JP2002033102A - Secondary power source and method for manufacturing negative electrode for secondary power source - Google Patents

Secondary power source and method for manufacturing negative electrode for secondary power source

Info

Publication number
JP2002033102A
JP2002033102A JP2000216117A JP2000216117A JP2002033102A JP 2002033102 A JP2002033102 A JP 2002033102A JP 2000216117 A JP2000216117 A JP 2000216117A JP 2000216117 A JP2000216117 A JP 2000216117A JP 2002033102 A JP2002033102 A JP 2002033102A
Authority
JP
Japan
Prior art keywords
carbon
secondary power
negative electrode
boron
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000216117A
Other languages
Japanese (ja)
Inventor
Manabu Tsushima
学 對馬
Takeshi Morimoto
剛 森本
Isamu Kuruma
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000216117A priority Critical patent/JP2002033102A/en
Publication of JP2002033102A publication Critical patent/JP2002033102A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary power source having a high breakdown voltage, high capacity, high energy density, and high charging-discharging cycle reliability. SOLUTION: This secondary power source has a positive electrode containing activated carbon, a negative electrode containing carbon capable of storing and releasing lithium ions, and an organic electrolyte containing lithium ions. In this case, the carbon contained in the negative electrode contains boron in its hexagonal net surface structure, and the spacing of its surface [002] measured by an X-ray diffraction method is 0.337-0.410 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧が高く、容
量が大きく、急速充放電サイクル信頼性の高い二次電
源、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power supply having a high withstand voltage, a large capacity, and a high reliability of a rapid charge / discharge cycle, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.3Vである。電気二重層キャパシタの
エネルギは耐電圧の2乗に比例するので、耐電圧の高い
有機電解液の方が水系電解液より高エネルギである。し
かし有機電解液を使用した電気二重層キャパシタでもそ
のエネルギ密度は鉛蓄電池等の二次電池の1/10以下
であり、さらなるエネルギ密度の向上が必要とされてい
る。
2. Description of the Related Art Polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes of conventional electric double layer capacitors. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte having a higher withstand voltage has higher energy than the aqueous electrolyte. However, even an electric double layer capacitor using an organic electrolyte has an energy density of 1/10 or less of that of a secondary battery such as a lead storage battery, and further improvement in energy density is required.

【0003】これに対し、特開昭64−14882号公
報には、活性炭を主体とする電極を正極とし、X線回折
法による〔002〕面の面間隔が0.338〜0.35
6nmである炭素材料にあらかじめリチウムイオンを吸
蔵させた電極を負極とする、上限電圧3Vの二次電源
が、また、特開平8−107048号公報には、リチウ
ムイオンを吸蔵、脱離しうる炭素材料にあらかじめ化学
的方法又は電気化学的方法でリチウムイオンを吸蔵させ
た炭素材料を負極に用いる電池が、また、特開平9−5
5342号公報には、リチウムイオンを吸蔵、脱離しう
る炭素材料をリチウムと合金を形成しない多孔質集電体
に担持させる負極を有する、上限電圧4Vの二次電源
が、それぞれ提案されている。しかし、これらの二次電
源は、負極の炭素材料にあらかじめリチウムイオンを吸
蔵させる工程を必要とするという問題があった。
On the other hand, Japanese Patent Application Laid-Open No. 64-14882 discloses that an electrode mainly composed of activated carbon is used as a positive electrode, and the [002] plane spacing by X-ray diffraction is 0.338 to 0.35.
A secondary power supply having an upper limit voltage of 3 V, in which an electrode in which lithium ions are preliminarily occluded in a carbon material having a thickness of 6 nm is used as a negative electrode, and JP-A-8-107048 discloses a carbon material capable of occluding and releasing lithium ions. A battery using a carbon material, in which lithium ions have been occluded in advance by a chemical method or an electrochemical method, as a negative electrode is disclosed in
No. 5342 proposes a secondary power supply having an upper limit voltage of 4 V and having a negative electrode in which a carbon material capable of inserting and extracting lithium ions is supported on a porous current collector which does not form an alloy with lithium. However, these secondary power supplies have a problem that a step of previously absorbing lithium ions into the carbon material of the negative electrode is required.

【0004】また、電気二重層キャパシタ以外に大電流
充放電可能な電源にはリチウムイオン二次電池がある。
リチウムイオン二次電池は電気二重層キャパシタに比べ
て高電圧でかつ高容量であるという特徴を有するが、抵
抗が高く、急速充放電サイクルによる寿命が電気二重層
キャパシタに比べ著しく短いという問題があった。
In addition to the electric double layer capacitor, a power source capable of charging and discharging a large current is a lithium ion secondary battery.
Lithium-ion secondary batteries have the characteristics of higher voltage and higher capacity than electric double-layer capacitors, but have the problem of high resistance and a significantly shorter life due to rapid charge / discharge cycles than electric double-layer capacitors. Was.

【0005】さらに、正極に活性炭、負極に黒鉛系炭素
材料などのリチウムイオンを吸蔵、脱離しうる炭素材
料、電解液にリチウムイオンを含む有機電解液を使用し
た二次電源では、正負極とも活性炭を主体とする電気二
重層キャパシタより高電圧を発現することが可能である
が、充放電時に負極ではリチウムイオンの炭素への吸
蔵、脱離反応という電気化学的反応が起こるため、それ
に伴う負極材料の劣化が見られる場合があった。特に、
X線回折法によって得られる〔002〕面の面間隔が
0.335〜0.337nmの黒鉛系炭素材料では、5
mA/cm2 以上の充放電電流で充放電を繰り返すとき
の、容量変化が大きかった。
Further, in a secondary power supply using an activated carbon as a positive electrode, a carbon material such as a graphite-based carbon material capable of occluding and releasing lithium ions as a negative electrode, and an organic electrolyte containing lithium ions as an electrolyte, both the positive and negative electrodes are activated carbon. Although it is possible to develop a higher voltage than an electric double layer capacitor mainly composed of, a negative electrode material is charged and discharged due to electrochemical reactions such as occlusion and desorption reactions of lithium ions into carbon at the negative electrode. In some cases. In particular,
For a graphite-based carbon material having a [002] plane spacing of 0.335 to 0.337 nm obtained by X-ray diffraction,
When charge / discharge was repeated at a charge / discharge current of mA / cm 2 or more, the change in capacity was large.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、X線
回折法によって得られる〔002〕面の面間隔が0.3
35〜0.337nmの黒鉛系炭素材料を用いた場合の
5mA/cm2 以上の充放電電流での充放電サイクル後
の容量変化率が大きいという問題点を解決し、急速充放
電が可能で、高耐電圧でかつ高容量で、エネルギ密度が
高い二次電源を提供することを目的とする。
Therefore, according to the present invention, the [002] plane obtained by the X-ray diffraction method has a plane spacing of 0.3.
It solves the problem that the rate of change in capacity after a charge / discharge cycle with a charge / discharge current of 5 mA / cm 2 or more when using a graphite-based carbon material of 35 to 0.337 nm is large, enabling rapid charge / discharge. An object is to provide a secondary power supply having a high withstand voltage, a high capacity, and a high energy density.

【0007】[0007]

【課題を解決するための手段】本発明は、下記の構成を
採用することにより、上記の課題の解決に成功した。 (1) 活性炭を含む正極と、リチウムイオンを吸蔵・脱離
しうる炭素を含む負極と、リチウムイオンを含む有機電
解液とを有する二次電源において、負極に含まれる炭素
が、その六角網面構造中にホウ素を含有し、X線回折法
で測定した〔002〕面の面間隔が0.337〜0.4
10nmであることを特徴とする二次電源。
The present invention has succeeded in solving the above-mentioned problems by adopting the following constitution. (1) In a secondary power supply having a positive electrode containing activated carbon, a negative electrode containing carbon capable of absorbing and desorbing lithium ions, and an organic electrolyte containing lithium ions, the carbon contained in the negative electrode has a hexagonal network structure. Contains boron, and the [002] plane spacing measured by the X-ray diffraction method is 0.337 to 0.4.
A secondary power supply having a thickness of 10 nm.

【0008】(2) 前記負極炭素の六角網面構造中のホウ
素含有量が、ホウ素に換算して0.5〜8質量%である
ことを特徴とする前記(1) 記載の二次電源。 (3) 前記正極には、活性炭の他にリチウム含有遷移金属
酸化物が含まれることを特徴とする前記(1) 又は(2) 記
載の二次電源。 (4) 前記正極中のリチウム含有遷移金属酸化物の含有量
が、正極中に1〜30質量%であることを特徴とする前
記(3) 記載の二次電源。
(2) The secondary power source according to (1), wherein the boron content in the hexagonal mesh structure of the negative electrode carbon is 0.5 to 8% by mass in terms of boron. (3) The secondary power supply according to (1) or (2), wherein the positive electrode contains a lithium-containing transition metal oxide in addition to activated carbon. (4) The secondary power source according to (3), wherein the content of the lithium-containing transition metal oxide in the positive electrode is 1 to 30% by mass in the positive electrode.

【0009】(5) 前記(1) 〜(4) のいずれか1つに記載
の二次電源の製造方法であって、X線回折法で測定した
六角網面構造の〔002〕面の面間隔が0.355〜
0.420nmである非晶質炭素を、ホウ素化合物とと
もに不活性ガス雰囲気又は真空中で1300〜3000
℃の温度で熱処理して、前記〔002〕面の面間隔を
0.337〜0.410nmに調製したものを前記負極
炭素とすることを特徴とする二次電源の製造方法。 (6) 前記ホウ素化合物がB4 C又はB2 3 であること
を特徴とする前記(5)記載の二次電源の製造方法。
(5) The method for manufacturing a secondary power supply according to any one of (1) to (4), wherein the [002] plane of the hexagonal mesh structure measured by an X-ray diffraction method. The interval is 0.355-
Amorphous carbon having a diameter of 0.420 nm is mixed with a boron compound in an inert gas atmosphere or vacuum in a range of 1300 to 3000.
A method for manufacturing a secondary power supply, wherein the negative electrode carbon is prepared by heat treatment at a temperature of ° C. to adjust the [002] plane spacing to 0.337 to 0.410 nm. (6) The method according to (5), wherein the boron compound is B 4 C or B 2 O 3 .

【0010】[0010]

【発明の実施の形態】本明細書において、活性炭を含む
正極と集電体とを接合して一体化させたものを正極体と
いう。負極体についても同様の定義とする。また、二次
電池も電気二重層キャパシタも二次電源の1種である
が、本明細書では、正極に活性炭を含み、負極にリチウ
ムイオンを吸蔵、脱離しうる炭素を含む特定の構成の二
次電源を単に二次電源という。
BEST MODE FOR CARRYING OUT THE INVENTION In the present specification, a positive electrode body is obtained by joining a positive electrode containing activated carbon and a current collector and integrating them. The same definition applies to the negative electrode body. Further, both the secondary battery and the electric double layer capacitor are one kind of secondary power supply. In this specification, however, the specific configuration of the secondary battery includes activated carbon in the positive electrode and carbon capable of absorbing and desorbing lithium ions in the negative electrode. The secondary power supply is simply called a secondary power supply.

【0011】本発明は、正極を活性炭とし、負極をリチ
ウムイオンを吸蔵・脱離しうる炭素を主体とする電極と
し、リチウム塩を含む有機電解液を用い、充電したとき
に正極においてアニオンの活性炭への吸着が起こり、負
極ではリチウムイオンを吸蔵・脱離しうる炭素に電解液
中のリチウムイオンが吸蔵される。本明細書では、吸着
とは充電時に電気二重層形成によるイオンの活性炭への
吸着をいい、吸蔵とは電荷移動を伴う反応をいう。ま
た、放電時に活性炭からイオンが離れることを脱着とい
い、電荷移動を伴うものを脱離という。
According to the present invention, the positive electrode is made of activated carbon, the negative electrode is made of an electrode mainly composed of carbon capable of absorbing and desorbing lithium ions, and an organic electrolyte containing a lithium salt is used. At the negative electrode, lithium ions in the electrolytic solution are occluded by carbon capable of inserting and extracting lithium ions. In the present specification, the term "adsorption" refers to the adsorption of ions to activated carbon by the formation of an electric double layer during charging, and the term "occlusion" refers to a reaction involving charge transfer. In addition, detachment of ions from activated carbon during discharge is called desorption, and that accompanied by charge transfer is called desorption.

【0012】一般に、炭素はホウ素化合物と反応させる
ことにより黒鉛構造を発達させ、X線回折法で測定する
六角網面構造の〔002〕面の面間隔を小さくすること
ができる。例えば、石油又は石炭のピッチ又はコークス
から生成する易黒鉛化炭素をホウ素化合物と不活性ガス
雰囲気で2000〜3000℃で処理することにより、
炭素原子だけからなる黒鉛の〔002〕面の面間隔0.
3354nmより小さい黒鉛を得ることができる。
In general, carbon can develop a graphite structure by reacting with a boron compound, and can reduce the spacing between [002] planes of a hexagonal mesh structure measured by X-ray diffraction. For example, by treating graphitizable carbon generated from pitch or coke of petroleum or coal at 2000 to 3000 ° C. in a boron compound and inert gas atmosphere,
The plane spacing of the [002] plane of graphite consisting of only carbon atoms is 0.
Graphite smaller than 3354 nm can be obtained.

【0013】本発明の二次電源用負極の製造に用いる非
晶質炭素も同様で、不活性ガス雰囲気又は真空中で13
00〜3000℃でホウ素化合物と反応させ、微細部分
での黒鉛構造を発達させ、X線回折法で測定する六角網
面構造の〔002〕面の面間隔(以下、単に「面間隔」
という)を小さくする。具体的には未処理の非晶質炭素
の面間隔が0.355〜0.420nmであるのに対し
て、上記の熱処理により0.337〜0.410nmに
小さくできる。前記の面間隔が0.410nmより大き
いと初期のクーロン効率が低くなり、0.337nmよ
り小さいと充放電サイクル時の劣化が大きくなるので好
ましくない。なお、本発明の面間隔は、X線回折測定装
置(理学電機社製、RINT1000)で測定し、X線
回折強度の最も強い角度から算出した。
The same applies to amorphous carbon used in the production of the negative electrode for a secondary power supply of the present invention.
It reacts with a boron compound at 00 to 3000 ° C. to develop a graphite structure in a fine part, and a plane spacing (hereinafter simply referred to as “plane spacing”) of a [002] plane of a hexagonal mesh structure measured by an X-ray diffraction method.
). Specifically, while the untreated amorphous carbon has an interplanar spacing of 0.355 to 0.420 nm, the above heat treatment can reduce the spacing to 0.337 to 0.410 nm. If the above-mentioned plane spacing is larger than 0.410 nm, the initial Coulomb efficiency becomes low, and if it is smaller than 0.337 nm, deterioration during charge / discharge cycles becomes large, which is not preferable. In addition, the plane spacing of the present invention was measured by an X-ray diffraction measuring device (RINT1000, manufactured by Rigaku Corporation) and calculated from the angle at which the X-ray diffraction intensity was the strongest.

【0014】上記の熱処理時に使用するホウ素化合物は
4 C、B2 3 などが好ましく、熱処理温度は130
0〜3000℃が適当である。ただし、窒素雰囲気で2
000℃を超える温度で熱処理すると、炭素表面にホウ
素の窒化物が生成することがあるので、処理温度が20
00℃以上のときには、アルゴン雰囲気若しくは真空中
で熱処理する方がよい。即ち、窒素雰囲気における熱処
理温度は1300〜2000℃の範囲が適当である。こ
のようにして得たホウ素含有炭素は、二次電源の負極に
用いることにより、容量を向上させることができ、ま
た、充放電時に炭素表面に生成する被膜が強固で安定化
するため、充放電サイクルによる劣化を抑制することが
できる。なお、熱処理温度のより好ましい範囲は150
0〜2100℃である。
The boron compound used in the above heat treatment is preferably B 4 C, B 2 O 3 or the like.
0-3000 ° C is suitable. However, in a nitrogen atmosphere,
If heat treatment is performed at a temperature exceeding 000 ° C., boron nitride may be formed on the carbon surface.
When the temperature is higher than 00 ° C., the heat treatment is preferably performed in an argon atmosphere or a vacuum. That is, the heat treatment temperature in the nitrogen atmosphere is suitably in the range of 1300 to 2000 ° C. By using the boron-containing carbon thus obtained as a negative electrode of a secondary power supply, the capacity can be improved, and the film formed on the carbon surface during charging and discharging is strong and stable, so that Deterioration due to cycles can be suppressed. The more preferable range of the heat treatment temperature is 150
0-2100 ° C.

【0015】負極の炭素に含有されるホウ素の量は0.
5〜8.0質量%の範囲が適当である。0.5質量%未
満では二次電源の容量を向上させることができず、8.
0質量%を超えると充放電サイクルに伴う容量変化が大
きくなる。より好ましい範囲は0.8〜5.0質量%で
ある。
The amount of boron contained in the carbon of the negative electrode is 0.1.
A range of 5 to 8.0% by mass is appropriate. If the content is less than 0.5% by mass, the capacity of the secondary power supply cannot be improved, and
If it exceeds 0% by mass, the capacity change accompanying the charge / discharge cycle becomes large. A more preferred range is 0.8 to 5.0% by mass.

【0016】本発明の二次電源の正極には、リチウム含
有遷移金属酸化物を配合することが好ましい。この配合
は充放電サイクル時の劣化に伴う電解液中のリチウムイ
オンの不足を解消するのに有効であると思われる。この
正極を用いるときに、充電時に負極で起こる反応は、電
解液中のリチウムイオンと正極から脱離したリチウムイ
オンを吸蔵するものである。
The positive electrode of the secondary power supply of the present invention preferably contains a lithium-containing transition metal oxide. This composition is considered to be effective in resolving the shortage of lithium ions in the electrolyte due to the deterioration during the charge / discharge cycle. When this positive electrode is used, the reaction that occurs at the negative electrode during charging is to occlude lithium ions in the electrolytic solution and lithium ions released from the positive electrode.

【0017】正極に配合するリチウム含有遷移金属酸化
物としては、V、Fe、Co、Mn、Ni、W及びZn
からなる群から選ばれる1種以上の遷移金属とリチウム
との複合酸化物が好ましい。特に好ましいのは、Co、
Mn及びNiからなる群から選ばれる1種以上とリチウ
ムとの複合酸化物であり、具体的には下記のものを挙げ
ることができる。 Lix Coy Ni(1-y) 2 Liz Mn2 4 (ただし、0<x<2、0≦y≦1、0<z<2)
As the lithium-containing transition metal oxide compounded in the positive electrode, V, Fe, Co, Mn, Ni, W and Zn
Preferred is a composite oxide of one or more transition metals selected from the group consisting of and lithium. Particularly preferred are Co,
It is a composite oxide of lithium and one or more selected from the group consisting of Mn and Ni, and specific examples include the following. Li x Co y Ni (1-y) O 2 Li z Mn 2 O 4 (provided that 0 <x <2, 0 ≦ y ≦ 1, 0 <z <2)

【0018】正極中のリチウム含有遷移金属酸化物の配
合量は1〜30質量%が好ましい。1質量%未満である
と、初めの充電時に脱離されるリチウムイオンの量が、
負極で吸蔵できるリチウムイオンの量に対して充分では
なく、二次電源の電圧を高くできない。30質量%を超
えると、相対的に正極中の活性炭量が少なくなるため、
充放電サイクルにおける容量減少が大きくなる。より好
ましい範囲は5〜20質量%である。
The amount of the lithium-containing transition metal oxide in the positive electrode is preferably 1 to 30% by mass. When the amount is less than 1% by mass, the amount of lithium ions desorbed at the time of the first charge is
This is not enough for the amount of lithium ions that can be absorbed by the negative electrode, and the voltage of the secondary power supply cannot be increased. When the content exceeds 30% by mass, the amount of activated carbon in the positive electrode becomes relatively small.
The capacity decrease in the charge / discharge cycle increases. A more preferred range is 5 to 20% by mass.

【0019】正極に含まれる活性炭は、BET比表面積
が300〜3000m2 /gであることが好ましい。B
ET比表面積のより好ましい範囲は500〜2500m
2 /gである。活性炭の原料、賦活条件は限定されない
が、例えば原料としては、やしがら、フェノール樹脂、
石油コークス等が挙げられ、賦活方法としては水蒸気賦
活法、溶融アルカリ賦活法等が挙げられる。電極の抵抗
を低くするために、電極中に導電剤として導電性のカー
ボンブラック、黒鉛などを配合することが好ましく、導
電剤の配合量は正極中0.1〜20質量%の範囲が適当
である。導電剤の配合量のより好ましい範囲は、5.0
〜15質量%である。
The activated carbon contained in the positive electrode preferably has a BET specific surface area of 300 to 3000 m 2 / g. B
A more preferable range of the ET specific surface area is 500 to 2500 m.
2 / g. Raw material of activated carbon, activation conditions are not limited, for example, as a raw material, coconut, phenolic resin,
Petroleum coke and the like can be mentioned, and examples of the activation method include a steam activation method and a molten alkali activation method. In order to reduce the resistance of the electrode, it is preferable to mix conductive carbon black, graphite or the like as a conductive agent in the electrode, and the compounding amount of the conductive agent is appropriately in the range of 0.1 to 20% by mass in the positive electrode. is there. A more preferred range of the amount of the conductive agent is 5.0.
1515% by mass.

【0020】正極体の作製方法としては、例えば活性炭
粉末と、リチウム含有遷移金属酸化物粉末と、導電剤と
してのカーボンブラックとからなる混合物に、バインダ
ーとしてポリテトラフルオロエチレンを添加し、混練し
た後シート状に成形して正極とし、このシートを導電性
接着剤を用いて集電体に固定する方法がある。また、バ
インダーとしてポリフッ化ビニリデン、ポリアミドイミ
ド、ポリイミド等を溶解したワニスに、活性炭粉末とリ
チウム含有遷移金属酸化物粉末、若しくは活性炭粉末の
みを分散させ、この液をドクターブレード法等によって
集電体上に塗工し、乾燥して得る方法がある。正極中に
含まれるバインダーの量は、正極体の強度や容量等の特
性をバランスさせるために1〜20質量%の範囲が好ま
しい。
As a method for producing a positive electrode body, for example, polytetrafluoroethylene is added as a binder to a mixture of activated carbon powder, lithium-containing transition metal oxide powder, and carbon black as a conductive agent, and the mixture is kneaded. There is a method in which a positive electrode is formed into a sheet shape, and the sheet is fixed to a current collector using a conductive adhesive. Further, in a varnish in which polyvinylidene fluoride, polyamideimide, polyimide, etc. are dissolved as a binder, only the activated carbon powder and the lithium-containing transition metal oxide powder, or the activated carbon powder are dispersed, and this liquid is applied to the current collector by a doctor blade method or the like. Coating and drying. The amount of the binder contained in the positive electrode is preferably in the range of 1 to 20% by mass in order to balance properties such as strength and capacity of the positive electrode body.

【0021】本発明で用いる有機電解液は、カチオンが
リチウムイオンで、アニオンがPF6 - 、BF4 - 、C
lO4 - 、N(CF3 SO2 ) 2 - 、CF3 SO3 -
C(SO2 CF3 ) 3 - 、AsF6 - 及びSbF6 -
群から選択された1種類以上からなり、溶媒がエチレン
カーボネート、プロピレンカーボネート、ブチレンカー
ボネート、ジメチルカーボネート、エチルメチルカーボ
ネート、ジエチルカーボネート、スルホラン及びジメト
キシエタンの群から選ばれる1種以上のものが好適であ
る。有機電解液中の電解質の濃度は、電気伝導度を高く
するために、0.5〜2mol/lに調整することが好
ましい。
The organic electrolyte used in the present invention has a cation of lithium ion and an anion of PF 6 , BF 4 , C
10 4 , N (CF 3 SO 2 ) 2 , CF 3 SO 3 ,
C (SO 2 CF 3) 3 -, AsF 6 - and SbF 6 - consists of one or more selected from the group of the solvent of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, One or more selected from the group of sulfolane and dimethoxyethane are preferred. The concentration of the electrolyte in the organic electrolyte is preferably adjusted to 0.5 to 2 mol / l in order to increase the electric conductivity.

【0022】本発明で使用するセパレータは、有機電解
液に不溶で一定の強度を有するものであれば種類を問わ
ない。具体的には、ポリエチレン、ポリプロピレン、レ
ーヨン、ポリブチレンテレフタレート、ポリフェニレン
サルファイドなどで作ることができる。その中でも、ポ
リエチレン、ポリプロピレン、及びレーヨンがコスト面
で有利であるが、耐熱性の面からはポリブチレンテレフ
タレート、及びポリフェニレンサルファイドが有利であ
る。また、セパレータの形態は多孔質フィルム又は不織
布が好適である。
The type of the separator used in the present invention is not limited as long as it is insoluble in the organic electrolyte and has a certain strength. Specifically, it can be made of polyethylene, polypropylene, rayon, polybutylene terephthalate, polyphenylene sulfide, or the like. Among them, polyethylene, polypropylene and rayon are advantageous in terms of cost, but polybutylene terephthalate and polyphenylene sulfide are advantageous in terms of heat resistance. The form of the separator is preferably a porous film or a nonwoven fabric.

【0023】[0023]

【実施例】次に、実施例及び比較例により本発明をさら
に具体的に説明するが、本発明はこれらにより限定され
るものではない。なお、実施例及び比較例におけるセル
の作製及び測定は、すべて露点が−60℃以下のアルゴ
ングローブボックス中で行った。セルの径は10.8m
m、高さは1.7mmのコインセルを用いた。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The production and measurement of the cells in Examples and Comparative Examples were all performed in an argon glove box having a dew point of −60 ° C. or less. Cell diameter is 10.8m
m, and a coin cell having a height of 1.7 mm was used.

【0024】〔実施例1〕正極体は、フェノール樹脂を
原料とし水蒸気賦活法によって得たBET比表面積20
00m2 /gの活性炭を70質量%、導電性カーボンブ
ラックを20質量%、及びバインダーとしてポリテトラ
フルオロエチレンを10質量%からなる混合物にエタノ
ールを加えて混練し圧延した後、200℃で2時間真空
乾燥して電極シートを得た。この電極シートは、ポリア
ミドイミドをバインダーとする導電性接着剤を用いてコ
インセルキャップに接着し、減圧下で300℃で2時間
熱処理し、実施例1の正極体を得た。
Example 1 A cathode body was prepared by using a phenol resin as a raw material and having a BET specific surface area of 20 obtained by a steam activation method.
Ethanol was added to a mixture of 70% by mass of activated carbon of 00m 2 / g, 20% by mass of conductive carbon black, and 10% by mass of polytetrafluoroethylene as a binder, kneaded and rolled, and then heated at 200 ° C. for 2 hours. Vacuum drying was performed to obtain an electrode sheet. This electrode sheet was adhered to a coin cell cap using a conductive adhesive containing polyamideimide as a binder, and heat-treated under reduced pressure at 300 ° C. for 2 hours to obtain a positive electrode body of Example 1.

【0025】負極体は、フェノール樹脂を原料として8
00℃で熱処理して得た〔002〕面の面間隔0.37
3nmの非晶質炭素とB2 3 をアルゴン雰囲気中、2
500℃で処理してホウ素含有炭素を作製した。そし
て、前記ホウ素含有炭素と、導電剤として2800℃で
熱処理した気相成長炭素(VGCF)を、バインダー成
分であるポリフッ化ビニリデン(PVDF)を溶解する
N−メチル−2−ピロリドンに分散させた。負極の質量
組成比は、ホウ素含有炭素:VGCF:PVDF=7:
1:2とした。ホウ素含有炭素の〔002〕面の面間隔
は0.365nm、炭素に組み込まれたホウ素の量は
2.5質量%であった。銅集電体に分散液を塗工して1
00℃で乾燥させ、60mmの直径に打ち抜き、コイン
セルケースに抵抗溶接して130℃で減圧乾燥して負極
体を得た。
The anode body is made of a phenol resin as a raw material.
0.37 spacing between [002] planes obtained by heat treatment at 00 ° C
3 nm of amorphous carbon and B 2 O 3
Treatment at 500 ° C. produced a boron-containing carbon. Then, the boron-containing carbon and vapor-grown carbon (VGCF) heat-treated at 2800 ° C. as a conductive agent were dispersed in N-methyl-2-pyrrolidone in which polyvinylidene fluoride (PVDF) as a binder component was dissolved. The mass composition ratio of the negative electrode was as follows: boron-containing carbon: VGCF: PVDF = 7:
1: 2. The spacing between the [002] planes of the boron-containing carbon was 0.365 nm, and the amount of boron incorporated in the carbon was 2.5% by mass. Coating the dispersion on the copper current collector
It was dried at 00 ° C., punched into a diameter of 60 mm, resistance-welded to a coin cell case, and dried under reduced pressure at 130 ° C. to obtain a negative electrode body.

【0026】上記の正極体と負極体を用い、ポリプロピ
レン製のセパレータを介し、1.0mol/LのLiB
4 を含むエチルメチルカーボネートとエチレンカーボ
ネート(体積比1:1)を電解液としてコインセルを作
製して初期容量を測定し、4.2Vから2.75Vまで
の間で充放電サイクルを1000回繰り返し、容量を測
定して、初期との容量変化率を算出した。結果を表1に
示した。
Using the above-mentioned positive electrode body and negative electrode body, 1.0 mol / L LiB was interposed through a polypropylene separator.
A coin cell was prepared using ethyl methyl carbonate containing F 4 and ethylene carbonate (volume ratio 1: 1) as electrolytes, and the initial capacity was measured. The charge / discharge cycle was repeated 1,000 times between 4.2 V and 2.75 V. , The capacity was measured, and the rate of change in capacity from the initial value was calculated. The results are shown in Table 1.

【0027】〔実施例2〕正極体は、実施例1と同様の
ものを用いた。負極にはフェノール樹脂を原料として7
00℃で熱処理した〔002〕面の面間隔0.380n
mの非晶質炭素とB2 3 をアルゴン雰囲気中、250
0℃で処理してホウ素含有炭素を作製した。このホウ素
含有炭素と、導電剤として2800℃で処理した気相成
長炭素(VGCF)を、バインダ成分であるポリフッ化
ビニリデン(PVDF)を溶解するN−メチル−2−ピ
ロリドンに分散させた。負極の質量組成比は、ホウ素含
有炭素:VGCF:PVDF=7:1:2とした。上記
のホウ素含有炭素の面間隔は0.372nm、炭素に組
み込まれたホウ素の量は2.5質量%であった。上記の
正極体と負極体を用い、かつ、実施例1と同様のセパレ
ータ及び電解液を用い、コインセルを作製し、初期容量
を測定した。その後4.2Vから2.75Vまでの間で
充放電サイクルを1000回繰り返し、容量を測定して
初期との容量変化率を算出した。結果を表1に示した。
[Example 2] The same positive electrode body as in Example 1 was used. The negative electrode is made of phenolic resin
Heat treatment at 00 ° C [002] plane spacing 0.380n
m of amorphous carbon and B 2 O 3 in an argon atmosphere at 250
Treatment at 0 ° C. produced a boron-containing carbon. This boron-containing carbon and vapor-grown carbon (VGCF) treated at 2800 ° C. as a conductive agent were dispersed in N-methyl-2-pyrrolidone in which polyvinylidene fluoride (PVDF) as a binder component was dissolved. The mass composition ratio of the negative electrode was boron-containing carbon: VGCF: PVDF = 7: 1: 2. The plane spacing of the boron-containing carbon was 0.372 nm, and the amount of boron incorporated in the carbon was 2.5% by mass. A coin cell was manufactured using the above-described positive electrode body and negative electrode body, and using the same separator and electrolytic solution as in Example 1, and the initial capacity was measured. Thereafter, a charge / discharge cycle was repeated 1,000 times between 4.2 V and 2.75 V, and the capacity was measured to calculate the rate of change in capacity from the initial state. The results are shown in Table 1.

【0028】〔実施例3〕正極体は、実施例1と同様の
ものを用いた。負極にはフェノール樹脂を原料として8
00℃で熱処理した〔002〕面の面間隔0.373n
mの非晶質炭素とB2 3 をアルゴン雰囲気中、250
0℃で処理してホウ素含有炭素を作製した。このホウ素
含有炭素と、導電剤として2800℃で処理した気相成
長炭素(VGCF)を、バインダーであるポリフッ化ビ
ニリデン(PVDF)を溶解するN−メチル−2−ピロ
リドンに分散させた。負極の質量組成比は、ホウ素含有
炭素:VGCF:PVDF=7:1:2とした。ホウ素
含有炭素の面間隔は0.362nm、炭素に組み込まれ
たホウ素の量は5.0質量%であった。上記の正極体と
負極体を用い、かつ、実施例1と同様のセパレータ及び
電解液を用い、コインセルを作製し、初期容量を測定し
た。その後4.2Vから2.75Vまでの間で充放電サ
イクルを1000回繰り返し、容量を測定して初期との
容量変化率を算出した。結果を表1に示した。
Example 3 The same positive electrode body as in Example 1 was used. For the negative electrode, use phenol resin as raw material.
0.373n spacing between [002] planes heat treated at 00 ° C
m of amorphous carbon and B 2 O 3 in an argon atmosphere at 250
Treatment at 0 ° C. produced a boron-containing carbon. This boron-containing carbon and vapor-grown carbon (VGCF) treated at 2800 ° C. as a conductive agent were dispersed in N-methyl-2-pyrrolidone in which polyvinylidene fluoride (PVDF) as a binder was dissolved. The mass composition ratio of the negative electrode was boron-containing carbon: VGCF: PVDF = 7: 1: 2. The plane spacing of boron-containing carbon was 0.362 nm, and the amount of boron incorporated in carbon was 5.0% by mass. A coin cell was manufactured using the above-described positive electrode body and negative electrode body, and using the same separator and electrolytic solution as in Example 1, and the initial capacity was measured. Thereafter, a charge / discharge cycle was repeated 1,000 times between 4.2 V and 2.75 V, and the capacity was measured to calculate the rate of change in capacity from the initial state. The results are shown in Table 1.

【0029】〔実施例4〕正極体は、実施例1と同様の
ものを用いた。負極にはフェノール樹脂を原料として6
00℃で熱処理した〔002〕面の面間隔0.390n
mの非晶質炭素とB2 3 をアルゴン雰囲気中、250
0℃で処理してホウ素含有炭素を作製した。このホウ素
含有炭素と、導電剤として2800℃で処理した気相成
長炭素(VGCF)を、バインダー成分であるポリフッ
化ビニリデン(PVDF)を溶解するN−メチル−2−
ピロリドンに分散させた。負極の質量組成比は、ホウ素
含有炭素:VGCF:PVDF=7:1:2とした。ホ
ウ素含有炭素の〔002〕面の面間隔は0.385n
m、炭素に組み込まれたホウ素の量は2.5質量%であ
った。上記の正極体と負極体を用い、かつ、実施例1と
同様のセパレータ及び電解液を用い、コインセルを作製
し、初期容量を測定した。その後4.2Vから2.75
Vまでの間で充放電サイクルを1000回繰り返し、容
量を測定して初期との容量変化率を算出した。結果を表
1に示した。
Example 4 The same positive electrode body as in Example 1 was used. For the negative electrode, use phenol resin as raw material.
0.390n spacing between [002] planes heat treated at 00 ° C
m of amorphous carbon and B 2 O 3 in an argon atmosphere at 250
Treatment at 0 ° C. produced a boron-containing carbon. This boron-containing carbon and vapor grown carbon (VGCF) treated at 2800 ° C. as a conductive agent are mixed with N-methyl-2-, which dissolves polyvinylidene fluoride (PVDF) as a binder component.
Dispersed in pyrrolidone. The mass composition ratio of the negative electrode was boron-containing carbon: VGCF: PVDF = 7: 1: 2. The spacing between [002] planes of boron-containing carbon is 0.385 n
m, the amount of boron incorporated in the carbon was 2.5% by mass. A coin cell was manufactured using the above-described positive electrode body and negative electrode body, and using the same separator and electrolytic solution as in Example 1, and the initial capacity was measured. Then from 4.2V to 2.75
The charge / discharge cycle was repeated 1000 times up to V, and the capacity was measured to calculate the rate of change in capacity from the initial. The results are shown in Table 1.

【0030】〔実施例5〕正極体は、実施例1と同様の
ものを用いた。負極にはフェノール樹脂を原料として8
00℃で熱処理した〔002〕面の面間隔0.373n
mの非晶質炭素とB4 Cをアルゴン雰囲気中、2500
℃で処理してホウ素含有炭素を作製した。このホウ素含
有炭素と、導電剤として2800℃で処理した気相成長
炭素(VGCF)を、バインダ成分であるポリフッ化ビ
ニリデン(PVDF)を溶解するN−メチル−2−ピロ
リドンに分散させた。負極の質量組成比は、ホウ素含有
炭素:VGCF:PVDF=7:1:2とした。ホウ素
含有炭素の面間隔は0.368nm、炭素に組み込まれ
たホウ素の量は2.5質量%であった。上記の正極体と
負極体を用い、かつ、実施例1と同様のセパレータ及び
電解液を用い、コインセルを作製し、初期容量を測定し
た。その後4.2Vから2.75Vまでの間で充放電サ
イクルを1000回繰り返し、容量を測定して初期との
容量変化率を算出した。結果を表1に示した。
Example 5 The same positive electrode body as in Example 1 was used. For the negative electrode, use phenol resin as raw material.
0.373n spacing between [002] planes heat treated at 00 ° C
m of amorphous carbon and B 4 C in an argon atmosphere at 2500
C. to produce boron-containing carbon. This boron-containing carbon and vapor-grown carbon (VGCF) treated at 2800 ° C. as a conductive agent were dispersed in N-methyl-2-pyrrolidone in which polyvinylidene fluoride (PVDF) as a binder component was dissolved. The mass composition ratio of the negative electrode was boron-containing carbon: VGCF: PVDF = 7: 1: 2. The plane spacing of the boron-containing carbon was 0.368 nm, and the amount of boron incorporated in the carbon was 2.5% by mass. A coin cell was manufactured using the above-described positive electrode body and negative electrode body, and using the same separator and electrolytic solution as in Example 1, and the initial capacity was measured. Thereafter, a charge / discharge cycle was repeated 1,000 times between 4.2 V and 2.75 V, and the capacity was measured to calculate the rate of change in capacity from the initial state. The results are shown in Table 1.

【0031】〔実施例6〕正極体は、実施例1と同様の
活性炭を63質量%、LiCoO2 を7質量%、導電性
カーボンブラックを20質量%、バインダーのポリテト
ラフルオロエチレンを10質量%とからなる混合物をエ
タノールを加えて混練し圧延した後、200℃で2時間
真空乾燥して電極シートを得た。この電極シートはポリ
アミドイミドをバインダとする導電性接着剤を用いてコ
インセルに接着し、減圧下で300℃で2時間熱処理し
正極体を得た。負極体、電解液、セパレータは実施例1
と同様のものを用い、コインセルを作製して初期容量を
測定し、4.2Vから2.75Vまでの間で充放電サイ
クルを1000回繰り返し、容量を測定して、初期との
容量変化率を算出した。結果を表1に示した。
Example 6 The same positive electrode body as in Example 1 was used for 63% by mass of activated carbon, 7% by mass of LiCoO 2 , 20% by mass of conductive carbon black, and 10% by mass of polytetrafluoroethylene as a binder. After adding ethanol to the mixture, kneading and rolling were performed, and vacuum-dried at 200 ° C. for 2 hours to obtain an electrode sheet. This electrode sheet was bonded to a coin cell using a conductive adhesive having polyamideimide as a binder, and heat-treated at 300 ° C. for 2 hours under reduced pressure to obtain a positive electrode body. The negative electrode body, the electrolytic solution, and the separator are the same as those in Example 1.
A coin cell was prepared using the same method as described above, and the initial capacity was measured. The charge / discharge cycle was repeated 1,000 times between 4.2 V and 2.75 V, and the capacity was measured. Calculated. The results are shown in Table 1.

【0032】〔比較例1〕正極体は、実施例1と同様の
ものを用いた。負極にはフェノール樹脂を原料として8
00℃で熱処理した〔002〕面の面間隔0.373n
mの非晶質炭素とB2 3 をアルゴン雰囲気中、200
0℃で処理してホウ素含有炭素を作製した。このホウ素
含有炭素と、導電剤として2800℃で処理した気相成
長炭素(VGCF)を、バインダ成分であるポリフッ化
ビニリデン(PVDF)を溶解するN−メチル−2−ピ
ロリドンに分散させた。負極の質量組成比は、ホウ素含
有炭素:VGCF:PVDF=7:1:2とした。ホウ
素含有炭素の面間隔は0.371nm、炭素に組み込ま
れたホウ素の量は0.3質量%であった。上記の正極体
と負極体を用い、かつ、実施例1と同様のセパレータ及
び電解液を用い、コインセルを作製し、初期容量を測定
した。その後4.2Vから2.75Vまでの間で充放電
サイクルを1000回繰り返し、容量を測定して初期と
の容量変化率を算出した。結果を表1に示した。
Comparative Example 1 The same positive electrode body as in Example 1 was used. For the negative electrode, use phenol resin as raw material.
0.373n spacing between [002] planes heat treated at 00 ° C
m of amorphous carbon and B 2 O 3 in an argon atmosphere for 200
Treatment at 0 ° C. produced a boron-containing carbon. This boron-containing carbon and vapor-grown carbon (VGCF) treated at 2800 ° C. as a conductive agent were dispersed in N-methyl-2-pyrrolidone in which polyvinylidene fluoride (PVDF) as a binder component was dissolved. The mass composition ratio of the negative electrode was boron-containing carbon: VGCF: PVDF = 7: 1: 2. The plane spacing of the boron-containing carbon was 0.371 nm, and the amount of boron incorporated in the carbon was 0.3% by mass. A coin cell was manufactured using the above-described positive electrode body and negative electrode body, and using the same separator and electrolytic solution as in Example 1, and the initial capacity was measured. Thereafter, a charge / discharge cycle was repeated 1,000 times between 4.2 V and 2.75 V, and the capacity was measured to calculate the rate of change in capacity from the initial state. The results are shown in Table 1.

【0033】〔比較例2〕正極体は、実施例1と同様の
ものを用いた。負極には石油ピッチを原料として800
℃で熱処理した〔002〕面の面間隔0.345nmの
炭素とB2 3 をアルゴン雰囲気中、2800℃で処理
してホウ素含有炭素を作製した。このホウ素含有炭素
と、導電剤として2800℃で処理した気相成長炭素
(VGCF)を、バインダ成分であるポリフッ化ビニリ
デン(PVDF)を溶解するN−メチル−2−ピロリド
ンに分散させた。電極の質量組成比は、ホウ素含有炭
素:VGCF:PVDF=7:1:2とした。ホウ素含
有炭素の面間隔は0.335nm、炭素に組み込まれた
ホウ素の量は0.3質量%であった。実施例1と同様の
セパレータ及び電解液を用い、コインセルを作製し、初
期容量を測定した。その後、4.2Vから2.75Vま
での間で充放電サイクルを1000回繰り返し、容量を
測定して初期との容量変化率を算出した。結果は表1に
示した。
[Comparative Example 2] The same positive electrode body as in Example 1 was used. The negative electrode is made from petroleum pitch
Carbon having a plane spacing of 0.345 nm between the [002] plane and B 2 O 3 heat treated at 2 ° C. was treated at 2800 ° C. in an argon atmosphere to produce boron-containing carbon. This boron-containing carbon and vapor-grown carbon (VGCF) treated at 2800 ° C. as a conductive agent were dispersed in N-methyl-2-pyrrolidone in which polyvinylidene fluoride (PVDF) as a binder component was dissolved. The mass composition ratio of the electrode was boron-containing carbon: VGCF: PVDF = 7: 1: 2. The plane spacing of the boron-containing carbon was 0.335 nm, and the amount of boron incorporated in the carbon was 0.3% by mass. Using the same separator and electrolytic solution as in Example 1, a coin cell was prepared, and the initial capacity was measured. Thereafter, the charge / discharge cycle was repeated 1000 times between 4.2 V and 2.75 V, the capacity was measured, and the rate of change in capacity from the initial value was calculated. The results are shown in Table 1.

【0034】〔比較例3〕正極体は、実施例1と同様の
ものを用いた。負極には炭素として大阪ガス社製の商品
名MCMB6・28(〔002〕面の面間隔0.336
nm)を用い、実施例1と同様の方法で上記炭素:気相
成長炭素(VGCF):ポリフッ化ビニリデン(PVD
F)=7:1:2となるように負極体を作製した。上記
の正極体と負極体を用い、かつ、実施例1と同様のセパ
レータ及び電解液を用い、コインセルを作製し、初期容
量を測定した。その後、4.2Vから2.75Vまでの
間で充放電サイクルを1000回繰り返し、容量を測定
して初期との容量変化率を算出した。結果は表1に示し
た。
Comparative Example 3 The same positive electrode body as in Example 1 was used. The negative electrode used as carbon was MCMB6.28 (trade name of [002] plane 0.336 made by Osaka Gas Co., Ltd.).
nm) and in the same manner as in Example 1, the above carbon: vapor-grown carbon (VGCF): polyvinylidene fluoride (PVD)
F): A negative electrode body was manufactured so as to be 7: 1: 2. A coin cell was manufactured using the above-described positive electrode body and negative electrode body, and using the same separator and electrolytic solution as in Example 1, and the initial capacity was measured. Thereafter, the charge / discharge cycle was repeated 1000 times between 4.2 V and 2.75 V, the capacity was measured, and the rate of change in capacity from the initial value was calculated. The results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】(評価)表1から明らかなように、実施例
1〜6のコインセルは、比較例1〜2のコインセルと比
べて容量変化率が極めて低く、4.2Vまで充電しても
実施例1〜6のコインセルは、充放電サイクルによる劣
化が少なく耐電圧を高く維持できることが分かった。
(Evaluation) As is apparent from Table 1, the coin cells of Examples 1 to 6 have extremely low capacity change rates as compared with the coin cells of Comparative Examples 1 and 2, and the coin cells of Examples 1 to 6 were charged to 4.2V. It was found that the coin cells of Nos. 1 to 6 were able to maintain high withstand voltage with little deterioration due to charge / discharge cycles.

【0037】[0037]

【発明の効果】本発明は、上記の構成を採用することに
より、耐電圧が高く、容量が大きく、エネルギー密度が
高く、かつ急速充放電サイクル信頼性の高い二次電源を
提供できるようになった。
According to the present invention, by employing the above structure, it is possible to provide a secondary power supply having a high withstand voltage, a large capacity, a high energy density and a high reliability of a rapid charge / discharge cycle. Was.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 車 勇 神奈川県横浜市神奈川区羽沢1150番地 旭 硝子株式会社内 Fターム(参考) 4G046 CB09 CC02 CC03 HB07 5H029 AJ03 AJ05 AK03 AL01 AL02 AL07 AM02 AM03 AM04 AM05 AM07 CJ02 CJ28 DJ17 HJ01 HJ13 HJ14 5H050 AA07 AA08 BA17 CA08 CA09 CA16 CA29 CB08 EA01 EA12 FA19 GA02 GA27 HA01 HA13 HA14  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Car Isamu 1150 Hazawa, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Asahi Glass Co., Ltd. F-term (reference) 4G046 CB09 CC02 CC03 HB07 5H029 AJ03 AJ05 AK03 AL01 AL02 AL07 AM02 AM03 AM04 AM05 AM07 CJ02 CJ28 DJ17 HJ01 HJ13 HJ14 5H050 AA07 AA08 BA17 CA08 CA09 CA16 CA29 CB08 EA01 EA12 FA19 GA02 GA27 HA01 HA13 HA14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 活性炭を含む正極と、リチウムイオンを
吸蔵・脱離しうる炭素を含む負極と、リチウムイオンを
含む有機電解液とを有する二次電源において、負極に含
まれる炭素が、その六角網面構造中にホウ素を含有し、
X線回折法で測定した〔002〕面の面間隔が0.33
7〜0.410nmであることを特徴とする二次電源。
1. A secondary power source comprising a positive electrode containing activated carbon, a negative electrode containing carbon capable of inserting and extracting lithium ions, and an organic electrolyte containing lithium ions, wherein carbon contained in the negative electrode is formed by a hexagonal mesh. Containing boron in the surface structure,
The [002] plane spacing measured by the X-ray diffraction method is 0.33.
A secondary power supply having a thickness of 7 to 0.410 nm.
【請求項2】 前記負極炭素の六角網面構造中のホウ素
含有量が、ホウ素に換算して0.5〜8質量%であるこ
とを特徴とする請求項1記載の二次電源。
2. The secondary power supply according to claim 1, wherein the boron content in the hexagonal mesh structure of the negative electrode carbon is 0.5 to 8% by mass in terms of boron.
【請求項3】 前記正極には、活性炭の他にリチウム含
有遷移金属酸化物が含まれることを特徴とする請求項1
又は2記載の二次電源。
3. The positive electrode contains a lithium-containing transition metal oxide in addition to activated carbon.
Or the secondary power supply according to 2.
【請求項4】 前記正極中のリチウム含有遷移金属酸化
物の含有量が、正極中に1〜30質量%であることを特
徴とする請求項3記載の二次電源。
4. The secondary power supply according to claim 3, wherein the content of the lithium-containing transition metal oxide in the positive electrode is 1 to 30% by mass in the positive electrode.
【請求項5】 請求項1〜4のいずれか1項に記載の二
次電源の製造方法であって、X線回折法で測定した六角
網面構造の〔002〕面の面間隔が0.355〜0.4
20nmである非晶質炭素を、ホウ素化合物とともに不
活性ガス雰囲気又は真空中で1300〜3000℃の温
度で熱処理して前記〔002〕面の面間隔を0.337
〜0.410nmに調製したものを前記負極炭素とする
ことを特徴とする二次電源の製造方法。
5. The method for manufacturing a secondary power supply according to claim 1, wherein the spacing of the [002] plane of the hexagonal mesh structure measured by X-ray diffraction is 0. 355-0.4
Amorphous carbon having a thickness of 20 nm is heat-treated together with a boron compound at a temperature of 1300 to 3000 ° C. in an inert gas atmosphere or vacuum to reduce the [002] plane spacing to 0.337.
A method for producing a secondary power supply, wherein the carbon prepared to a thickness of 0.410 nm is used as the negative electrode carbon.
【請求項6】 前記ホウ素化合物がB4 C又はB2 3
であることを特徴とする請求項5記載の二次電源の製造
方法。
6. The method according to claim 1, wherein the boron compound is B 4 C or B 2 O 3.
6. The method for manufacturing a secondary power supply according to claim 5, wherein:
JP2000216117A 2000-07-17 2000-07-17 Secondary power source and method for manufacturing negative electrode for secondary power source Pending JP2002033102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216117A JP2002033102A (en) 2000-07-17 2000-07-17 Secondary power source and method for manufacturing negative electrode for secondary power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216117A JP2002033102A (en) 2000-07-17 2000-07-17 Secondary power source and method for manufacturing negative electrode for secondary power source

Publications (1)

Publication Number Publication Date
JP2002033102A true JP2002033102A (en) 2002-01-31

Family

ID=18711427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216117A Pending JP2002033102A (en) 2000-07-17 2000-07-17 Secondary power source and method for manufacturing negative electrode for secondary power source

Country Status (1)

Country Link
JP (1) JP2002033102A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056512B1 (en) * 2009-09-14 2011-08-11 캡솔루션 주식회사 Lithium-ion capacitor and manufacturing method therefor
KR101059934B1 (en) * 2009-10-13 2011-08-26 한국세라믹기술원 Manufacturing method of hybrid supercapacitor
KR101060828B1 (en) * 2009-07-01 2011-08-30 삼성전기주식회사 Hybrid Supercapacitor
JP2012218999A (en) * 2011-04-13 2012-11-12 Toyo Tanso Kk Porous carbon, and method for producing the same
WO2015129186A1 (en) * 2014-02-28 2015-09-03 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101060828B1 (en) * 2009-07-01 2011-08-30 삼성전기주식회사 Hybrid Supercapacitor
KR101056512B1 (en) * 2009-09-14 2011-08-11 캡솔루션 주식회사 Lithium-ion capacitor and manufacturing method therefor
KR101059934B1 (en) * 2009-10-13 2011-08-26 한국세라믹기술원 Manufacturing method of hybrid supercapacitor
JP2012218999A (en) * 2011-04-13 2012-11-12 Toyo Tanso Kk Porous carbon, and method for producing the same
WO2015129186A1 (en) * 2014-02-28 2015-09-03 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
JPWO2015129186A1 (en) * 2014-02-28 2017-03-30 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Similar Documents

Publication Publication Date Title
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
WO2013176067A1 (en) Positive electrode active material for non-aqueous secondary batteries
JP4096438B2 (en) Secondary power supply
JP2008177346A (en) Energy storage device
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
JP2013084566A (en) Nonaqueous electrolytic secondary cell
JP2018125077A (en) Negative electrode for lithium ion secondary battery
JP2012181975A (en) Nonaqueous secondary battery
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
JP2001345122A (en) Secondary power source and method of manufacturing secondary power source
US9911545B2 (en) Phenolic resin sourced carbon anode in a lithium ion capacitor
JP2003031220A (en) Secondary power source
JP2000228222A (en) Secondary power supply
JP2013077425A (en) Positive electrode material, lithium ion secondary battery using the same, and method of manufacturing positive electrode material
JP3367060B2 (en) Negative electrode for lithium secondary battery
JP2000036325A (en) Secondary power supply
JP2000138074A (en) Secondary power supply
JPH1154384A (en) Electric double layer capacitor
CN112863898A (en) Lithium supplement additive for positive electrode of lithium ion capacitor and application of lithium supplement additive
JP2000306609A (en) Secondary power supply
JP4284934B2 (en) Secondary power supply
JP4705404B2 (en) Lithium ion capacitor
JP2002033102A (en) Secondary power source and method for manufacturing negative electrode for secondary power source
JP4099970B2 (en) Secondary power supply
JP2001338679A (en) Secondary electric power source