JP2000138074A - Secondary power supply - Google Patents

Secondary power supply

Info

Publication number
JP2000138074A
JP2000138074A JP10311140A JP31114098A JP2000138074A JP 2000138074 A JP2000138074 A JP 2000138074A JP 10311140 A JP10311140 A JP 10311140A JP 31114098 A JP31114098 A JP 31114098A JP 2000138074 A JP2000138074 A JP 2000138074A
Authority
JP
Japan
Prior art keywords
lithium
activated carbon
positive electrode
secondary power
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10311140A
Other languages
Japanese (ja)
Inventor
Manabu Tsushima
学 對馬
Takeshi Morimoto
剛 森本
Isamu Kuruma
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10311140A priority Critical patent/JP2000138074A/en
Publication of JP2000138074A publication Critical patent/JP2000138074A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve withstand voltage, energy density in high capacity, and reliability of a charge/discharge cycle, by providing a positive electrode containing activated carbon and a lithium containing transition metal oxide, a negative electrode containing the activated carbon, and an organic electrolyte containing quarternary onium salt. SOLUTION: Activated carbon and a lithium containing transition metal oxide, that is a composite oxide of lithium and one or more kinds of transition metals selected from a group composed of V, Fe, Co, Mn, Ni, W, Zn are contained in a positive electrode, or Li, Co, Ni(1-y)O2, or Li2Mn2O4 (where, 0<x<2.0<=y <=1, 0<z<2) is contained. A negative electrode body can be produced similarly to a positive electrode body, mixture of activated carbon powders and a conductive agent is used instead of the mixture of activated carbon powders, the lithium containing transition metal oxide, and a conductive material. In addition, quarternary-onium salt is contained in an organic electrolyte, and its concentration is 0.5-2.5 mol/L, and lithium salt concentration is 0.1-1.5 mol/L.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧が高く、容
量が大きく、急速充放電サイクル信頼性の高い二次電源
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power supply having a high withstand voltage, a large capacity, and a high rapid charge / discharge cycle reliability.

【0002】[0002]

【従来の技術】従来、電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.3Vである。電気二重層キャパシタの
エネルギは電圧の2乗に比例するので、耐電圧の高い有
機電解液の方が水系電解液より高エネルギである。
2. Description of the Related Art Conventionally, as an electrode of an electric double layer capacitor, a polarizable electrode mainly composed of activated carbon has been used for both a positive electrode and a negative electrode. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the voltage, the organic electrolyte having a higher withstand voltage has higher energy than the aqueous electrolyte.

【0003】しかし、有機電解液を使用した電気二重層
キャパシタでもそのエネルギ密度は鉛蓄電池等の二次電
池の1/10以下であり、さらなるエネルギ密度の向上
が必要とされている。電気二重層キャパシタのエネルギ
密度を向上させるには電圧を高くすることが最も効果的
であるが、電圧を高くすると電解液の分解が起こり寿命
がきわめて短くなるため、耐電圧をさらに高める必要が
ある。
However, even an electric double layer capacitor using an organic electrolyte has an energy density of 1/10 or less of a secondary battery such as a lead storage battery, and further improvement in energy density is required. Increasing the voltage is the most effective way to improve the energy density of the electric double layer capacitor. However, when the voltage is increased, the electrolytic solution is decomposed and the life is extremely shortened. .

【0004】エネルギ密度の高い二次電源としては、リ
チウムイオン二次電池等がある。リチウムイオン二次電
池は例えば正極活物質としてLiCoO2 等を使用し、
負極にはリチウムイオンを吸蔵、脱離できる炭素材料を
使用しており、耐電圧が高くエネルギ密度が高い。しか
し、充放電サイクルを繰り返すと特に正極活物質が劣化
し、充放電サイクル信頼性が低い問題がある。
As a secondary power source having a high energy density, there is a lithium ion secondary battery or the like. Lithium ion secondary batteries use, for example, LiCoO 2 or the like as a positive electrode active material,
The negative electrode uses a carbon material capable of inserting and extracting lithium ions, and has a high withstand voltage and a high energy density. However, when the charge / discharge cycle is repeated, the positive electrode active material particularly deteriorates, and there is a problem that the charge / discharge cycle reliability is low.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、耐電
圧が高く、かつ高容量でエネルギ密度が高く、充放電サ
イクル信頼性の高い二次電源を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a secondary power supply having a high withstand voltage, a high capacity, a high energy density, and a high charge / discharge cycle reliability.

【0006】[0006]

【課題を解決するための手段】本発明は、活性炭とリチ
ウム含有遷移金属酸化物とを含む正極と、活性炭を含む
負極と、第4級オニウム塩を含む有機電解液と、を有す
ることを特徴とする二次電源を提供する。
The present invention is characterized in that it has a positive electrode containing activated carbon and a lithium-containing transition metal oxide, a negative electrode containing activated carbon, and an organic electrolyte containing a quaternary onium salt. To provide a secondary power supply.

【0007】本明細書において、活性炭とリチウム含有
遷移金属酸化物を含む正極と集電体とを接合して一体化
させたものを正極体という。負極体についても同様の定
義とする。また、二次電池も電気二重層キャパシタも二
次電源の1種であるが、本明細書では、正極に活性炭と
リチウム含有遷移金属酸化物を含み、負極に活性炭を含
む特定の構成の二次電源を単に二次電源という。
[0007] In the present specification, a positive electrode body in which a positive electrode containing activated carbon and a lithium-containing transition metal oxide is joined and integrated with a current collector. The same definition applies to the negative electrode body. Further, both the secondary battery and the electric double layer capacitor are one kind of the secondary power source. In this specification, however, the secondary battery having a specific configuration in which the positive electrode contains activated carbon and a lithium-containing transition metal oxide and the negative electrode contains activated carbon is used. The power supply is simply called a secondary power supply.

【0008】正極に活性炭とリチウム含有遷移金属酸化
物とを含み、負極を活性炭を主体とする電極とし、第4
級オニウム塩を含む有機電解液を電解液とすると、充電
したときに正極では電解液中のアニオンの活性炭への吸
着とリチウム含有遷移金属酸化物からのリチウムイオン
の脱離が起こり、負極では活性炭にリチウム含有遷移金
属酸化物から脱離したリチウムイオンと電解液中のカチ
オンが吸着又は吸蔵される。なお本明細書では、吸着と
は充電時に電気二重層形成によるイオンの活性炭への吸
着をいい、イオンが電極に取り込まれると同時に電荷移
動を伴う反応を吸蔵という。また、放電時に活性炭から
イオンが離れることを脱着といい、イオンが離れると同
時に電荷移動を伴うものを脱離という。
The positive electrode contains activated carbon and a transition metal oxide containing lithium, and the negative electrode is an electrode mainly composed of activated carbon.
When an organic electrolyte containing a high-grade onium salt is used as the electrolyte, the positive electrode adsorbs anions in the electrolyte onto the activated carbon and desorbs lithium ions from the lithium-containing transition metal oxide at the positive electrode, and the activated carbon at the negative electrode. Then, lithium ions desorbed from the lithium-containing transition metal oxide and cations in the electrolyte are adsorbed or occluded. In this specification, the term “adsorption” refers to the adsorption of ions to activated carbon due to the formation of an electric double layer at the time of charging, and the term “occlusion” refers to the reaction involving charge transfer at the same time that ions are taken into the electrode. The separation of ions from the activated carbon during discharge is called desorption, and the separation of ions with charge transfer at the same time as the separation of ions is called desorption.

【0009】負極活性炭に吸着又は吸蔵されたリチウム
イオンは、放電時にすべて脱着又は脱離できずに活性炭
中にとどまる。そのため、活性炭からなる負極の開回路
電位は、リチウムイオンが吸着又は吸蔵しない場合がリ
チウム参照極に対して約3Vであるのに対し、一度リチ
ウムイオンを吸着又は吸蔵させておいて脱着又は脱離さ
せた場合では、活性炭の種類により異なるが2.5V以
下になる。
The lithium ions adsorbed or occluded by the negative electrode activated carbon cannot be desorbed or desorbed at the time of discharge, but remain in the activated carbon. Therefore, the open-circuit potential of the negative electrode made of activated carbon is about 3 V with respect to the lithium reference electrode when lithium ions are not adsorbed or occluded, but desorbed or desorbed once lithium ions are adsorbed or occluded. In this case, the voltage is 2.5 V or less, though it depends on the type of the activated carbon.

【0010】その後、再び充電すると活性炭からなる負
極では2.5V付近から第4級オニウムイオンの吸着が
起こる。すなわち、従来の活性炭を主体とする負極より
卑な電位で負極の充電が可能になり、負極の電位を卑に
することができるため、耐電圧を高めることができる。
また、二サイクル以降の充放電においては、負極活性炭
では第4級オニウムイオンの吸着及び脱着が主反応と、
充放電サイクルに伴う負極の劣化は従来の活性炭からな
る負極と同程度で良好である。
Thereafter, when the battery is charged again, the quaternary onium ion is adsorbed from about 2.5 V on the negative electrode made of activated carbon. That is, the negative electrode can be charged at a lower potential than the conventional negative electrode mainly composed of activated carbon, and the potential of the negative electrode can be made lower, so that the withstand voltage can be increased.
In addition, in charge and discharge after the second cycle, adsorption and desorption of quaternary onium ions in the negative electrode activated carbon are the main reactions,
The deterioration of the negative electrode due to the charge / discharge cycle is as good as that of the conventional negative electrode made of activated carbon.

【0011】また、本発明の二次電源では、正極にはリ
チウム含有遷移金属酸化物が含まれているため正極容量
が負極容量より大きく、充電すると正極電位は負極電位
より変化が少なく、上述したように負極電位はより卑に
なるため、電解液の分解が起こらない電圧範囲は電気二
重層キャパシタより広くなり、耐電圧を高めることがで
きる。
In the secondary power supply of the present invention, the positive electrode contains a lithium-containing transition metal oxide, so that the positive electrode capacity is larger than the negative electrode capacity, and the positive electrode potential changes less than the negative electrode potential when charged. As described above, since the negative electrode potential becomes lower, the voltage range in which the decomposition of the electrolytic solution does not occur is wider than that of the electric double layer capacitor, and the withstand voltage can be increased.

【0012】正極に含まれるリチウム含有遷移金属酸化
物としては、V、Fe、Co、Mn、Ni、W及びZn
からなる群から選ばれる1種以上の遷移金属とリチウム
との複合酸化物が好ましい。特に好ましいのは、Co、
Mn及びNiからなる群から選ばれる1種以上とリチウ
ムとの複合酸化物であり、さらにはLix Coy Ni
(1-y)2 又はLiz Mn24 (ただし、0<x<
2、0≦y≦1、0<z<2。)が好ましい。本発明で
はこのリチウム含有遷移金属酸化物が初めに負極の活性
炭の電位を下げるためのリチウムイオンの源となってお
り、またリチウム含有遷移金属酸化物の存在により充放
電における容量が増大すると考えられる。
The lithium-containing transition metal oxide contained in the positive electrode includes V, Fe, Co, Mn, Ni, W and Zn.
Preferred is a composite oxide of one or more transition metals selected from the group consisting of and lithium. Particularly preferred are Co,
A composite oxide of lithium and at least one selected from the group consisting of Mn and Ni, and Li x Co y Ni
(1-y) O 2 or Li z Mn 2 O 4 (provided that 0 <x <
2, 0 ≦ y ≦ 1, 0 <z <2. Is preferred. In the present invention, this lithium-containing transition metal oxide is initially a source of lithium ions for lowering the potential of the activated carbon of the negative electrode, and it is considered that the capacity in charge and discharge increases due to the presence of the lithium-containing transition metal oxide. .

【0013】本発明において、正極中のリチウム含有遷
移金属酸化物の量は5〜80重量%が好ましい。5重量
%未満であると、初めの充電において脱離されるリチウ
ムイオンの量が負極が吸蔵できるリチウムイオンの量に
対して充分ではなく、二次電源の電圧を高くできない。
80重量%を超えると、相対的に正極中の活性炭量が少
なくなるため、充放電サイクルにおける容量減少が大き
くなる。より好ましくは10〜60重量%である。
In the present invention, the amount of the lithium-containing transition metal oxide in the positive electrode is preferably 5 to 80% by weight. If the amount is less than 5% by weight, the amount of lithium ions desorbed in the initial charging is not sufficient with respect to the amount of lithium ions that the negative electrode can store, and the voltage of the secondary power supply cannot be increased.
If it exceeds 80% by weight, the amount of activated carbon in the positive electrode becomes relatively small, so that the capacity decrease in the charge / discharge cycle becomes large. More preferably, it is 10 to 60% by weight.

【0014】正極及び負極に含まれる活性炭は、同じで
あっても異なっていてもよく、比表面積が300〜30
00m2 /gであることが好ましい。活性炭の原料、賦
活条件は限定されないが、例えば原料としてはやしが
ら、フェノール樹脂、石油コークス等が挙げられ、賦活
方法としては水蒸気賦活法、溶融アルカリ賦活法等が挙
げられる。正極及び負極は、抵抗を低くするために、導
電材として導電性のカーボンブラック又は黒鉛を含んで
いるのも好ましく、このとき導電材は正極又は負極中に
0.1〜20重量%含まれることが好ましい。
The activated carbon contained in the positive electrode and the negative electrode may be the same or different, and have a specific surface area of 300 to 30.
It is preferably 00 m 2 / g. The raw material and activation conditions of the activated carbon are not limited. For example, the raw material includes bean, phenol resin, petroleum coke and the like, and the activation method includes a steam activation method and a molten alkali activation method. It is also preferable that the positive electrode and the negative electrode contain conductive carbon black or graphite as a conductive material in order to reduce the resistance. In this case, the conductive material is contained in the positive electrode or the negative electrode in an amount of 0.1 to 20% by weight. Is preferred.

【0015】正極体の作製方法としては、例えば活性炭
粉末とリチウム含有遷移金属酸化物粉末と導電材として
のカーボンブラックとの混合物にバインダとしてポリテ
トラフルオロエチレンを混合し、混練した後シート状に
成形して正極とし、これを集電体に導電性接着剤を用い
て固定する方法がある。また、バインダとしてポリフッ
化ビニリデン、ポリアミドイミド、ポリイミド等を溶解
したワニスに活性炭粉末とリチウム含有遷移金属酸化物
粉末と導電材としてのカーボンブラックを分散させ、こ
の液をドクターブレード法等によって集電体上に塗工
し、乾燥して得てもよい。正極中に含まれるバインダの
量は、正極体の強度と容量等の特性とのバランスから1
〜20重量%であることが好ましい。
As a method for producing a positive electrode body, for example, a mixture of activated carbon powder, lithium-containing transition metal oxide powder, and carbon black as a conductive material is mixed with polytetrafluoroethylene as a binder, kneaded, and then formed into a sheet. Then, there is a method of fixing the positive electrode to a current collector using a conductive adhesive. Activated carbon powder, lithium-containing transition metal oxide powder, and carbon black as a conductive material are dispersed in a varnish in which polyvinylidene fluoride, polyamideimide, polyimide, or the like is dissolved as a binder, and this liquid is collected by a doctor blade method or the like. It may be obtained by coating on top and drying. The amount of the binder contained in the positive electrode may be 1 depending on the balance between the strength of the positive electrode body and characteristics such as capacity.
Preferably, it is about 20% by weight.

【0016】負極体も正極体と同様にして作製でき、活
性炭粉末とリチウム含有遷移金属酸化物と導電材との混
合物のかわりに活性炭粉末と導電剤との混合物を用いれ
ばよく、またバインダの量も正極同様1〜20重量%が
好ましい。
The negative electrode body can be produced in the same manner as the positive electrode body. Instead of the mixture of the activated carbon powder, the lithium-containing transition metal oxide and the conductive material, a mixture of the activated carbon powder and the conductive agent may be used. As for the positive electrode, 1 to 20% by weight is preferable.

【0017】本発明における有機電解液は溶質として第
4級オニウム塩を含むが、そのカチオンはR123
4+ 又はR1234+ (R1 、R2 、R
3 、R4 はそれぞれ独立に炭素数1〜6のアルキル
基。)であり、アニオンはPF6 -、BF4 -、ClO4 -
N(CF3 SO22 -、CF3 SO3 -、C(SO2 CF
33 -、AsF6 -及びSbF6 -からなる群から選ばれる
1種類以上であることが好ましい。有機電解液中の第4
級オニウム塩の濃度は0.5〜2.5mol/Lである
ことが好ましく、特に1.0〜2.0mol/Lが好ま
しい。
The organic electrolyte in the present invention contains a quaternary onium salt as a solute, and its cation is R 1 R 2 R 3
R 4 N + or R 1 R 2 R 3 R 4 P + (R 1 , R 2 , R
3 and R 4 are each independently an alkyl group having 1 to 6 carbon atoms. ) And the anions are PF 6 , BF 4 , ClO 4 ,
N (CF 3 SO 2 ) 2 , CF 3 SO 3 , C (SO 2 CF
3) 3 -, AsF 6 - is preferably one or more selected from the group consisting of - and SbF 6. 4th in organic electrolyte
The concentration of the onium salt is preferably 0.5 to 2.5 mol / L, particularly preferably 1.0 to 2.0 mol / L.

【0018】また、電解液中にはリチウム塩が含まれる
ことが好ましい。リチウム塩のアニオンとしてはP
6 -、BF4 -、ClO4 -、N(CF3 SO22 -、CF
3 SO3 -、C(SO2 CF33 -、AsF6 -及びSbF
6 -からなる群から選ばれる1種類以上が好ましい。電解
液中にリチウム塩が含まれることにより、負極の活性炭
の電位を卑にするためのリチウムイオンの源である正極
のリチウム含有遷移金属酸化物の量を少なくすることが
できる。電解液中のリチウム塩の濃度としては、0.1
〜1.5mol/L、特に0.5〜1.3mol/Lが
好ましい。
Preferably, the electrolyte contains a lithium salt. The anion of the lithium salt is P
F 6 , BF 4 , ClO 4 , N (CF 3 SO 2 ) 2 , CF
3 SO 3 -, C (SO 2 CF 3) 3 -, AsF 6 - and SbF
6 - 1 or more is preferably selected from the group consisting of. When the lithium salt is contained in the electrolytic solution, the amount of the lithium-containing transition metal oxide of the positive electrode, which is a source of lithium ions for lowering the potential of the activated carbon of the negative electrode, can be reduced. The concentration of the lithium salt in the electrolyte is 0.1
To 1.5 mol / L, particularly preferably 0.5 to 1.3 mol / L.

【0019】電解液の溶媒はエチレンカーボネート、プ
ロピレンカーボネート、ブチレンカーボネート、ジメチ
ルカーボネート、エチルメチルカーボネート、ジエチル
カーボネート、スルホラン及びジメトキシエタンからな
る群から選ばれる1種以上が好ましい。
The solvent of the electrolytic solution is preferably at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane and dimethoxyethane.

【0020】[0020]

【実施例】次に、実施例(例1〜6)及び比較例(例
7)により本発明をさらに具体的に説明するが、本発明
はこれらにより限定されない。なお、例1〜7における
セルの作製及び測定はすべて露点が−60℃以下のアル
ゴングローブボックス中で行った。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples (Examples 1 to 6) and Comparative Examples (Example 7), but the present invention is not limited thereto. The production and measurement of the cells in Examples 1 to 7 were all performed in an argon glove box having a dew point of −60 ° C. or less.

【0021】[例1]フェノール樹脂を原料として水蒸
気賦活法によって得られた比表面積2000m2 /gの
活性炭を40重量%、LiCoO2 を40重量%、導電
性カーボンブラックを10重量%、及びバインダとして
ポリテトラフルオロエチレンを10重量%からなる混合
物をエタノールを加えて混練し、圧延した後、200℃
で2時間真空乾燥して電極シートを得た。このシートを
ポリアミドイミドをバインダとする導電性接着剤を用い
てアルミニウム箔に接合し、減圧下で300℃で2時間
熱処理し、正極体とした。電極面積は24cm2 、電極
シートの厚さは150μmであった。
Example 1 40% by weight of activated carbon having a specific surface area of 2000 m 2 / g, 40% by weight of LiCoO 2 , 10% by weight of conductive carbon black, and a binder obtained by a steam activation method using a phenol resin as a raw material A mixture comprising 10% by weight of polytetrafluoroethylene was kneaded with ethanol, rolled, and then heated to 200 ° C.
For 2 hours to obtain an electrode sheet. This sheet was bonded to an aluminum foil using a conductive adhesive having polyamideimide as a binder, and heat-treated at 300 ° C. for 2 hours under reduced pressure to obtain a positive electrode body. The electrode area was 24 cm 2 , and the thickness of the electrode sheet was 150 μm.

【0022】フェノール樹脂を原料として水蒸気賦活法
によって得られた比表面積2000m2 /gの活性炭を
50重量%、導電性カーボンブラックを10重量%、及
びバインダとしてポリテトラフルオロエチレンを10重
量%からなる混合物をエタノールを加えて混練し、正極
と同様の方法で電極シートを作製した。このシートを正
極同様、ポリアミドイミドをバインダとする導電性接着
剤を用いてアルミニウム箔に接合し、減圧下で300℃
で2時間熱処理し、負極体とした。電極面積は24cm
2 、電極シートの厚さは150μmであった。
50% by weight of activated carbon having a specific surface area of 2000 m 2 / g obtained by a steam activation method using a phenol resin as a raw material, 10% by weight of conductive carbon black, and 10% by weight of polytetrafluoroethylene as a binder. The mixture was kneaded with ethanol, and an electrode sheet was prepared in the same manner as in the positive electrode. This sheet was bonded to an aluminum foil using a conductive adhesive having polyamideimide as a binder in the same manner as the positive electrode.
For 2 hours to obtain a negative electrode body. Electrode area is 24cm
2. The thickness of the electrode sheet was 150 μm.

【0023】上記正極体と上記負極体とを、ポリプロピ
レン製不織布セパレータを介して電極面を対向させて2
4cm2 角の素子を作製した。プロピレンカーボネート
に1mol/Lの(C253 (CH3 )NBF4
1mol/LのLiBF4 を溶解した溶液を電解液と
し、該電解液に前記素子を充分に含浸させ、二次電源を
得た。この二次電源を初めに3.5Vで24時間充電
し、その後1Vまで放電した。次いで3.5Vから1V
までの範囲で初期容量を測定した。その後、充放電電流
240mAにて3.5Vから1Vまでの範囲で充放電サ
イクルを行い、1000サイクル後の容量を測定し、容
量変化率を算出した。結果を表1に示す。
The above-mentioned positive electrode body and the above-mentioned negative electrode body are placed with their electrode surfaces facing each other via a polypropylene non-woven fabric separator.
A 4 cm 2 element was fabricated. A solution obtained by dissolving 1 mol / L of (C 2 H 5 ) 3 (CH 3 ) NBF 4 and 1 mol / L of LiBF 4 in propylene carbonate was used as an electrolytic solution, and the element was sufficiently impregnated with the electrolytic solution. Got power. This secondary power supply was initially charged at 3.5V for 24 hours and then discharged to 1V. Then 3.5V to 1V
The initial capacity was measured in the range up to. Thereafter, a charge / discharge cycle was performed at a charge / discharge current of 240 mA in a range from 3.5 V to 1 V, the capacity after 1000 cycles was measured, and the capacity change rate was calculated. Table 1 shows the results.

【0024】[例2]LiCoO2 のかわりにLiMn
24 を用いた以外は例1と同様にして正極体を得た。
この正極体を用いた以外は例1と同様にして二次電源を
得た。この二次電源を用いて例1と同様にして評価を行
った。結果を表1に示す。
[Example 2] LiMn instead of LiCoO 2
A positive electrode body was obtained in the same manner as in Example 1 except that 2 O 4 was used.
A secondary power supply was obtained in the same manner as in Example 1 except that this positive electrode body was used. Evaluation was performed in the same manner as in Example 1 using this secondary power supply. Table 1 shows the results.

【0025】[例3]LiCoO2 のかわりにLiNi
2 を用いた以外は例1と同様にして正極体を得た。こ
の正極体を用いた以外は例1と同様にして二次電源を得
た。この二次電源を用いて例1と同様にして評価を行っ
た。結果を表1に示す。
Example 3 LiNi is used instead of LiCoO 2
A positive electrode body was obtained in the same manner as in Example 1 except that O 2 was used. A secondary power supply was obtained in the same manner as in Example 1 except that this positive electrode body was used. Evaluation was performed in the same manner as in Example 1 using this secondary power supply. Table 1 shows the results.

【0026】[例4]LiCoO2 のかわりにLiCo
0.2 Ni0.82 を用いた以外は例1と同様にして正極
体を得た。この正極体を用いた以外は例1と同様にして
二次電源を得た。この二次電源を用いて例1と同様にし
て評価を行った。結果を表1に示す。
Example 4 LiCoO 2 is replaced with LiCo
A positive electrode body was obtained in the same manner as in Example 1 except that 0.2 Ni 0.8 O 2 was used. A secondary power supply was obtained in the same manner as in Example 1 except that this positive electrode body was used. Evaluation was performed in the same manner as in Example 1 using this secondary power supply. Table 1 shows the results.

【0027】[例5]フェノール樹脂を原料として水蒸
気賦活法によって得られた活性炭のかわりに石油コーク
スを原料として溶融KOH賦活法によって得られた比表
面積500m2 /gの活性炭を正極と負極に用いた以外
は例1と同様にして正極体と負極体を得た。この正極体
と負極体を用いた以外は例1と同様にして二次電源を得
た。この二次電源を用いて例1と同様にして評価を行っ
た。結果を表1に示す。
[Example 5] Instead of activated carbon obtained by a steam activation method using a phenol resin as a raw material, activated carbon having a specific surface area of 500 m 2 / g obtained by a molten KOH activation method using petroleum coke as a raw material was used for the positive electrode and the negative electrode. A positive electrode body and a negative electrode body were obtained in the same manner as in Example 1 except for the difference. A secondary power supply was obtained in the same manner as in Example 1 except that the positive electrode body and the negative electrode body were used. Evaluation was performed in the same manner as in Example 1 using this secondary power supply. Table 1 shows the results.

【0028】[例6]フェノール樹脂を原料として水蒸
気賦活法によって得られた活性炭のかわりにやしがらを
原料として水蒸気賦活法によって得られた比表面積17
00m2 /gの活性炭を正極と負極に用いた以外は例1
と同様にして正極体及び負極体を得た。この正極体と負
極体を用いた以外は例1と同様にして二次電源を得た。
この二次電源を用いて例1と同様にして評価を行った。
結果を表1に示す。
[Example 6] Instead of activated carbon obtained by a steam activation method using a phenolic resin as a raw material, specific surface area 17 obtained by a steam activation method using a palm as a raw material.
Example 1 except that 00 m 2 / g activated carbon was used for the positive and negative electrodes
In the same manner as in the above, a positive electrode body and a negative electrode body were obtained. A secondary power supply was obtained in the same manner as in Example 1 except that the positive electrode body and the negative electrode body were used.
Evaluation was performed in the same manner as in Example 1 using this secondary power supply.
Table 1 shows the results.

【0029】[例7]正極にLiCoO2 を加えず、混
合物中の活性炭の含有量を80重量%とした以外は例1
と同様にして正極体を得た。この正極体を用いた以外は
例1と同様にして二次電源を得た。この二次電源を用い
て例1と同様にして評価を行った。結果を表1に示す。
Example 7 Example 1 except that LiCoO 2 was not added to the positive electrode and the content of activated carbon in the mixture was 80% by weight.
In the same manner as in the above, a positive electrode body was obtained. A secondary power supply was obtained in the same manner as in Example 1 except that this positive electrode body was used. Evaluation was performed in the same manner as in Example 1 using this secondary power supply. Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明の二次電源は、耐電圧が高く容量
が大きい。本発明の二次電源において初めに充電、放電
を行うと、負極活性炭にリチウムイオンが残り、負極の
開回路電位を卑にすることができる。したがって従来の
正極負極ともに活性炭からなる電気二重層キャパシタに
比べ充電時に負極をより広い範囲で使用できるので、耐
電圧を向上させることができる。
The secondary power supply of the present invention has a high withstand voltage and a large capacity. When charging and discharging are first performed in the secondary power supply of the present invention, lithium ions remain in the negative electrode activated carbon, and the open circuit potential of the negative electrode can be made low. Therefore, both the conventional positive electrode and the negative electrode can use the negative electrode in a wider range at the time of charging than the electric double layer capacitor made of activated carbon, so that the withstand voltage can be improved.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ00 AJ03 AJ05 AK03 AK08 AL08 AM02 AM03 AM07 BJ04 HJ01 HJ02 HJ07 HJ10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ00 AJ03 AJ05 AK03 AK08 AL08 AM02 AM03 AM07 BJ04 HJ01 HJ02 HJ07 HJ10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】活性炭とリチウム含有遷移金属酸化物とを
含む正極と、活性炭を含む負極と、第4級オニウム塩を
含む有機電解液と、を有することを特徴とする二次電
源。
1. A secondary power supply comprising: a positive electrode containing activated carbon and a lithium-containing transition metal oxide; a negative electrode containing activated carbon; and an organic electrolyte containing a quaternary onium salt.
【請求項2】リチウム含有遷移金属酸化物が、V、F
e、Co、Mn、Ni、W及びZnからなる群から選ば
れる1種以上とリチウムとの複合酸化物である請求項1
に記載の二次電源。
2. The method according to claim 1, wherein the lithium-containing transition metal oxide is V, F
2. A composite oxide of at least one selected from the group consisting of e, Co, Mn, Ni, W and Zn with lithium.
The secondary power supply according to the above.
【請求項3】リチウム含有遷移金属酸化物が、Lix
y Ni1-y2 又はLiz Mn24 (ただし、0<
x<2、0≦y≦1、0<z<2。)である請求項1に
記載の二次電源。
3. The method according to claim 1, wherein the lithium-containing transition metal oxide is Li x C
o y Ni 1-y O 2 or Li z Mn 2 O 4 (where 0 <
x <2, 0 ≦ y ≦ 1, 0 <z <2. 2. The secondary power supply according to claim 1, wherein
【請求項4】リチウム含有遷移金属酸化物が正極中に5
〜80重量%含まれる請求項1、2、又は3に記載の二
次電源。
4. A lithium-containing transition metal oxide containing 5
The secondary power source according to claim 1, wherein the secondary power source is contained in an amount of about 80% by weight.
【請求項5】有機電解液がリチウム塩を含む請求項1、
2、3又は4に記載の二次電源。
5. The method according to claim 1, wherein the organic electrolyte contains a lithium salt.
The secondary power supply according to 2, 3, or 4.
【請求項6】有機電解液中にリチウム塩が0.1〜1.
5mol/L、第4級オニウム塩が0.5〜2.5mo
l/L含まれる請求項5に記載の二次電源。
6. The organic electrolyte according to claim 1, wherein the lithium salt is 0.1-1.
5 mol / L, quaternary onium salt is 0.5 to 2.5 mo
The secondary power supply according to claim 5, wherein 1 / L is included.
JP10311140A 1998-10-30 1998-10-30 Secondary power supply Pending JP2000138074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311140A JP2000138074A (en) 1998-10-30 1998-10-30 Secondary power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311140A JP2000138074A (en) 1998-10-30 1998-10-30 Secondary power supply

Publications (1)

Publication Number Publication Date
JP2000138074A true JP2000138074A (en) 2000-05-16

Family

ID=18013610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311140A Pending JP2000138074A (en) 1998-10-30 1998-10-30 Secondary power supply

Country Status (1)

Country Link
JP (1) JP2000138074A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
WO2002041420A1 (en) * 2000-11-17 2002-05-23 Kansai Research Institute, Inc. Nonaqueous lithium secondary cell
US6558846B1 (en) * 1998-03-17 2003-05-06 Asahi Glass Company Ltd. Secondary power source
KR20030047644A (en) * 2001-12-07 2003-06-18 주식회사 네스캡 Electric Energy Storage System
JP2006128049A (en) * 2004-11-01 2006-05-18 Toshiba Corp Electronic component for storage of electricity
JP2006331933A (en) * 2005-05-27 2006-12-07 Toyota Motor Corp Lithium secondary battery and its manufacturing method
JP2007266064A (en) * 2006-03-27 2007-10-11 Honda Motor Co Ltd Electric double layer capacitor
KR101222136B1 (en) 2011-06-01 2013-01-15 한국에너지기술연구원 Additive material for electrode for capacitor, Method for preparing electrode for capacitor and capacitor having the electrode
JP2014517507A (en) * 2011-04-29 2014-07-17 シェンジェン ハイフューチャー エレクトリック カンパニー リミテッド Polyimide capacitor battery and manufacturing method thereof
JP2015225876A (en) * 2014-05-26 2015-12-14 旭化成株式会社 Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558846B1 (en) * 1998-03-17 2003-05-06 Asahi Glass Company Ltd. Secondary power source
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
WO2002041420A1 (en) * 2000-11-17 2002-05-23 Kansai Research Institute, Inc. Nonaqueous lithium secondary cell
KR100807702B1 (en) * 2000-11-17 2008-03-03 가부시끼가이샤 케이알아이 Nonaqueous lithium secondary cell
US7838150B2 (en) 2000-11-17 2010-11-23 Kri, Inc. Nonaqueous lithium secondary battery with carbon electrodes
KR20030047644A (en) * 2001-12-07 2003-06-18 주식회사 네스캡 Electric Energy Storage System
JP2006128049A (en) * 2004-11-01 2006-05-18 Toshiba Corp Electronic component for storage of electricity
JP2006331933A (en) * 2005-05-27 2006-12-07 Toyota Motor Corp Lithium secondary battery and its manufacturing method
JP2007266064A (en) * 2006-03-27 2007-10-11 Honda Motor Co Ltd Electric double layer capacitor
JP2014517507A (en) * 2011-04-29 2014-07-17 シェンジェン ハイフューチャー エレクトリック カンパニー リミテッド Polyimide capacitor battery and manufacturing method thereof
KR101222136B1 (en) 2011-06-01 2013-01-15 한국에너지기술연구원 Additive material for electrode for capacitor, Method for preparing electrode for capacitor and capacitor having the electrode
JP2015225876A (en) * 2014-05-26 2015-12-14 旭化成株式会社 Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof

Similar Documents

Publication Publication Date Title
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
JP6713554B2 (en) Electrode slurry, battery electrode plate, and method for manufacturing the same
JPWO2006118120A1 (en) Negative electrode active material for electricity storage devices
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
JP6848330B2 (en) Non-aqueous electrolyte power storage element
JP4096438B2 (en) Secondary power supply
CN109841425B (en) Capacitor battery and preparation method thereof
JP5892490B2 (en) Sulfur-based secondary battery
JP6459795B2 (en) Sodium ion secondary battery
WO2014170979A1 (en) Negative electrode active material for sodium secondary battery using molten salt electrolyte solution, negative electrode, and sodium secondary battery using molten salt electrolyte solution
JP6189233B2 (en) Sodium molten salt battery and method of using the same
JP6047086B2 (en) Sodium secondary battery
JP2000138074A (en) Secondary power supply
JP2000228222A (en) Secondary power supply
CN107369565B (en) Magnesium ion hybrid supercapacitor and preparation method thereof
JP2019186266A (en) Electricity storage device
CN102945755A (en) Super capacitor and manufacture method thereof
JP2001345122A (en) Secondary power source and method of manufacturing secondary power source
JP7062188B2 (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery containing it
JP2008283161A (en) Electrochemical capacitor and electrolyte therefor
CN102938322A (en) Super-capacitance battery and preparation method thereof
CN102938328A (en) Electrochemical capacitor and preparation method thereof
JP2016201268A (en) Positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
JP4099970B2 (en) Secondary power supply
JP4284934B2 (en) Secondary power supply