JPH01274360A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH01274360A
JPH01274360A JP63102363A JP10236388A JPH01274360A JP H01274360 A JPH01274360 A JP H01274360A JP 63102363 A JP63102363 A JP 63102363A JP 10236388 A JP10236388 A JP 10236388A JP H01274360 A JPH01274360 A JP H01274360A
Authority
JP
Japan
Prior art keywords
less
negative electrode
positive electrode
electrode body
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63102363A
Other languages
Japanese (ja)
Inventor
Mitsutaka Miyabayashi
宮林 光孝
Toshibumi Nishii
俊文 西井
Hiroshi Yui
浩 由井
Kuniaki Inada
稲田 圀昭
Katsuharu Ikeda
克治 池田
Hiroyoshi Nose
博義 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Mitsubishi Petrochemical Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63102363A priority Critical patent/JPH01274360A/en
Publication of JPH01274360A publication Critical patent/JPH01274360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain high capacity and enable large current discharge by providing active material made of alkali metal such as lithium and a support made of carbon material, and setting the atomic ratio of hydrogen to carbon less than a predetermined value and a spacing at a predetermined face obtained by an X-ray wide angle diffraction method and the size of crystallite in a C-axis direction within a specific range, respectively. CONSTITUTION:A positive electrode 2 is housed in a positive electrode can 1 serving as a positive electrode terminal in such a way as to be seated on the bottom of the can 1. A negative electrode 4 is arranged oppositely to the positive electrode 2 through a separator 3. The separator 3 for holding an electrolyte is formed with non woven fabrice made of polyolefine resin having an excellent liquid retaining property. Active material is made of lithium or alkali metal including mainly lithium. A support is made of carbon material and expanded graphite, wherein the atomic ratio of hydrogen to carbon is less than 0.10. A spacing at a (002) face obtained by an X-ray wide angle diffraction method is 3.37Angstrom or more and 3.75Angstrom or less, and crystallite in a C-axis direction is 5Angstrom or more and 150Angstrom or less in size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は二次電池に関し、更に詳しくは、エネルギー密
度が高(、充放電サイクル寿命が長(、信頼性が高い二
次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a secondary battery, and more particularly, to a secondary battery with high energy density (high energy density, long charge/discharge cycle life), and high reliability.

(従来の技術) 近年、電子機器の発達とともに、小型で軽量、かつエネ
ルギー密度が高く、繰り返し充放電可能な二次電池の開
発に対する要望が強まってきた。
(Prior Art) In recent years, with the development of electronic devices, there has been an increasing demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged.

そのような電池を開発するために、ポリアセチレンなど
の導電性高分子を正極北よび/または負極に用いた電池
、これらの導電性高分子を正極に、Li金属を負極に用
いた電池等が研究されてきた。
In order to develop such batteries, research has been carried out on batteries that use conductive polymers such as polyacetylene as the positive and/or negative electrodes, and batteries that use these conductive polymers as the positive electrode and Li metal as the negative electrode. It has been.

また、正極体の主要成分がT i S t 、 Mo 
Stのような遷移金属のカルコゲン化合物であり、負極
体がLiまたはLiを主体とするアルカリ金属である二
次電池は、高エネルギー密度を有するので商品化の努力
が払われている。
In addition, the main components of the positive electrode body are T i S t , Mo
Efforts are being made to commercialize a secondary battery that is a chalcogen compound of a transition metal such as St, and whose negative electrode body is Li or an alkali metal mainly composed of Li, because it has a high energy density.

(発明が解決しようとする課題) しかしながら、導電性高分子を正極に使用した二次電池
の場合には電極容量が不十分となり、負極に使用した場
合には電池の自己放電が大きく、貯蔵後特性が不安定に
なるという不都合を生じている。
(Problem to be solved by the invention) However, in the case of a secondary battery that uses a conductive polymer as a positive electrode, the electrode capacity is insufficient, and when it is used as a negative electrode, the battery self-discharge is large, and after storage, This causes the inconvenience that the characteristics become unstable.

一方、Liを負極に用いた二次電池においては、負極体
がLi箔またはLiを主体とするアルカリ金属の箔その
ものであることに基づく問題が生じている。
On the other hand, in a secondary battery using Li as a negative electrode, a problem arises because the negative electrode body is a Li foil or an alkali metal foil mainly composed of Li.

すなわち、電池の放電時には負極体からLiがLiイオ
ンとなって電解液中に移動し、充電時にはこのLiイオ
ンが金属Liとなって再び負極体に電析するが、この充
放電サイクルを反復させるとそれに伴って電析する金属
Liはデンドライト状となることである。このデンドラ
イト状Liは極めて活性な物質であるため、電解液を分
解せしめ、その結果、電池の充放電サイクル特性が劣化
するという不都合が生ずる。さらにこれが成長していく
と、最後には、このデンドライト状の金属Li電析物が
セパレータを貫通して正極体に達し、短絡現象を起すと
いう問題を生ずる。別言すれば、充放電サイクル寿命が
短いという問題が生ずるのである。
That is, when the battery is discharged, Li from the negative electrode body becomes Li ions and moves into the electrolyte solution, and during charging, these Li ions become metal Li and are deposited on the negative electrode body again, but this charge-discharge cycle is repeated. As a result, the metal Li deposited becomes dendrite-like. Since this dendrite-like Li is an extremely active substance, it decomposes the electrolyte, resulting in the disadvantage that the charge/discharge cycle characteristics of the battery deteriorate. If this continues to grow, the dendrite-like metal Li deposits will eventually penetrate the separator and reach the positive electrode body, causing a short circuit phenomenon. In other words, the problem arises that the charge/discharge cycle life is short.

そこで、電池の内部インピーダンスを低下させる目的で
、黒鉛、カーボンブラック等の粉末を導電剤として負極
体に加える試みがなされたが、電解液の分解が促進され
て電池の安定性が損なわれるという問題が生じてきた。
Therefore, attempts have been made to add powders such as graphite or carbon black to the negative electrode body as a conductive agent in order to lower the internal impedance of the battery, but the problem is that the decomposition of the electrolyte is accelerated and the stability of the battery is impaired. has arisen.

このような問題を回避するために、負極体として有機化
合物を焼成した炭素質材料を担持体とし、これにLiま
たはLiを主体とするアルカリ金属を担持せしめて構成
することが試みられている。 このような負極体を用い
ることにより、Liデンドライトの析出は防止されるよ
うになったが、しかし一方では、この負極体を組込んだ
電池は同サイズの一次電池に比べてその放電容量がはる
かに小さく、また、自己放電の大きさについても必ずし
も満足する程に低減されていなかった。
In order to avoid such problems, attempts have been made to construct the negative electrode by using a carbonaceous material obtained by firing an organic compound as a carrier and supporting Li or an alkali metal mainly composed of Li. By using such a negative electrode body, the precipitation of Li dendrites has been prevented, but on the other hand, a battery incorporating this negative electrode body has a much higher discharge capacity than a primary battery of the same size. Furthermore, the magnitude of self-discharge was not necessarily reduced to a satisfactory level.

本発明は、かかる状況の下に、よりエネルギー密度が高
く、充放電サイクル寿命が長く、また、消費電流の増大
に対応しつる高容量の二次電池の提供を目的とするもの
である。
Under such circumstances, it is an object of the present invention to provide a high-capacity secondary battery that has higher energy density, longer charge/discharge cycle life, and can cope with increased current consumption.

[発明の構成] (課題を解決するための手段) 本発明者らは上記問題を解決すべく、負極体に関して鋭
意研究を重ねた結果、負極体を後述する炭素質材料と膨
張黒鉛からなる担持体に活物質を担持せしめて構成する
と、上述の目的達成のだめに有効であるとの事実を見出
し9、本発明に到達した。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above-mentioned problems, the present inventors have conducted intensive research on negative electrode bodies, and as a result, the negative electrode body has been developed as a support made of a carbonaceous material and expanded graphite, which will be described later. The present invention was achieved based on the discovery that a structure in which the active material is supported on the body is effective in achieving the above-mentioned objectives9.

すなわち、本発明の二次電池は、活物質と該活物質を担
持する担持体とから成る負極体を具備しており、 (1)該活物質が、リチウムまたはリチウムを主体とす
るアルカリ金属であり、 (2)該担持体が、 (イ)水素/炭素の原子比が0.10未満:かつ。
That is, the secondary battery of the present invention includes a negative electrode body consisting of an active material and a carrier supporting the active material, and (1) the active material is lithium or an alkali metal mainly composed of lithium. (2) The support has (a) a hydrogen/carbon atomic ratio of less than 0.10: and.

(ロ)X線広角回折法による(002)面の面間隔(d
o。2)が3.37Å以上 3.75八以下:およびC軸方向の結 晶子の大きさ(Lc)が5Å以上 150Å以下: である炭素質材料および膨張黒鉛よりなることを特徴と
する。
(b) Interplanar spacing (d) of (002) plane by X-ray wide-angle diffraction method
o. 2) is 3.37 Å or more and 3.75 Å or less: and the crystallite size (Lc) in the C-axis direction is 5 Å or more and 150 Å or less: and expanded graphite.

本発明の電池は、負極体が上記した構成をとるところに
特徴があり、他の要素は従来の二次電池と同じであって
もよい。
The battery of the present invention is characterized in that the negative electrode body has the above-described configuration, and other elements may be the same as conventional secondary batteries.

本発明にかかる負極体において、活物質はLiまたはL
iを主体とするアルカリ金属であるが、この活物質は、
電池の充放電に対応して負極体を出入する。
In the negative electrode body according to the present invention, the active material is Li or L.
Although it is an alkali metal mainly composed of i, this active material is
The negative electrode body moves in and out in response to charging and discharging the battery.

本発明における負極体を構成する活物質の担持体は、後
述する特性を有する炭素質材料と膨張黒鉛との混合物よ
りなる6 担持体に用いられる炭素質材料は、 (イ)水素/炭素の原子比(H/C)が0.10未満:
かつ、 (ロ)X線広角回折法による(002)面の面間隔(d
、。2)が3.37Å以上3.75Å以下:およびC軸
方向の結晶子の太きさ(Lc)が5Å以上150A以下
: の特性を有し、これらのパラメータで特定された炭素質
材料である。
The carrier for the active material constituting the negative electrode body in the present invention is made of a mixture of a carbonaceous material and expanded graphite having the characteristics described below.6 The carbonaceous material used for the carrier is (a) Hydrogen/carbon atoms Ratio (H/C) is less than 0.10:
and (b) the spacing (d) of the (002) plane by X-ray wide-angle diffraction method
,. 2) is 3.37 Å or more and 3.75 Å or less: and the crystallite thickness (Lc) in the C-axis direction is 5 Å or more and 150 A or less: It is a carbonaceous material specified by these parameters. .

パラメータ(イ)については、H/Cは好ましくは0.
07未満、さらに好ましくは0.05未満である。
Regarding parameter (a), H/C is preferably 0.
It is less than 0.07, more preferably less than 0.05.

この炭素質材料には、他の原子、例えば窒素、酸素、ハ
ロゲン等の原子が含有されていてもよいが、(水素、炭
素以外の原子)/(炭素原子)の原子比が好ましくは0
.10未満、さらに好ましくは0.07未満、特に好ま
しくは0.05未満である。
This carbonaceous material may contain other atoms such as nitrogen, oxygen, halogen, etc., but the atomic ratio of (atoms other than hydrogen and carbon)/(carbon atoms) is preferably 0.
.. It is less than 10, more preferably less than 0.07, particularly preferably less than 0.05.

また、パラメータ(ロ)については、(0021面の面
間隔(d、。2)は好ましくは3.39Å以上3.70
Å以下、さらに好ましくは3.41Å以上3.68Å以
下であり:C軸方向の結晶子の大きさLcは好ましくは
10Å以上80Å以下、さらに好ましくは12Å以上7
0Å以下特に好ましくは15Å以上60Å以下である。
Regarding the parameter (b), (the interplanar spacing (d, .2) of the 0021 plane is preferably 3.39 Å or more and 3.70 Å or more.
Å or less, more preferably 3.41 Å or more and 3.68 Å or less: the crystallite size Lc in the C-axis direction is preferably 10 Å or more and 80 Å or less, and more preferably 12 Å or more and 7
The thickness is 0 Å or less, particularly preferably 15 Å or more and 60 Å or less.

これらのバラメーク、すなわちH/C,d、。1および
Lcのいずれかが上記範囲から逸脱している場合は、負
極体における充放電時の過電圧が太き(なり、その結果
、負極体からガスが発生して電池の安全性が著しく損わ
れるばかりでなく充放電サイクル特性も低下する。
These variations, namely H/C,d,. If either 1 or Lc deviates from the above range, the overvoltage at the negative electrode body during charging and discharging becomes large (as a result, gas is generated from the negative electrode body, significantly impairing the safety of the battery. Not only that, but the charge/discharge cycle characteristics also deteriorate.

さらに、本発明にかかる負極体の担持体に用いる炭素質
材料にあっては1次に述べる特性を有することが好まし
い。
Further, it is preferable that the carbonaceous material used for the carrier of the negative electrode body according to the present invention has the characteristics described in the first section.

すなわち、波長5145人のアルゴンイオンレーザ光を
用いたラマンスペクトル分析において、下記式: で定義されるG値が2,5未満であることが好ましく、
さらに好ましくは0.1〜1.5であり、特に好ましく
は0.2〜1.2である。
That is, in Raman spectrum analysis using argon ion laser light with a wavelength of 5145, the G value defined by the following formula is preferably less than 2.5,
More preferably, it is 0.1 to 1.5, particularly preferably 0.2 to 1.2.

ここで、G値とは、上述の炭素質材料に対し波長514
5人のアルゴンイオンレーザ光を用いてラマンスペクト
ル分析を行なった際にチャートに記録されているスペク
トル強度曲線において、波数1580±100cm−’
の範囲内のスペクトル強度の積分値(面積強度)を波数
1360±100c+m−’の範囲内の面積強度で除し
た値を指し、その炭素質材料の黒鉛化度の尺度に相当す
るものである。
Here, the G value refers to the wavelength 514 for the carbonaceous material mentioned above.
In the spectral intensity curve recorded on the chart when five people performed Raman spectrum analysis using argon ion laser light, the wave number was 1580 ± 100 cm-'
It refers to the value obtained by dividing the integral value of the spectral intensity (area intensity) within the range of 1360±100c+m-' by the area intensity within the wavenumber range of 1360±100c+m-', and corresponds to a measure of the degree of graphitization of the carbonaceous material.

すなわち、この炭素質材料は結晶質部分と非結晶部分を
有していて、G値はこの炭素質組織における結晶質部分
の割合を示すパラメータであるといえる。
That is, this carbonaceous material has a crystalline portion and an amorphous portion, and the G value can be said to be a parameter indicating the ratio of the crystalline portion in this carbonaceous structure.

さらに、本発明にかかる負極体の担持体に用いる炭素質
材料にあっては次の条件を満足していることが望ましい
Furthermore, it is desirable that the carbonaceous material used for the carrier of the negative electrode body according to the present invention satisfies the following conditions.

すなわち、X線広角回折分析における(1101面の面
間隔(d++olの2倍の距離a o (= 2 d 
r lo)が、好ましくは2.38人〜2.47人、さ
らに好ましくは2.39人〜2.46人特に好ましくは
2,40〜2,45であり:a軸方向の結晶子の大きさ
Laが好ましくは10〜150人、さらに好ましくは1
5人〜100人、特に好ましくは19人〜70人である
That is, in X-ray wide-angle diffraction analysis, the distance a o (= 2 d
r lo) is preferably 2.38 to 2.47, more preferably 2.39 to 2.46, particularly preferably 2,40 to 2,45: the crystallite size in the a-axis direction La is preferably 10 to 150 people, more preferably 1
The number is 5 to 100 people, particularly preferably 19 to 70 people.

また、この炭素質材料について電子スピン共鳴スペクト
ル分析を行なったときに、−次微分吸収曲線のシグナル
の線幅(ΔHpp)がlOガウス以上であるか、10ガ
ウス未満のシグナルを有しないことが好ましい。
Further, when electron spin resonance spectroscopy is performed on this carbonaceous material, it is preferable that the line width (ΔHpp) of the signal of the −th order differential absorption curve is 10 Gauss or more or does not have a signal of less than 10 Gauss. .

さらに、上述した本発明にかかる負極体の担持体を構成
する炭素質材料は種々の形状をとりうるが、粒径100
μm以下の粒子であることが好まは4ゴ/g以上である
Further, the carbonaceous material constituting the carrier of the negative electrode body according to the present invention described above can take various shapes, but may have a particle size of 100
The particle size is preferably 4 μm or less, preferably 4 g/g or more.

上述の炭素質材料は、有機化合物を通常不活性ガス流下
に、300〜3000℃の温度で加熱・分解し、炭素化
させ、所望により粉砕して得ることができる。
The above-mentioned carbonaceous material can be obtained by heating and decomposing an organic compound at a temperature of 300 to 3000[deg.] C. under a flow of an inert gas, carbonizing it, and pulverizing it if desired.

出発源となる有機化合物としては、具体的には、例えば
セルロース樹脂:フェノール樹脂:ポリアクリロニトリ
ル、ポリ(α−ハロゲン化アクリロニトリル)などのア
クリル樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポ
リ塩素化塩化ビニルなどのハロゲン化ビニル樹脂;ポリ
アミドイミド樹脂:ボリアミド樹脂:ポリアセチレン、
ポリ(p−フェニレン)などの共役系樹脂のような任意
の有機高分子化合物:例えば、ナフタレン。
Examples of starting organic compounds include cellulose resins, phenolic resins, acrylic resins such as polyacrylonitrile and poly(α-halogenated acrylonitrile); polyvinyl chloride, polyvinylidene chloride, and polychlorinated vinyl chloride. Halogenated vinyl resins such as; polyamideimide resins: polyamide resins: polyacetylene,
Any organic polymer compound such as a conjugated resin such as poly(p-phenylene): for example, naphthalene.

フェナントレン、アントラセン、トリフェニレン、ピレ
ン、クリセン、ナフタセン、とセン、ペリレン、ペンタ
フェン、ペンタセンのような3員環以上の単環炭化水素
化合物が互いに2個以上縮合してなる縮合環式炭化水素
化合物、または、上記化合物のカルボン酸、カルボン酸
無水物、カルボン酸イミドのような誘導体、上記各化合
物の混合物を主成分とする各種のピッチ二個^ば、イン
ドール、イソインドール、キノリン、イソキノリン、キ
ノキサリン、フタラジン、カルバゾール。
A fused cyclic hydrocarbon compound formed by condensing two or more monocyclic hydrocarbon compounds with three or more members, such as phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, tocene, perylene, pentaphene, and pentacene, or , derivatives of the above compounds such as carboxylic acids, carboxylic acid anhydrides, carboxylic acid imides, various pitches based on mixtures of the above compounds, indole, isoindole, quinoline, isoquinoline, quinoxaline, phthalazine. , carbazole.

アクリジン、フェナジン、ツェナトリジンのような3員
環以上の複素単環化合物が互いに少な(とも2個以上結
合するか、または1個以上の3員環以上の単環炭化水素
化合物と結合してなる縮合複素環化合物、上記各化合物
のカルボン酸、カルボン酸無水物、カルボン酸イミドの
ような誘導体、更にベンゼンおよびそのカルボン酸、カ
ルボン酸無水物、カルボン酸イミドのような誘導体、す
なわち、L、2.4.5−テトラカルボン酸、その二無
水物またはそのジイミド:などをあげることができる。
Condensation in which heteromonocyclic compounds with 3 or more membered rings such as acridine, phenazine, and zenatridine are bonded to each other (two or more of them are bonded to each other, or are bonded to one or more monocyclic hydrocarbon compounds with 3 or more membered rings) Heterocyclic compounds, derivatives of the above compounds such as carboxylic acids, carboxylic anhydrides, and carboxylic imides, and benzene and its derivatives such as carboxylic acids, carboxylic anhydrides, and carboxylic imides, namely L, 2. Examples include 4.5-tetracarboxylic acid, its dianhydride, or its diimide.

また、出発源としてカーボンブラック等の炭素質材料を
用い、これをさらに加熱して炭素化を適当に進めて1本
発明にかかる負極体の担持体を構成する炭素質材料とし
てもよい。
Alternatively, a carbonaceous material such as carbon black may be used as a starting source, and this may be further heated to appropriately advance carbonization to form the carbonaceous material constituting the carrier of the negative electrode body according to the present invention.

本発明にかかる負極体を構成する活物質の担持体は、上
述した特定の炭素質材料と膨張黒鉛との混合物よりなる
ので、次に膨張黒鉛について述べる。
Since the active material carrier constituting the negative electrode body according to the present invention is made of a mixture of the above-mentioned specific carbonaceous material and expanded graphite, expanded graphite will be described next.

膨張黒鉛は、導電材としての役割を担っている1本発明
において使用される膨張黒鉛とは、鱗状天然黒鉛、キッ
シュ黒鉛等の高結晶性の黒鉛に濃硫酸、濃硝酸、塩素酸
カリウム、重クロム酸カリウム、過マンガン酸カリウム
等の強酸を作用させて、黒鉛層間に酸の分子が入り込ん
だ、いわゆる黒鉛層間化合物を形成せしめ、これを−旦
水洗し、残留化合物としたのちに1000℃程度の高温
に急熱し酸を分解させて、黒鉛を著しく膨張させて得ら
れるものである。
Expanded graphite plays a role as a conductive material.1 The expanded graphite used in the present invention is a highly crystalline graphite such as scaly natural graphite or Quiche graphite, concentrated sulfuric acid, concentrated nitric acid, potassium chlorate, heavy A strong acid such as potassium chromate or potassium permanganate is applied to form a so-called graphite intercalation compound in which acid molecules enter between graphite layers, which is then washed with water to form a residual compound, and then heated to about 1000℃. It is obtained by rapidly heating graphite to a high temperature to decompose the acid and significantly expand graphite.

黒鉛層間化合物は、二次的な黒鉛の面の広がりに対して
第3成分としてドナー(アルカリ金属、アルカリ土類金
属等)やアクセプター(ハロゲン、酸等)を作用させる
ことにより、ドナーやアクセプター分子が黒鉛層間に侵
入して形成され。
Graphite intercalation compounds are created by allowing donors (alkali metals, alkaline earth metals, etc.) and acceptors (halogens, acids, etc.) to act as a third component on the surface expansion of secondary graphite, thereby forming donor and acceptor molecules. is formed by penetrating between graphite layers.

第3成分(インターカラントと称する)の入り方により
1stステージ(すべての層にインターカラントが侵入
) 、 2ndステージ(−層おきにインターカラント
が侵入)等と区別されている。
Depending on how the third component (referred to as intercalant) enters, it is differentiated into 1st stage (intercalant penetrates into all layers), 2nd stage (intercalant penetrates every other layer), etc.

特に黒鉛−アルカリ金属層間化合物(アルカリ金属とし
ては例えばに、Rb、Cs等を用いる)では1stステ
ージ(C,M (M; K、Rb。
In particular, in the graphite-alkali metal intercalation compound (for example, Rb, Cs, etc. are used as the alkali metal), the 1st stage (C, M (M; K, Rb.

Cs)と記す)のものが金色を呈し、極低温下で超伝導
を示すことから注目を浴びている。また、インターカラ
ントとしてルイス酸(A s F s、5bFs等)を
用いた場合には銅に匹敵する電気伝導度が実現され、高
導電材料としての可能性が見出されつつある。
Cs) is attracting attention because it has a golden color and exhibits superconductivity at extremely low temperatures. Furthermore, when a Lewis acid (A s F s, 5bFs, etc.) is used as an intercalant, an electrical conductivity comparable to that of copper is achieved, and the possibility of use as a highly conductive material is being discovered.

しかしながら、−殻内に黒鉛層間化合物は空気中では不
安定であり、そのため、まだ実用化には問題を残してい
る。ただし、一部の黒鉛層間化合物では、空気中で完全
には分解せずにインターカラントが層間に残り、いわゆ
る残留化合物を形成する。
However, the graphite intercalation compound in the -shell is unstable in air, and therefore there are still problems in its practical application. However, some graphite intercalation compounds do not completely decompose in air and the intercalant remains between the layers, forming a so-called residual compound.

膨張黒鉛とは、この現象を利用したものであり、層間の
一部に残存する酸の分子が1000℃程度に急熱される
ことにより層間から放出され。
Expanded graphite utilizes this phenomenon, and when acid molecules remaining in a portion of the interlayers are rapidly heated to about 1000°C, they are released from the interlayers.

同時に黒鉛は面の積層方向(C軸方向)にみかけの厚み
が50〜300倍にまで膨張する。
At the same time, graphite expands to 50 to 300 times its apparent thickness in the plane stacking direction (C-axis direction).

このものを圧縮またはロール成形によって薄い黒鉛シー
トとして用いると、耐熱性、高い熱伝導性に加えて、圧
縮復元性、応力緩和に優れ、自己潤滑性を有する等の特
徴を有するので、工業材料として広(使用されている。
When this material is used as a thin graphite sheet by compression or roll forming, it has characteristics such as heat resistance and high thermal conductivity, as well as excellent compression resilience, stress relaxation, and self-lubricating properties, so it can be used as an industrial material. Wide (used.

本発明の特徴は、負極体を構成する活物質の担持体に導
電材として上述の膨張黒鉛を用いるものであり、従来用
いられていた黒鉛やカーボンブラックを用いた場合に比
較して、電解液を分解させることなく電池の内部インピ
ーダンスを低下せしめることが可能となり、電池の安定
性、信頼性を大幅に向上させることができた。
A feature of the present invention is that the above-mentioned expanded graphite is used as a conductive material in the support for the active material constituting the negative electrode body. This made it possible to lower the internal impedance of the battery without disassembling it, significantly improving the stability and reliability of the battery.

本発明に使用される膨張黒鉛は、インピーダンスとして
、濃硫酸、濃硝酸等の強酸を使用し、膨張倍率が50〜
300倍、その比表面積が1〜100rn”7gである
のが好ましい。
The expanded graphite used in the present invention uses a strong acid such as concentrated sulfuric acid or concentrated nitric acid as an impedance, and has an expansion ratio of 50 to 50.
300 times, and its specific surface area is preferably 1-100rn''7g.

上述の膨張黒鉛は上記炭素質材料に対し、50重量%未
満、好ましくは30重量%未満、特に好ましくは15重
量%未滴の割合で添加する。
The above-mentioned expanded graphite is added to the above-mentioned carbonaceous material in a proportion of less than 50% by weight, preferably less than 30% by weight, particularly preferably 15% by weight.

なお、本発明にかかる負極体を構成する担持体は、上述
の炭素質材料および膨張黒鉛の他に結着剤や他の導電材
等を含有していてもよい。
Note that the carrier constituting the negative electrode body according to the present invention may contain a binder, other conductive material, etc. in addition to the above-mentioned carbonaceous material and expanded graphite.

結着剤は、ポリオレフィン樹脂等のパウダー等を30重
量%未満、好ましくは10重量%未満添加することがで
きる。
As the binder, less than 30% by weight, preferably less than 10% by weight of powder such as polyolefin resin can be added.

また、他の導電材は、アセチレンブラック、カーボンブ
ラック、金属粉等を30重量%未満、好ましくは10重
量%未満添加することができる。
Further, as other conductive materials, acetylene black, carbon black, metal powder, etc. can be added in an amount of less than 30% by weight, preferably less than 10% by weight.

本発明にかかる負極体の活物質の担持体は、例えば、上
述の炭素質材料と膨張黒鉛の粉末を所定量混合し、所望
の形状に加圧成形して製造する。
The carrier for the active material of the negative electrode body according to the present invention is produced, for example, by mixing a predetermined amount of the above-mentioned carbonaceous material and expanded graphite powder, and press-molding the mixture into a desired shape.

混合は、ヘンシェルミキサー等のミキサーブレンダーも
しくは自動乳鉢、ボールミル、ライカイ機等の混合機に
て行ない、成形は、通常のプレス成形機で圧縮成形を行
なう。
Mixing is performed using a mixer blender such as a Henschel mixer, or a mixing machine such as an automatic mortar, ball mill, or Raikai machine, and molding is performed by compression molding using an ordinary press molding machine.

次に、上述のようにして得られた担持体に活物質を担持
させて負極体とする。
Next, an active material is supported on the support obtained as described above to form a negative electrode body.

このときの担持の方法としては、化学的方法、電気化学
的方法、物理的方法などがあるが、例えば、所定濃度の
Liイオンまたはアルカリ金属イオンを含む電解液中に
上記した粉末成形体である担持体を浸漬しかつ対極にリ
チウムを用いてこの担持体を陽極にして電解含浸する方
法、簡易的には、上述の担持体とリチウムを電気的に接
触させた状態で電解液中に浸漬し、自己放電反応により
担持する方法等を適用することができる。
Supporting methods at this time include chemical methods, electrochemical methods, and physical methods. For example, the above-mentioned powder compact is placed in an electrolytic solution containing a predetermined concentration of Li ions or alkali metal ions. A method of electrolytic impregnation in which a carrier is immersed and lithium is used as a counter electrode, and the carrier is used as an anode.Simply, the carrier is immersed in an electrolytic solution while the carrier and lithium are in electrical contact with each other. , a method of supporting by self-discharge reaction, etc. can be applied.

なお、このような活物質の担持は、負極体の担持体に限
らず正極体の担持体に対してもまたは両極に対して行な
ってもよい。
Note that such active material may be supported not only on the carrier of the negative electrode body but also on the carrier of the positive electrode body or on both electrodes.

次に1図を参照して本発明の二次電池の構成について説
明する0図において、正極端子を兼ねる正極缶(1)内
には正極体(2)が正極缶(1)の底部に着設収納され
ている。この正極体は、とくに限定されないが、例えば
、Liイオン等のアルカリ金属カチオンを充放電反応に
伴なって放出もしくは獲得する金属カルコゲン化合物か
らなることが好ましい、そのような金属カルコゲン化合
物としてはバナジウムの酸化物、バナジウムの硫化物、
モリブデンの酸化物、モリブデンの硫化物、マンガンの
酸化物、クロムの酸化物、チタンの酸化物、チタンの硫
化物およびこれらの複合酸化物、複合硫化物等が挙げら
れる。好ましくは、Crs os 、 Vz Os 、
 Vs Ors、Vow 、Cry Os 、Mn0z
 、Ti1t、MoV z Oa、Ti5−1V、S、
、M o S l 。
Next, the structure of the secondary battery of the present invention will be explained with reference to FIG. 1. In FIG. It is installed and stored. This positive electrode body is not particularly limited, but is preferably made of a metal chalcogen compound that releases or acquires alkali metal cations such as Li ions during charging and discharging reactions. Examples of such metal chalcogen compounds include vanadium. oxide, vanadium sulfide,
Examples include molybdenum oxides, molybdenum sulfides, manganese oxides, chromium oxides, titanium oxides, titanium sulfides, and composite oxides and composite sulfides thereof. Preferably, Crs os , Vz os ,
Vs Ors, Vow, Cry Os, Mn0z
, Ti1t, MoV z Oa, Ti5-1V, S,
, M o S l .

Mo sl 、VSi 、Cro、*sVo、tssi
、Cr o、 B V a、 B S 2等である。ま
た、L i COOx 、 W Os等の酸化物、Cu
S、F e o、 xsV o。tssx、Naa、+
CrS*等の硫化物、N i P S s、FePSs
等のリン、イオウ化合物、VSe*、N b S e 
s等のセレン化合物などを用いることもできる。
Mo sl , VSi , Cro, *sVo, tssi
, Cro, B Va, B S 2, etc. In addition, oxides such as Li COOx and W Os, Cu
S, F e o, xsV o. tssx, Naa, +
Sulfides such as CrS*, NiPSs, FePSs
Phosphorus, sulfur compounds such as VSe*, N b Se
Selenium compounds such as s can also be used.

上述の金属カルコゲン化合物のなかでも、特に、実質的
に非晶質の遷移金属カルコゲン化合物が好ましい。
Among the above metal chalcogen compounds, substantially amorphous transition metal chalcogen compounds are particularly preferred.

そして、正極体(2)とセパレータ(3)を介して負極
体(4)が対峙されている。
A positive electrode body (2) and a negative electrode body (4) are opposed to each other with a separator (3) interposed therebetween.

電解液を保持するセパレータ(3)は、保液性に優れた
材料、例えば、ポリオレフィン系樹脂の不織布よりなる
。そして、このセパレータ(3)には、プロピレンカー
ボネート、1゜3−ジオキソラン、1.2−ジメトキシ
エタン等の非プロトン性有機溶媒に、LiCε04゜L
iBF4.LiAsF5.LiPFa等の電解質を溶解
せしめた所定濃度の非水電解液が含浸されている。
The separator (3) that holds the electrolyte is made of a material with excellent liquid retention properties, such as a nonwoven fabric made of polyolefin resin. This separator (3) is prepared by adding LiCε04°L to an aprotic organic solvent such as propylene carbonate, 1°3-dioxolane, or 1,2-dimethoxyethane.
iBF4. LiAsF5. It is impregnated with a non-aqueous electrolyte of a predetermined concentration in which an electrolyte such as LiPFa is dissolved.

また、Liまたはアルカリ金属イオンの導電体である固
体電解質を正極体および負極体の間に介在させることも
できる。
Furthermore, a solid electrolyte that is a conductor of Li or alkali metal ions can be interposed between the positive electrode body and the negative electrode body.

負極体(4)は、上述した特性を有する炭素質材料と膨
張黒鉛との混合物からなる担持体に活物質を担持させた
ものであり、負極端子も兼ねる負極缶(5)内に着設さ
れている。
The negative electrode body (4) has an active material supported on a support made of a mixture of a carbonaceous material and expanded graphite having the above-mentioned characteristics, and is mounted in a negative electrode can (5) which also serves as a negative electrode terminal. ing.

これら正極体(2)、セパレータ(3)、および負極体
(4)は全体として発電要素を構成する。そして、この
発電要素が正極缶(1)および負極缶(5)から成る電
池容器に内蔵されて電池が組立てられる。
These positive electrode body (2), separator (3), and negative electrode body (4) constitute a power generation element as a whole. Then, this power generation element is housed in a battery container consisting of a positive electrode can (1) and a negative electrode can (5), and a battery is assembled.

6は正・負極体を分ける絶縁バッキングであり、電池は
正極缶(1)の開口部を内方向へ折曲させて密封されて
いる。
6 is an insulating backing that separates the positive and negative electrode bodies, and the battery is sealed by bending the opening of the positive electrode can (1) inward.

かくして、本発明の二次電池においては1次のような反
応が進行する。
Thus, in the secondary battery of the present invention, the following reaction proceeds.

充電時: 正極体では、MnO,(Li)x− Mn0z+xLi ”+xe− 負極体では、C+xLi ”+xe−−*C−Li、I 放電時: 正極体では、Mn0z+xLi ”+xe−−mMnO
s (Li)x 負極体では、C−Lil1 −ec+xLi ”+xe− すなわち、本発明の二次電池において、負極体では充電
時にLiイオン(またはLiを主体とするアルカリ金属
イオン)のドープ現象が起り、また放電時には負極体に
担持されているLiイオンの脱ドープ現象が生起して、
可逆的な電気化学的酸化還元反応が充放電にともなって
進行する。
During charging: In the positive electrode body, MnO, (Li)
s (Li) Also, during discharge, a dedoping phenomenon of Li ions supported on the negative electrode body occurs,
A reversible electrochemical redox reaction progresses with charging and discharging.

このようなLiイオンの担持、放出により、電池の充放
電サイクルが繰り返される。
By carrying and releasing Li ions in this manner, the charge/discharge cycle of the battery is repeated.

本発明の二次電池は、負極体に前述の炭素質材料と膨張
黒鉛よりなる担持体を用いることにより、電解液を分解
することなく電池の内部インピーダンスを低下させるこ
とが可能となるので、電池の安定性が向上し、かつ信頼
性が高い電池として、従来にない優れた特性を発揮しつ
る。
In the secondary battery of the present invention, by using a carrier made of the above-mentioned carbonaceous material and expanded graphite for the negative electrode body, it is possible to lower the internal impedance of the battery without decomposing the electrolyte. As a battery with improved stability and high reliability, it exhibits excellent characteristics never seen before.

なお、本発明において、元素分析、X線広角回折および
電子スピン共鳴スペクトルの各測定は下記方法により実
施した。
In addition, in the present invention, each measurement of elemental analysis, X-ray wide-angle diffraction, and electron spin resonance spectrum was performed by the following method.

「元素分析」 サンプルを120℃で約15時間減圧乾燥し、その後ド
ライボックス内のホットプレート上で100℃において
1時間乾燥した。ついで、アルゴン雰囲気中でアルミニ
ウムカップにサンプリングし、燃焼により発生するCO
□ガスの重量から炭素含有量を、また、発生するH、O
の重量から水素含有量を求める。なお、後述する本発明
の実廁例では、パーキンエルマー240C型元素分析計
を使用して測定した。
"Elemental Analysis" Samples were dried under reduced pressure at 120° C. for about 15 hours, then dried at 100° C. for 1 hour on a hot plate in a dry box. The CO generated by combustion was then sampled in an aluminum cup in an argon atmosphere.
□ Calculate the carbon content from the weight of the gas, and also calculate the generated H, O
Determine the hydrogen content from the weight of. In the practical examples of the present invention described later, measurements were made using a PerkinElmer 240C elemental analyzer.

「X線広角回折」 (1)(002)面の面間隔(d、。2)および(11
0)面の面間隔(d、、、1 炭素質材料が粉末の場合はそのまま、微小片状の場合に
はメノウ乳鉢で粉末化し、試料に対して約15重量%の
x#!標準用高純度シリコン粉末を内部標準物質として
加え混合し、試料セルにつめ、グラファイトモノクロメ
ータ−で単色化したCuKa線を線源とし、反射式デイ
フラクトメーター法によって広角X線回折曲線を測定す
る1曲線の補正には、いわゆるローレンツ、偏光因子、
吸収因子、原子散乱因子等に間する補正は行なわず次の
簡便法を用いる。即ち(002)、および(110)回
折に相当する曲線のベースラインを引き、ベースライン
からの実質強度をプロットし直して(002)面、およ
び(110)面の補正曲線を得る。この曲線のピーク高
さの3分の2の高さに引いた角度軸に平行な線が回折曲
線と交わる線分の中点を求め、中点の角度を内部標準で
補正し、これを回折角の2倍とし、CuKa線の波長λ
とから次式のブラッグ式によってdo。、およびd++
。を求める。
"X-ray wide-angle diffraction" (1) Interplanar spacing (d, .2) of (002) plane and (11
0) Interplanar spacing (d,,,1) If the carbonaceous material is powder, it is used as is, or if it is in the form of minute pieces, it is powdered in an agate mortar, and approximately 15% by weight of x#! standard height is added to the sample. Pure silicon powder is added as an internal standard substance, mixed, packed into a sample cell, and a wide-angle X-ray diffraction curve is measured using a reflection diffractometer method using CuKa rays made monochromatic with a graphite monochromator as a radiation source. The correction involves the so-called Lorentzian, polarization factor,
The following simple method is used without making any corrections for absorption factors, atomic scattering factors, etc. That is, baselines of curves corresponding to (002) and (110) diffraction are drawn, and the real intensities from the baseline are plotted again to obtain correction curves for the (002) and (110) planes. Find the midpoint of the line segment where a line parallel to the angular axis drawn at two-thirds of the peak height of this curve intersects with the diffraction curve, correct the angle at the midpoint using an internal standard, and calculate this. The wavelength λ of the CuKa line is
and do by the following Bragg equation. , and d++
. seek.

ん+1.5418人 θ、θ′:d0゜z 、d z。に相当する回折角(2
)c軸およびa軸方向の結晶子の大きさ:Lc ; L
a 前項で得た補正回折曲線において、ピーク高さの半分の
位置におけるいわゆる半価中βを用いてC軸およびa軸
方向の結晶子の大きさを次式より求める。
+1.5418 people θ, θ': d0゜z, d z. The diffraction angle corresponding to (2
) Crystallite size in c-axis and a-axis directions: Lc; L
a In the corrected diffraction curve obtained in the previous section, the size of the crystallite in the C-axis and a-axis directions is determined from the following equation using the so-called half value β at the position half the peak height.

β・cosθ 形状因子Kについては種々議論もあるが、に=0.90
を用いた。丸、θおよびθ′については前項と同じ意味
である。
β・cosθ There are various discussions about the shape factor K, but = 0.90
was used. The circles, θ, and θ' have the same meanings as in the previous section.

[電子スピン共鳴スペクトルの線幅:ΔHppJ電子ス
ピン共鳴の一時微分吸収スベクトルはJEOL  JE
S−FE  LX  ESR,2,ペクトロメータを用
い、Xバンドで測定する。粉末状の試料はそのまま、微
小片状試料はメノウ乳鉢で粉末化して、外径2闘の毛細
管に入れ、さらに毛細管を外径51IIIのESR管に
入れる。高周波磁場の変調幅は6.3ガウスとする0以
上全て、空気雰囲気下、23℃で行なう、−次微分吸収
スペクトルのピーク間の線幅(ΔHpp)は、M n 
/ M g O標準試料を用いて決定する。
[Linewidth of electron spin resonance spectrum: ΔHppJ Temporary differential absorption vector of electron spin resonance is JEOL JE
Measure at X band using S-FE LX ESR, 2, pectrometer. Powdered samples are left as they are, and minute flake samples are pulverized in an agate mortar and placed in a capillary tube with an outer diameter of 2 mm, and the capillary tube is then placed in an ESR tube with an outer diameter of 51 III. The modulation width of the high-frequency magnetic field is 6.3 Gauss, and the linewidth (ΔHpp) between the peaks of the −th order differential absorption spectrum is M n
/ M g O Determined using O standard sample.

(実施例) 以下、実施例をあげて本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

夾施困 (1)正極体の製造 470℃で焼成したM n O*粉末5gおよび粉末状
のポリテトラフルオロエチレン0.5gとを混練し、得
られた混線物をロール成形して厚み0.4mmのシート
とした。
Problems (1) Production of positive electrode body 5 g of MnO* powder calcined at 470°C and 0.5 g of powdered polytetrafluoroethylene were kneaded, and the resulting mixed wire product was roll-formed to a thickness of 0.5 g. It was made into a 4 mm sheet.

このシートの片面な集電体である線径0.1mm、60
メツシユのステンレス鋼ネットに圧着して正極とした。
The single-sided current collector of this sheet has a wire diameter of 0.1 mm, 60
It was crimped onto a mesh stainless steel net to serve as a positive electrode.

(2)負極体の製造 (2−1)炭素質材料の製造 オルトクレゾール108g、パラホルムアルデヒド32
gおよびエチルセロソルブ240gを硫酸10gととも
に反応器に仕込み、撹拌しながら115℃で4時間反応
させた0反応終了後NaHC0,17gと水30gとを
加えて中和した0次いで、高速で攪拌しなから水2e中
に反応液を投入して沈澱してくる生成物をろ別乾燥して
115gの線状高分子量ノボラック樹脂を得た。
(2) Manufacture of negative electrode body (2-1) Manufacture of carbonaceous material 108 g of orthocresol, 32 g of paraformaldehyde
g and 240 g of ethyl cellosolve were charged into a reactor together with 10 g of sulfuric acid and reacted at 115°C for 4 hours with stirring.After the reaction was completed, 0.17 g of NaHC and 30 g of water were added to neutralize the mixture.Next, the mixture was stirred at high speed. The reaction solution was poured into water 2e, and the precipitated product was filtered and dried to obtain 115 g of a linear high molecular weight novolac resin.

上記のノボラック樹脂225gとへキサミン25gを5
00mffのメノウ製容器に入れ、直径30mmのメノ
ウ製ボール5個と直径20mmのメノウ製ボールIO個
を入れてボールミルにセットし、20分間粉砕、混合し
た。
5 g of the above novolak resin and 25 g of hexamine
The mixture was placed in a 00 mff agate container, and 5 agate balls each having a diameter of 30 mm and 10 agate balls each having a diameter of 20 mm were placed in a ball mill, and the mixture was ground and mixed for 20 minutes.

かくして得られたノボラック樹脂とへキサミンとの混合
パウダーを、N2ガス中、250℃で3時間加熱処理を
行った。さらに、この加熱処理物を電気加熱炉にセット
し、加熱処理物1kg当たり200I2/時の速度でN
、ガスを流しながら、200℃/時の昇温速度で950
℃まで昇温し、その温度にさらに1.5時間保持して焼
成した後、自然放冷した。
The thus obtained mixed powder of novolac resin and hexamine was heat-treated at 250° C. for 3 hours in N2 gas. Furthermore, this heat-treated product was set in an electric heating furnace, and N
, 950°C at a heating rate of 200°C/hour while flowing gas.
The temperature was raised to 0.degree. C., and the temperature was maintained for an additional 1.5 hours for firing, and then allowed to cool naturally.

次に、焼成後の材料を別な電気炉にセットし、25℃/
分の昇温速度で2000℃まで昇温し、その温度でさら
に1.5時間保持し、炭素化を実施した。
Next, the fired material is placed in a separate electric furnace at 25℃/
The temperature was raised to 2000° C. at a temperature increase rate of 1.5 min, and the temperature was maintained for an additional 1.5 hours to carry out carbonization.

かくして得られた炭素化物を25011I2のメノウ製
容器に入れ、直径30amのメノウ製ボール1個、直径
25mmのメノウ製ボール3個、および直径20mmの
メノウ製ボール9個を入れてボールミルにセットし、1
0分間粉砕し、さらに直径201のメノウ製ボール4個
を追加して25分間粉砕を続けた。
The carbonized product thus obtained was placed in a 25011I2 agate container, and 1 agate ball with a diameter of 30 am, 3 agate balls with a diameter of 25 mm, and 9 agate balls with a diameter of 20 mm were placed in the ball mill, and the mixture was set in a ball mill. 1
Grinding was continued for 0 minutes, and 4 agate balls each having a diameter of 20 mm were added, and grinding was continued for 25 minutes.

この炭素質材料は、元素分析、X線広角回折、ラマンス
ペクトル等の分析の結果、以下の特性を有していた。
This carbonaceous material had the following characteristics as a result of analysis such as elemental analysis, X-ray wide-angle diffraction, and Raman spectrum.

水素/炭素(原子比)=0.04 do。i=3.66人、Lc=13.0人ao(2do
ot l =2.42人。
Hydrogen/carbon (atomic ratio) = 0.04 do. i = 3.66 people, Lc = 13.0 people ao (2do
ot l =2.42 people.

La=21.0人。La = 21.0 people.

(2−2)膨張黒鉛の製造 鱗状天然黒鉛20.0gに、a@酸200m1を加え、
50℃で300時間撹拌混合し、黒鉛−硫酸層間化合物
を形成せしめた0次いで、このものを水洗し、乾燥した
後、1000℃に急熱して膨張黒鉛20.0gを得た。
(2-2) Production of expanded graphite Add 200 ml of a@acid to 20.0 g of scaly natural graphite,
The mixture was stirred and mixed at 50°C for 300 hours to form a graphite-sulfuric acid intercalation compound.Then, this mixture was washed with water, dried, and rapidly heated to 1000°C to obtain 20.0 g of expanded graphite.

かくして得られた膨張黒鉛は、以下の特性を有していた
The expanded graphite thus obtained had the following properties.

インターカラント(硫酸)600ppm比表面積10m
”/g (2−3)担持体の製造 (2−1)で製造した炭素質材料の粉末(平均粒径15
μm)9.5gに膨張黒鉛の粉末(平均粒径lOμm)
14.25gおよびポリエチレン粉末0.5gを混合し
た後、圧縮成形して厚み0.5mmのシート状の担持体
とした。
Intercalant (sulfuric acid) 600ppm Specific surface area 10m
”/g (2-3) Manufacture of support (2-1) Carbonaceous material powder (average particle size 15
μm) 9.5g of expanded graphite powder (average particle size lOμm)
After mixing 14.25 g and 0.5 g of polyethylene powder, compression molding was performed to obtain a sheet-like carrier having a thickness of 0.5 mm.

(3)電池の組立 ステンレス鋼製の正極缶に、上記した正極体を集電体を
下にして着設し、その上にセパレータとしてのポリプロ
ピレン不織布を載置したのち、そこにL i Cl2O
、を濃度1モル/βでプロピレンカーボネートに溶解せ
しめた非水電解液を含浸せしめた。ついでその上に上記
負極体を載置して発電要素を構成した。
(3) Assembly of the battery The above-mentioned positive electrode body was installed in a stainless steel positive electrode can with the current collector facing down, and after placing a polypropylene nonwoven fabric as a separator on it, Li Cl2O was placed thereon.
, was impregnated with a non-aqueous electrolytic solution prepared by dissolving 1 mol/β in propylene carbonate. Then, the negative electrode body was placed thereon to form a power generation element.

なお、電池に組込むに先立ち、正極体を、濃度1モル/
εのLiイオン電解液中に浸漬し、正極体を陽極とし、
リチウムを陰極とする電解処理に付した。電解処理は、
浴温20℃、電流密度1 mA/ c rn”、電解時
間10時間の条件で行ない、正極体に容量6.OmAh
のLiを担持させた。
In addition, before incorporating the positive electrode into the battery, the concentration of the positive electrode is 1 mol/
Immersed in Li ion electrolyte of ε, using the positive electrode body as an anode,
It was subjected to electrolytic treatment using lithium as a cathode. Electrolytic treatment is
The bath temperature was 20°C, the current density was 1 mA/crn'', and the electrolysis time was 10 hours, and the capacity of the positive electrode was 6.0mAh.
of Li was supported.

かくして、第1図に示したようなボタン形二次電池を製
作した。
In this way, a button-shaped secondary battery as shown in FIG. 1 was manufactured.

(4)電池の特性 このようにして製作した電池について、0.5mAの定
電流充電−20にΩ抵抗放電を反復し、このときの5サ
イクルおよび50サイクルの各サイクルにおける電池の
充電容量および放電容量を測定した。その結果を表1に
示した。
(4) Characteristics of the battery The battery manufactured in this way was repeatedly charged with a constant current of 0.5 mA and discharged with an Ω resistance for 20 to 20 cycles. Capacity was measured. The results are shown in Table 1.

土較舅 (1)正極体の製造 実施例と同様にして正極体を製造した。land comparison father-in-law (1) Manufacture of positive electrode body A positive electrode body was manufactured in the same manner as in the example.

(2)負極体の製造 実施例と同様にして製造した炭素質材料の他は、膨張黒
鉛のかわりに天然の黒鉛粉末(日本黒鉛■製 cp−B
)を用いた他は実施例と同様にして、負極体を製造した
(2) Manufacture of negative electrode body In addition to the carbonaceous material manufactured in the same manner as in the example, natural graphite powder (cp-B manufactured by Nippon Graphite ■) was used instead of expanded graphite.
) was used, but a negative electrode body was produced in the same manner as in the example.

(3)電池の組立 実施例と同様にして電池を組み立てた。(3) Battery assembly A battery was assembled in the same manner as in the example.

(4)電池の特性 実施例と同様にして同一の条件で、電池特性を測定し、
結果を表1に併記した。
(4) Battery characteristics Measure the battery characteristics under the same conditions as in the example,
The results are also listed in Table 1.

[発明の効果] 以上の説明で明らかなように、本発明の二次電池は充放
電サイクル寿命が長(、また充電時にあっては活物質で
あるLiまたはLiを主体とするアルカリ金属を安定し
た形で担持体に定着せしめることができるため、安定し
た高容量、すなわち大電流放電が可能となり、信頼性の
高い電池であるので、その工業的価値は大である。
[Effects of the Invention] As is clear from the above explanation, the secondary battery of the present invention has a long charge/discharge cycle life (and during charging, the active material Li or an alkali metal mainly composed of Li is stabilized). Since it can be fixed on a carrier in such a form, stable high capacity, that is, large current discharge is possible, and the battery is highly reliable, so its industrial value is great.

なお、これまでの説明はボタン形構造の二次電池につい
て行なったが、本発明の技術思想はこの構造のものに限
定されるものではなく、例えば、円筒形、扁平形、角形
等の形状の二次電池に適用することもできる。
Although the explanation so far has been made regarding a secondary battery having a button-shaped structure, the technical concept of the present invention is not limited to this structure, and for example, it can be applied to a secondary battery having a cylindrical, flat, or square shape. It can also be applied to secondary batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例であるボタン形構造の二次電池の
縦断面図である。
The figure is a longitudinal sectional view of a secondary battery having a button-shaped structure, which is an embodiment of the present invention.

Claims (1)

【特許請求の範囲】  活物質と該活物質を担持する担持体とから成る負極体
を具備する二次電池において、 (1)該活物質が、リチウムまたはリチウムを主体とす
るアルカリ金属であり、 (2)該担持体が、 (イ)水素/炭素の原子比が0.10未満:かつ、 (ロ)X線広角回折法による(002)面の面間隔(d
_0_0_2)が3.37Å以上3.75Å以下および
c軸方向の結晶子の大きさ(Lc)が5Å以上150Å
以下: である炭素質材料および膨張黒鉛よりなることを特徴と
する二次電池。
[Scope of Claims] A secondary battery comprising a negative electrode body comprising an active material and a carrier supporting the active material, wherein: (1) the active material is lithium or an alkali metal mainly composed of lithium; (2) The support has (a) a hydrogen/carbon atomic ratio of less than 0.10: and (b) an interplanar spacing (d) of the (002) plane determined by X-ray wide-angle diffraction
_0_0_2) is 3.37 Å or more and 3.75 Å or less, and the crystallite size in the c-axis direction (Lc) is 5 Å or more and 150 Å
A secondary battery comprising a carbonaceous material and expanded graphite.
JP63102363A 1988-04-27 1988-04-27 Secondary battery Pending JPH01274360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63102363A JPH01274360A (en) 1988-04-27 1988-04-27 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102363A JPH01274360A (en) 1988-04-27 1988-04-27 Secondary battery

Publications (1)

Publication Number Publication Date
JPH01274360A true JPH01274360A (en) 1989-11-02

Family

ID=14325376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102363A Pending JPH01274360A (en) 1988-04-27 1988-04-27 Secondary battery

Country Status (1)

Country Link
JP (1) JPH01274360A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000717A1 (en) * 1991-06-20 1993-01-07 Mitsubishi Petrochemical Co., Ltd. Electrode for secondary battery
JP2001266872A (en) * 2000-03-15 2001-09-28 Asahi Glass Co Ltd Secondary power source and its manufacturing method
JP2015531543A (en) * 2012-09-06 2015-11-02 オプシストバ・ス・オルガニチノイ・アトベツトベンノスチュ(タバーリシストバ・エネルギチーチェスキフ・イ・エレクトロモビーリニフ・プロエクトフ)Obschestvo Sogranichennoy Otvetstvennostyu ‘Tovarischestvo Energeticheskikh I Elektromobilnikh Proektov’ Electric double layer pulse capacitor
JP2016100088A (en) * 2014-11-18 2016-05-30 株式会社サムスン日本研究所 Lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000717A1 (en) * 1991-06-20 1993-01-07 Mitsubishi Petrochemical Co., Ltd. Electrode for secondary battery
JP2001266872A (en) * 2000-03-15 2001-09-28 Asahi Glass Co Ltd Secondary power source and its manufacturing method
JP2015531543A (en) * 2012-09-06 2015-11-02 オプシストバ・ス・オルガニチノイ・アトベツトベンノスチュ(タバーリシストバ・エネルギチーチェスキフ・イ・エレクトロモビーリニフ・プロエクトフ)Obschestvo Sogranichennoy Otvetstvennostyu ‘Tovarischestvo Energeticheskikh I Elektromobilnikh Proektov’ Electric double layer pulse capacitor
JP2016100088A (en) * 2014-11-18 2016-05-30 株式会社サムスン日本研究所 Lithium secondary battery

Similar Documents

Publication Publication Date Title
JPS62122066A (en) Nonaqueous solvent battery
JP3430614B2 (en) Non-aqueous electrolyte secondary battery
JP3291756B2 (en) Non-aqueous solvent secondary battery and its electrode material
JPS63276873A (en) Nonaqueous solvent secondary battery
JP3113057B2 (en) Manufacturing method of electrode material
JPS63193463A (en) Nonaqueous solvent secondary battery
JPH01274360A (en) Secondary battery
JP3053844B2 (en) Secondary battery electrode
JPS63114056A (en) Nonaqueous solvent secondary battery
JP3154714B2 (en) Electrodes for secondary batteries
JPH0580791B2 (en)
JPH01161677A (en) Secondary battery
JP3291758B2 (en) Non-aqueous solvent secondary battery and its electrode material
JP3140443B2 (en) Rechargeable battery
JPH02121258A (en) Secondary cell
JPH04206168A (en) Secondary battery
JP2957202B2 (en) Rechargeable battery
JP2578452B2 (en) Rechargeable battery
JP2691555B2 (en) Rechargeable battery
JPS63236259A (en) Nonaqueous solvent secondary battery
JPH05290888A (en) Nonaqueous solvent secondary battery
JPH0268859A (en) Secondary battery
JPH02267873A (en) Nonaqueous solvent secondary cell
JPH0233868A (en) Nonaqueous electrolyte secondary battery
JPH01161675A (en) Secondary battery