0017】
正極に活性炭、負極にリチウムイオンを吸蔵、脱離しうる炭素材料を用いた二次電源では、電解液に溶解しているイオンが充放電に関与する。したがって、電解液の溶質濃度が低い場合には十分に充電できなくなるおそれがある。溶質濃度としては0.5〜2.0mol/L、特に0.75〜1.5mol/Lが好ましい。
【0018】
本発明の二次電源では、1度目の充放電サイクルにおける負極のサイクル効率は必ずしも100%ではなく、吸蔵されたリチウムイオンで脱離しないものもある。その場合、電解液中のリチウムイオン濃度が減少し次の充電から十分に充電できないおそれがあるので、正極にリチウム含有遷移金属酸化物を添加して特性劣化を防ぐことが好ましい。この方法により、負極から脱離できないリチウムイオンを補うことができる。この場合、正極中に含まれるリチウム含有遷移金属酸化物は0.1〜20質量%、特に3〜15質量%が好ましい。0.1質量%未満ではその効果が小さく、一方、20質量%超ではリチウム含有遷移金属酸化物の容量が大きいため、活性炭電極の特徴の高出力かつ高信頼性という二次電源性能が得られなくなる。
【0019】
上記リチウム含有遷移金属酸化物としては、V、Mn、Fe、Co、Ni、Zn及びWからなる群から選ばれる1種以上の遷移金属とリチウムとの複合酸化物が好ましい。特に、Mn、Co及びNiからなる群から選ばれる1種以上とリチウムとの複合酸化物が好ましく、なかでもLixCoyNi(1-y)2又はLizMn24(ただし、0<x<2、0≦y≦1、0<z<2。)で表される化合物が好ましい。
【0020】
本発明において、正極に含まれる活性炭は、比表面積が800〜3000m2/gであることが好ましい。活性炭の原料、賦活条件は限定されないが、例えば原料としてはやしがら、フェノール樹脂、石油コークス等が挙げられ、賦活方法としては水蒸気賦活法、溶融アルカリ賦活法等が挙げられる。本発明では特に、水蒸気賦活したやしがら系活性炭又は水蒸気賦活したフェノール樹脂系活性炭が好ましい。また、正極の抵抗を低くするために、正極中に導電材として導電性のカーボンブラック又は黒鉛を含ませておくのも好ましく、このとき導電材は正極中に0.1〜20質量%であることが好ましい。
【0021】
正極体の作製方法としては、例えば活性炭粉末にバインダとしてポリテトラフルオロエチレンを混合し、混練した後シート状に成形して正極とし、これを集電体に導電性接着剤を用いて固定する方法がある。また、バインダとしてポリフッ化ビニリデン、ポリアミドイミド、ポリイミド等を用い、これらを溶解したワニスに活性炭粉末を分散させ、この液をドクターブレード法等によって集電体上に塗工し、乾燥して得てもよい。正極中に含まれるバインダの量は、正極体の強度と容量等の特性とのバランスから質量比で1〜20%であることが好ましい。
【0022】
本発明におけるリチウムイオンを吸蔵、脱離しうる炭素材料は、X線回折の測定による[002]面の面間隔が0.335〜0.410nmであることが好ましい。面間隔が0.410nm超の炭素材料は充放電サイクルにおいて劣化しやすい。具体的には石油コークス、メソフェーズピッチ系炭素材料又は気相成長炭素繊維を800〜3000℃で熱処理した材料、天然黒鉛、人造黒鉛、難黒鉛性炭素材料等が挙げられる。本発明ではこれらの材料はいずれも好ましく使用できる。このなかでも[002]面の面間隔が0.335〜0.337nmの難黒鉛性炭素材料や、天然黒鉛又は易黒鉛性炭素材料を2800℃以上で熱処理した[002]面の面間隔が0.335〜0.337nmの材料は、リチウムイオン吸蔵、脱離の電位が低く好ましい。
【0023】
なお、本発明において負極に含有されるリチウムイオンを吸蔵、脱離しうる炭素材料は黒鉛系の炭素材料であってもラマンスペクトルにおけるI1360/I1580の値は通常0.01〜0.115の範囲には入らず、通常0.12〜1.0の範囲である。
【0024】
本発明における負極体は、正極体同様ポリテトラフルオロエチレンをバインダとしてリチウムイオンを吸蔵、脱離しうる炭素材料と本発明における黒鉛化炭素とを混練してシート状に成形し、導電性接着剤を用いて集電体に接着させて得られる。また、ポリフッ化ビニリデン、ポリアミドイミド又はポリイミドをバインダとし、バインダとなる樹脂又はその前駆体を有機溶媒に溶解させた液に前記炭素材料及び前記黒鉛化炭素を分散させ、集電体に塗工し、乾燥させて得る方法もある。
【0025】
集電体に液を塗工して負極体を得る方法において、バインダとなる樹脂又はその前駆体を溶解させる溶媒は限定されないが、バインダを構成する樹脂又はその前駆体を容易に溶解でき、入手も容易であることからN−メチル−2−ピロリドン(以下、NMPという)が好ましい。ここで、ポリアミドイミドの前駆体又はポリイミドの前駆体とは、加熱することにより重合してそれぞれポリアミドイミド又はポリイミドとなるものをいう。
【0026】
上に挙げたバインダは、加熱することにより硬化し、耐薬品性、機械的性質、寸法安定性に優れる。熱処理の温度は200℃以上であることが好ましい。200℃以上であれば、ポリアミドイミドの前駆体又はポリイミドの前駆体であっても通常重合して、それぞれポリアミドイミド又はポリイミドとなる。また、熱処理する雰囲気は窒素、アルゴン等の不活性雰囲気又は133Pa以下の減圧下が好ましい。ポリアミドイミド又はポリイミドは、本発明で使用される有機電解液に対する耐性があり、また負極から水分を除去するために300℃程度の高温加熱又は減圧下の加熱をしても充分耐性がある。
【0027】
本発明における有機電解液に含まれるリチウム塩は、LiPF6、LiBF4、LiClO4、LiN(SO2CF32、CF3SO3Li、LiC(SO2CF33、LiAsF6及びLiSbF6からなる群から選ばれる1種以上が好ましい。溶媒はエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン及びジメトキシエタンからなる群から選ばれる1種以上を含むことが好ましい。これらのリチウム塩と溶媒とからなる電解液は耐電圧が高く、電気伝導度も高い。
【0028】
上記溶媒のなかでも、特にプロピレンカーボネートを含む溶媒が好ましい。活性炭は上記の溶媒のなかで特にプロピレンカーボネートに対して安定であり、電解液溶媒中にプロピレンカーボネートは50%以上含まれることが好ましい。しかし、プロピレンカーボネート以外の溶媒系ではリチウムイオンを吸蔵、脱離しうる炭素材料である黒鉛系の炭素材料を、プロピレンカーボネートを含む溶媒系で使用するとリチウムイオンを吸蔵できない。この場合、電解液中に12−クラウン−4等のクラウンエーテルを添加すると黒鉛系の炭素材料でもリチウムイオンの吸蔵が可能になる。このときのクラウンエーテルの濃度は電解液に対し0.1〜10質量%が好ましい。0.1質量%未満ではクラウンエーテル添加の効果は見られず、10質量%超では正極の劣化が大きい。
【0029】
また、特に好ましい電解液は、正極の活性炭と組み合わせたときに高性能が得られるLiBF4を含むプロピレンカーボネート溶液であり、充放電サイクル特性及び電圧印加特性に優れる。
【0030】
【実施例】
次に、実施例(例1、2)及び比較例(例3)により本発明をさらに具体的に説明するが、本発明はこれらにより限定されない。なお、例1〜3におけるセルの作製及び測定はすべて露点が−60℃以下のアルゴングローブボックス中で行った。
【0031】
[例1]
フェノール樹脂を原料として水蒸気賦活法によって得られた比表面積2000m2/gの活性炭80質量%、導電性カーボンブラック10質量%、及びバインダとしてのポリテトラフルオロエチレン10質量%からなる混合物をエタノールを加えて混練し、圧延した後、200℃で2時間真空乾燥して電極シートを得た。この電極シートから大きさ6cm×3cm、厚さ150μmの電極を得て、ポリアミドイミドをバインダとする導電性接着剤を用いてアルミニウム箔に接合し、減圧下で300℃で2時間熱処理し、正極体とした。
【0032】
次に、リチウムイオンを吸蔵、脱離しうる炭素材料として、X線回折による[002]面の面間隔0.336nm、粒径6μmの黒鉛化メソカーボンマイクロビーズ(大阪ガス社製、ラマンスペクトルの強度比I1360/I1580は0.14)と、ラマンスペクトルの強度比I1360/I1580が0.06の黒鉛化したVGCFとを、ポリフッ化ビニリデンをNMPに溶解した溶液に分散させて、銅からなる集電体に塗布し乾燥して負極体を得た。負極中の黒鉛化メソカーボンマイクロビーズ:黒鉛化したVGCF:ポリフッ化ビニリデンは、質量比で8:1:1であった。この負極体をさらにロールプレス機でプレスし、大きさ6cm×3cm、厚さ15μmの負極が形成された負極体とした。
【0033】
上記のように得られた正極体と負極体をポリプロピレン製のセパレータを介して対向させ、1mol/LのLiBF4をエチレンカーボネートとジエチルカーボネートの混合溶媒(体積比で1:1)に溶解した溶液に充分な時間含浸させて、二次電源を得た。この二次電源の初期容量を測定後、充放電電流180mAで4.2Vから2.75Vまでの範囲で充放電サイクル試験を行い、1000サイクル後の容量を測定し、容量変化率を算出した。結果を表1に示す。
【0034】
[例2]
リチウムイオンを吸蔵、脱離しうる炭素材料を、X線回折による[002]面の面間隔0.373nm、粒径19μm、ラマンスペクトルの強度比I1360/I1580が0.76の難黒鉛性炭素材料に変更し、負極の厚さを26μmとした以外は例1と同様にして負極体を得た。上記負極体を用い、電解液として1mol/LのLiBF4をエチレンカーボネートとプロピレンカーボネートとの混合溶媒(体積比で1:1)に溶解した溶液を用いた以外は例1と同様にして二次電源を作製し、例1と同様に評価した。結果を表1に示す。
【0035】
[例3]
黒鉛化したVGCFを加えず、負極中の難黒鉛性炭素材料とポリフッ化ビニリデンとの含有割合を質量比で9:1とした以外は例2と同様にして負極体を得た。この負極体を用いた以外は例1と同様にして二次電源を作製し、例1と同様に評価した。結果を表1に示す。
【0036】
【表1】

Figure 0004352532
【0037】
【発明の効果】
本発明によれば、耐電圧が高く、容量が大きく、かつ急速充放電サイクル信頼性の高い二次電源を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary power source with high withstand voltage, large capacity, and high rapid charge / discharge cycle reliability.
[0002]
[Prior art]
As an electrode of a conventional electric double layer capacitor, a polarizable electrode mainly composed of activated carbon is used for both the positive electrode and the negative electrode. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the voltage, the organic electrolyte having a higher withstand voltage has a higher energy than the aqueous electrolyte. However, even in an electric double layer capacitor using an organic electrolyte, its energy density is 1/10 or less that of a secondary battery such as a lead storage battery, and further improvement in energy density is required.
[0003]
On the other hand, Japanese Patent Laid-Open No. 64-14882 discloses that a lithium ion is previously applied to a carbon material having an electrode mainly composed of activated carbon as a positive electrode and having a [002] plane spacing of 0.338 to 0.356 nm by X-ray diffraction. A secondary power supply with an upper limit voltage of 3 V using an electrode that occludes lithium as a negative electrode is disclosed in Japanese Patent Laid-Open No. Hei 8-107048 by a chemical method or an electrochemical method in advance on a carbon material capable of occluding and desorbing lithium ions. A battery using a carbon material in which ions are occluded as a negative electrode is disclosed in Japanese Patent Application Laid-Open No. 9-55342 in which a carbon material capable of occluding and desorbing lithium ions is supported on a porous current collector that does not form an alloy with lithium. A secondary power supply with an upper limit voltage of 4V having However, these secondary power sources have a problem of requiring a step of previously storing lithium ions in the carbon material of the negative electrode.
[0004]
In addition to the electric double layer capacitor, there is a lithium ion secondary battery as a power source capable of charging and discharging a large current. Lithium ion secondary batteries have the properties of higher voltage and higher capacity than electric double layer capacitors, but they have high resistance and have a problem that their life due to rapid charge / discharge cycles is significantly shorter than electric double layer capacitors.
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a secondary power source that can be rapidly charged / discharged, has high withstand voltage, high capacity, high energy density, and high charge / discharge cycle reliability.
[0006]
[Means for Solving the Problems]
The present invention includes a positive electrode made mainly of activated carbon, the ratio I 1360 / I 1580 of the peak intensity of 1360 cm -1 vicinity of the Raman spectrum I 1360 and 1580 cm -1 vicinity of the peak intensity I 1580 is at 0.12 to 1.0 certain lithium ion occlusion, possess a negative electrode including a carbon material graphitized carbon material and I 1360 / I 1580 capable desorbed is from 0.01 to 0.115, an organic electrolyte containing a lithium salt, a The secondary power source is characterized in that the graphitized carbon material is a graphitized vapor-grown carbon fiber .
[0007]
Further, the present invention provides a secondary power source having a positive electrode mainly composed of activated carbon, a negative electrode containing a carbon material capable of inserting and extracting lithium ions, and an organic electrolyte containing a lithium salt. vapor-grown carbon fiber ratio I 1360 / I 1580 is obtained by graphitization is from 0.01 to 0.115 of the peak intensity of 1360 cm -1 vicinity of the Raman spectrum I 1360 and 1580 cm -1 vicinity of the peak intensity I 1580 is 5 A secondary power source comprising 20% by mass is provided.
[0008]
In this specification, a negative electrode body is formed by joining and integrating a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions and a current collector. The same definition applies to the positive electrode body. A secondary battery and an electric double layer capacitor are both types of secondary power sources. In this specification, the positive electrode includes activated carbon, and the negative electrode includes a carbon material capable of inserting and extracting lithium ions. The secondary power source is simply called a secondary power source.
[0009]
The Raman spectra of general carbon peak appears in the vicinity of 1360 cm -1 vicinity and 1580 cm -1. The peak in the vicinity of 1360 cm −1 is a D band peak and is caused by the disordered layer structure. The peak in the vicinity of 1580 cm −1 is a G band peak and is attributed to the graphite structure of carbon. Therefore, the peak intensity ratio I 1360 / I 1580 increases when the edge surface of the graphite structure is large, and the intensity ratio decreases when the basal surface is large. I 1360 / I 1580 is also a parameter indicating the degree of graphitization of carbon. The smaller this value, the more graphitization proceeds. In the present invention, graphitized carbon is used as a conductive agent, and therefore, graphitized carbon is preferred.
[0010]
Therefore, in the secondary power source of the present invention, a carbon material having I 1360 / I 1580 of 0.01 to 0.115 is used. In the carbon material having this value exceeding 0.115, graphitization has not progressed, so that the resistance reduction effect of the negative electrode is hardly seen. On the other hand, it is difficult to obtain a carbon material of less than 0.01. Preferably it is 0.03-0.115, More preferably, it is 0.05-0.11.
[0011]
The peak of the peak and 1360 cm -1 vicinity of 1580 cm -1 vicinity herein denote the peak appearing in the peak and 1345~1375Cm -1 appears at 1565~1595Cm -1 respectively.
[0012]
There are no particular limitations on the raw material, production method, etc. of the graphitized carbon material (hereinafter referred to as graphitized carbon in the present invention) having specific Raman spectral characteristics in the present invention. For example, a graphitized carbon material can be obtained by finally heat-treating petroleum or coal-based coke, pitch or the like at 2800 ° C. or higher. The graphitized carbon in the present invention is preferably graphitized using a vapor-grown carbon fiber (hereinafter referred to as VGCF) as a raw material. VGCF is obtained by thermally decomposing benzene vapor at around 1000 ° C. using iron fine particles as a catalyst. The obtained VGCF can be graphitized by heat treatment at 2800 ° C. or higher in an inert atmosphere.
[0013]
In the present invention, since the graphitized carbon in the present invention is contained in the negative electrode, the resistance of the negative electrode can be reduced, and as a result, the resistance of the secondary power supply can be reduced. Therefore, a secondary power supply suitable for high output discharge can be obtained. The mechanism for reducing the resistance of the negative electrode seems to be that, in addition to the low resistance of graphitized carbon itself, the presence of graphitized carbon increases the conductivity between carbon materials that can occlude and desorb lithium ions. In particular, when graphitized VGCF is used, the effect of increasing the conductivity between the carbon materials is great. When using graphitized VGCF, in order to enhance the effect, the fiber diameter is preferably 0.1 to 20 μm, particularly preferably 1 to 10 μm, and the fiber length is substantially 1 to 100 μm, particularly 5 It is preferably ˜50 μm.
[0014]
The amount of graphitized carbon in the present invention in the negative electrode is preferably 5 to 20% by mass. If it is less than 5% by mass, the resistance of the negative electrode cannot be reduced. On the other hand, if it exceeds 20% by mass, particularly when a graphitized fiber such as VGCF is added, the density of the negative electrode cannot be increased, and the negative electrode capacity decreases. More preferably, it is 8-15 mass%.
[0015]
In general, in the case of a lithium ion secondary battery, the positive electrode is an electrode mainly composed of a lithium-containing transition metal oxide, the negative electrode is an electrode mainly composed of a carbon material capable of inserting and extracting lithium ions, and the lithium ions are positively charged by charging. The lithium-containing transition metal oxide is desorbed, the lithium ion of the negative electrode is occluded and occluded in a carbon material that can be desorbed, and the lithium ion is desorbed from the negative electrode by discharge, and the lithium ion is occluded in the positive electrode. Therefore, essentially, lithium ions in the electrolytic solution are not involved in charging / discharging of the battery.
[0016]
On the other hand, in the secondary power source of the present invention, the anion in the electrolytic solution is adsorbed on the activated carbon of the positive electrode by charging, and the lithium ion in the electrolytic solution is occluded in the carbon material that can occlude and desorb the lithium ion of the negative electrode. Then, lithium ions are desorbed from the negative electrode by discharge, and the anions are desorbed from the positive electrode. That is, in the secondary power source of the present invention, the solute of the electrolytic solution is essentially involved in charging / discharging, and the charging / discharging mechanism is different from that of the lithium ion battery. Further, unlike the lithium ion secondary battery, lithium ions are not occluded and desorbed in the positive electrode active material itself, and therefore the secondary power source of the present invention is excellent in charge / discharge cycle reliability.
[0017]
In a secondary power source using activated carbon for the positive electrode and a carbon material capable of inserting and extracting lithium ions in the negative electrode, ions dissolved in the electrolytic solution are involved in charging and discharging. Therefore, when the solute concentration of the electrolytic solution is low, there is a possibility that sufficient charging cannot be performed. The solute concentration is preferably 0.5 to 2.0 mol / L, particularly preferably 0.75 to 1.5 mol / L.
[0018]
In the secondary power source of the present invention, the cycle efficiency of the negative electrode in the first charge / discharge cycle is not necessarily 100%, and there are some that do not desorb due to occluded lithium ions. In this case, since the lithium ion concentration in the electrolytic solution may decrease and charging may not be sufficiently performed from the next charging, it is preferable to add lithium-containing transition metal oxide to the positive electrode to prevent characteristic deterioration. By this method, lithium ions that cannot be desorbed from the negative electrode can be supplemented. In this case, the lithium-containing transition metal oxide contained in the positive electrode is preferably 0.1 to 20% by mass, particularly 3 to 15% by mass. If the content is less than 0.1% by mass, the effect is small. On the other hand, if the content exceeds 20% by mass, the capacity of the lithium-containing transition metal oxide is large. Disappear.
[0019]
The lithium-containing transition metal oxide is preferably a composite oxide of lithium and at least one transition metal selected from the group consisting of V, Mn, Fe, Co, Ni, Zn, and W. In particular, a composite oxide of lithium and at least one selected from the group consisting of Mn, Co and Ni is preferable, and Li x Co y Ni (1-y) O 2 or Li z Mn 2 O 4 (however, A compound represented by 0 <x <2, 0 ≦ y ≦ 1, 0 <z <2.) Is preferable.
[0020]
In the present invention, the activated carbon contained in the positive electrode preferably has a specific surface area of 800 to 3000 m 2 / g. Although the raw material of activated carbon and activation conditions are not limited, For example, as a raw material, a phenol resin, petroleum coke, etc. are mentioned, As a activation method, a steam activation method, a molten alkali activation method, etc. are mentioned. In the present invention, steam activated activated coconut palm activated carbon or steam activated activated phenol resin activated carbon is particularly preferable. In order to reduce the resistance of the positive electrode, it is also preferable to include conductive carbon black or graphite as a conductive material in the positive electrode. At this time, the conductive material is 0.1 to 20% by mass in the positive electrode. It is preferable.
[0021]
As a method for producing the positive electrode, for example, activated carbon powder is mixed with polytetrafluoroethylene as a binder, kneaded and then molded into a sheet shape to form a positive electrode, which is fixed to the current collector using a conductive adhesive There is. Also, using polyvinylidene fluoride, polyamideimide, polyimide, etc. as the binder, disperse the activated carbon powder in the varnish in which these are dissolved, and apply this solution on the current collector by the doctor blade method, etc., and dry it. Also good. The amount of the binder contained in the positive electrode is preferably 1 to 20% in terms of mass ratio from the balance between the strength of the positive electrode body and characteristics such as capacity.
[0022]
The carbon material capable of inserting and extracting lithium ions in the present invention preferably has a [002] plane spacing of 0.335 to 0.410 nm as measured by X-ray diffraction. A carbon material having an interplanar spacing of more than 0.410 nm is likely to deteriorate in a charge / discharge cycle. Specifically, petroleum coke, mesophase pitch-based carbon material or vapor-grown carbon fiber is heat-treated at 800 to 3000 ° C., natural graphite, artificial graphite, non-graphitizable carbon material, and the like. In the present invention, any of these materials can be preferably used. Among these, the [002] plane spacing between the [002] planes of 0.335 to 0.337 nm, natural graphite or graphitizable carbon material heat-treated at 2800 ° C. or higher is 0. A material having a thickness of .335 to 0.337 nm is preferable because it has a low potential for occlusion and desorption of lithium ions.
[0023]
In the present invention, even if the carbon material capable of inserting and extracting lithium ions contained in the negative electrode is a graphite-based carbon material, the value of I 1360 / I 1580 in the Raman spectrum is usually 0.01 to 0.115. It is not in the range and is usually in the range of 0.12 to 1.0.
[0024]
The negative electrode body in the present invention is formed into a sheet by kneading a carbon material capable of occluding and desorbing lithium ions with polytetrafluoroethylene as a binder, and graphitized carbon in the present invention, and forming a conductive adhesive. And obtained by adhering to the current collector. In addition, polyvinylidene fluoride, polyamideimide or polyimide is used as a binder, and the carbon material and the graphitized carbon are dispersed in a solution in which a binder resin or a precursor thereof is dissolved in an organic solvent, and then applied to a current collector. There is also a method obtained by drying.
[0025]
In the method of obtaining a negative electrode body by applying a liquid to the current collector, the solvent for dissolving the resin to be the binder or its precursor is not limited, but the resin constituting the binder or its precursor can be easily dissolved and obtained. N-methyl-2-pyrrolidone (hereinafter referred to as NMP) is preferable. Here, the precursor of polyamideimide or the precursor of polyimide means one that is polymerized by heating to become polyamideimide or polyimide, respectively.
[0026]
The binders listed above are cured by heating and are excellent in chemical resistance, mechanical properties, and dimensional stability. It is preferable that the temperature of heat processing is 200 degreeC or more. If it is 200 degreeC or more, even if it is a polyamideimide precursor or a polyimide precursor, it will superpose | polymerize normally and it will become a polyamideimide or a polyimide, respectively. The atmosphere for the heat treatment is preferably an inert atmosphere such as nitrogen or argon or a reduced pressure of 133 Pa or less. Polyamideimide or polyimide is resistant to the organic electrolyte used in the present invention, and is sufficiently resistant to high temperature heating at about 300 ° C. or heating under reduced pressure in order to remove moisture from the negative electrode.
[0027]
The lithium salt contained in the organic electrolyte in the present invention includes LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , CF 3 SO 3 Li, LiC (SO 2 CF 3 ) 3 , LiAsF 6 and LiSbF. One or more selected from the group consisting of 6 are preferred. The solvent preferably contains one or more selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, and dimethoxyethane. Electrolytic solutions composed of these lithium salts and solvents have high withstand voltage and high electrical conductivity.
[0028]
Among the above solvents, a solvent containing propylene carbonate is particularly preferable. Among the above solvents, activated carbon is particularly stable against propylene carbonate, and it is preferable that 50% or more of propylene carbonate is contained in the electrolyte solvent. However, in a solvent system other than propylene carbonate, if a graphite-based carbon material, which is a carbon material capable of inserting and extracting lithium ions, is used in a solvent system containing propylene carbonate, lithium ions cannot be stored. In this case, when crown ether such as 12-crown-4 is added to the electrolytic solution, it is possible to occlude lithium ions even in a graphite-based carbon material. The concentration of the crown ether at this time is preferably 0.1 to 10% by mass with respect to the electrolytic solution. If it is less than 0.1% by mass, the effect of adding crown ether is not observed, and if it exceeds 10% by mass, the cathode is greatly deteriorated.
[0029]
Further, a particularly preferable electrolytic solution is a propylene carbonate solution containing LiBF 4 that provides high performance when combined with the activated carbon of the positive electrode, and is excellent in charge / discharge cycle characteristics and voltage application characteristics.
[0030]
【Example】
Next, although an Example (Examples 1 and 2) and a comparative example (Example 3) demonstrate this invention further more concretely, this invention is not limited by these. The production and measurement of the cells in Examples 1 to 3 were all performed in an argon glove box having a dew point of −60 ° C. or less.
[0031]
[Example 1]
Ethanol was added to a mixture of 80% by mass of activated carbon having a specific surface area of 2000 m 2 / g obtained from a phenol resin as a raw material by a steam activation method, 10% by mass of conductive carbon black, and 10% by mass of polytetrafluoroethylene as a binder. After kneading, rolling, and vacuum drying at 200 ° C. for 2 hours, an electrode sheet was obtained. An electrode having a size of 6 cm × 3 cm and a thickness of 150 μm is obtained from this electrode sheet, bonded to an aluminum foil using a conductive adhesive having polyamideimide as a binder, and heat-treated at 300 ° C. for 2 hours under reduced pressure. The body.
[0032]
Next, as a carbon material capable of inserting and extracting lithium ions, graphitized mesocarbon microbeads having an [002] plane spacing of 0.336 nm and a particle size of 6 μm by X-ray diffraction (manufactured by Osaka Gas Co., Ltd., intensity of Raman spectrum) The ratio I 1360 / I 1580 is 0.14) and graphitized VGCF having a Raman spectrum intensity ratio I 1360 / I 1580 of 0.06 are dispersed in a solution of polyvinylidene fluoride in NMP to obtain copper. It applied to the collector which consists of and dried, and the negative electrode body was obtained. The weight ratio of graphitized mesocarbon microbeads: graphitized VGCF: polyvinylidene fluoride in the negative electrode was 8: 1: 1. This negative electrode body was further pressed by a roll press machine to obtain a negative electrode body in which a negative electrode having a size of 6 cm × 3 cm and a thickness of 15 μm was formed.
[0033]
A solution in which 1 mol / L LiBF 4 is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate (1: 1 by volume) with the positive electrode body and the negative electrode body obtained as described above facing each other through a polypropylene separator. For a sufficient time to obtain a secondary power source. After measuring the initial capacity of the secondary power source, a charge / discharge cycle test was performed at a charge / discharge current of 180 mA in the range from 4.2 V to 2.75 V, the capacity after 1000 cycles was measured, and the capacity change rate was calculated. The results are shown in Table 1.
[0034]
[Example 2]
A carbon material capable of absorbing and desorbing lithium ions is a non-graphitizable carbon having a [002] plane spacing of 0.373 nm, a particle size of 19 μm, and a Raman spectrum intensity ratio I 1360 / I 1580 of 0.76 by X-ray diffraction. A negative electrode body was obtained in the same manner as in Example 1 except that the material was changed and the thickness of the negative electrode was changed to 26 μm. A secondary battery was prepared in the same manner as in Example 1 except that the above negative electrode body was used and a solution of 1 mol / L LiBF 4 dissolved in a mixed solvent of ethylene carbonate and propylene carbonate (1: 1 by volume) was used as the electrolyte. A power source was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0035]
[Example 3]
A negative electrode body was obtained in the same manner as in Example 2 except that the graphitized VGCF was not added and the content ratio of the non-graphitizable carbon material and polyvinylidene fluoride in the negative electrode was 9: 1 by mass ratio. A secondary power source was prepared in the same manner as in Example 1 except that this negative electrode was used, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0036]
[Table 1]
Figure 0004352532
[0037]
【The invention's effect】
According to the present invention, it is possible to provide a secondary power source having a high withstand voltage, a large capacity, and high rapid charge / discharge cycle reliability.

Claims (4)

活性炭を主体とする正極と、ラマンスペクトルにおける1360cm−1近傍のピーク強度I1360と1580cm−1近傍のピーク強度I1580の比I1360/I1580が0.12〜1.0であるリチウムイオンを吸蔵、脱離しうる炭素材料とI1360/I1580が0.01〜0.115である黒鉛化した炭素材料とを含む負極と、リチウム塩を含む有機電解液と、を有し、前記黒鉛化した炭素材料が、気相成長炭素繊維を黒鉛化したものであることを特徴とする二次電源。A positive electrode made mainly of activated carbon, the ratio I 1360 / I 1580 of the peak intensity of 1360 cm -1 vicinity of the Raman spectrum I 1360 and 1580 cm -1 vicinity of the peak intensity I 1580 is a lithium ion is from 0.12 to 1.0 storage, carbon material and I 1360 / I 1580 capable desorbed possess a negative electrode containing a graphitized carbon material is 0.01 to 0.115, an organic electrolyte containing a lithium salt, wherein the graphitized A secondary power source characterized in that the carbon material obtained is graphitized vapor phase grown carbon fiber . 負極中に、前記黒鉛化した炭素材料が5〜20質量%含まれる請求項1に記載の二次電源。  The secondary power supply according to claim 1, wherein the negative electrode contains 5 to 20 mass% of the graphitized carbon material. 活性炭を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を含む負極と、リチウム塩を含む有機電解液と、を有する二次電源において、前記負極には、ラマンスペクトルにおける1360cm−1近傍のピーク強度I1360と1580cm−1近傍のピーク強度I1580の比I1360/I1580が0.01〜0.115である黒鉛化した気相成長炭素繊維が5〜20質量%含まれることを特徴とする二次電源。In a secondary power source having a positive electrode mainly composed of activated carbon, a negative electrode including a carbon material capable of inserting and extracting lithium ions, and an organic electrolyte including a lithium salt, the negative electrode includes 1360 cm −1 in a Raman spectrum. 5-20% by mass of graphitized vapor-grown carbon fiber having a ratio I 1360 / I 1580 of the peak intensity I 1360 in the vicinity to 1580 cm −1 of the peak intensity I 1580 in the vicinity of 1580 cm −1 of 0.01 to 0.115 is included. Secondary power supply characterized by. 前記リチウムイオンを吸蔵、脱離しうる炭素材料は、[002]面の面間隔が0.335〜0.410nmである請求項1、2又は3に記載の二次電源。The secondary power supply according to claim 1, 2 or 3 , wherein the carbon material capable of inserting and extracting lithium ions has a [002] plane spacing of 0.335 to 0.410 nm.
JP30010099A 1999-10-21 1999-10-21 Secondary power supply Expired - Fee Related JP4352532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30010099A JP4352532B2 (en) 1999-10-21 1999-10-21 Secondary power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30010099A JP4352532B2 (en) 1999-10-21 1999-10-21 Secondary power supply

Publications (2)

Publication Number Publication Date
JP2001118576A JP2001118576A (en) 2001-04-27
JP4352532B2 true JP4352532B2 (en) 2009-10-28

Family

ID=17880722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30010099A Expired - Fee Related JP4352532B2 (en) 1999-10-21 1999-10-21 Secondary power supply

Country Status (1)

Country Link
JP (1) JP4352532B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232790B2 (en) 2001-09-11 2007-06-19 Showa Denko K.K. Activated carbon, method for production thereof and use thereof
EP1565404A2 (en) 2002-11-13 2005-08-24 Showa Denko K.K. Active carbon, production method thereof and polarizable electrode
JP2012114201A (en) * 2010-11-24 2012-06-14 Nec Tokin Corp Power storage device
JP6347507B2 (en) * 2014-03-06 2018-06-27 株式会社豊田自動織機 Electrode active material and method for producing the same

Also Published As

Publication number Publication date
JP2001118576A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
US6294292B1 (en) Secondary power source
JP4096438B2 (en) Secondary power supply
US6558846B1 (en) Secondary power source
JP2003168429A (en) Nonaqueous electrolyte secondary battery
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP2003031220A (en) Secondary power source
JP2000306609A (en) Secondary power supply
JP2000036325A (en) Secondary power supply
JP2001345122A (en) Secondary power source and method of manufacturing secondary power source
JP6614439B2 (en) Negative electrode for power storage element and power storage element
JPH1154384A (en) Electric double layer capacitor
JP4352532B2 (en) Secondary power supply
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
JP2000090971A (en) Secondary power source
JP4042187B2 (en) Secondary power supply
JP4284934B2 (en) Secondary power supply
JPH07147158A (en) Negative electrode for lithium secondary battery
JP4099970B2 (en) Secondary power supply
JP2001236960A (en) Method of manufacturing secondary power supply
JPH11102708A (en) Negative electrode body, and secondary electric source
JPH11329492A (en) Secondary power source
JP4039071B2 (en) Secondary power supply
JP2001266872A (en) Secondary power source and its manufacturing method
JP2009130066A (en) Lithium ion capacitor
JP2002033102A (en) Secondary power source and method for manufacturing negative electrode for secondary power source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees