JPS63276873A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPS63276873A
JPS63276873A JP62109790A JP10979087A JPS63276873A JP S63276873 A JPS63276873 A JP S63276873A JP 62109790 A JP62109790 A JP 62109790A JP 10979087 A JP10979087 A JP 10979087A JP S63276873 A JPS63276873 A JP S63276873A
Authority
JP
Japan
Prior art keywords
less
electrode body
negative electrode
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62109790A
Other languages
Japanese (ja)
Other versions
JPH0544143B2 (en
Inventor
Toshibumi Nishii
俊文 西井
Mitsutaka Miyabayashi
宮林 光孝
Hiroshi Yui
浩 由井
Kuniaki Inada
稲田 圀昭
Katsuharu Ikeda
克治 池田
Hiroyoshi Nose
博義 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Mitsubishi Petrochemical Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP62109790A priority Critical patent/JPS63276873A/en
Publication of JPS63276873A publication Critical patent/JPS63276873A/en
Publication of JPH0544143B2 publication Critical patent/JPH0544143B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance the charge/discharge cycle characteristic and prolong the life by using alkali metal containing Li as active substance, and by using as bearer a one which has a specific H/C value, G-value corresponding to the measure for the degree of graphitization, size of surface spacing Lc of (002) faces by X-rays wide-angle diffraction method, volume average particle size, and specific surface area. CONSTITUTION:Li or an al-metal containing Li is used as active material in this negative electrode body. An aggregate containing a carbonaceous material particles with specific property as a component unit is used as bearer. That is, H/C value is below 0.15, the G value indicated by Eq. I in Raman spectrum analysis using argon ion laser beam having a wave length of 5145Angstrom is no greater than 2.5, the surface spacing of the (002) face by X-rays wide-angle diffraction method is over 3.37Angstrom , size of crystallite in the C-axis direction is no greater than 150Angstrom , and the volume average particle size is no greater than 500Angstrom . The specific surface area of this aggregate shall be over 1 m<2>/g.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は非水溶媒二次電池に関し、更に詳しくは、小型
で、充放電サイクル寿命が長く、安定な高容量を有する
非水溶媒二次電池に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous solvent secondary battery, and more specifically, to a non-aqueous solvent secondary battery that is small in size, has a long charge/discharge cycle life, and has a stable high capacity. Related to non-aqueous solvent secondary batteries.

(従来の技術) 正極体の主要成分がTiS2.MoS2のような遷移金
属のカルコゲン化合物であり、負極体がLi又はLiを
主体とするアルカリ金属である非水溶媒二次電池は、高
エネルギー密度を有するので商品化の努力が払われてい
る。
(Prior art) The main component of the positive electrode body is TiS2. Efforts are being made to commercialize nonaqueous solvent secondary batteries, which are chalcogen compounds of transition metals such as MoS2, and whose negative electrodes are Li or an alkali metal mainly composed of Li, because they have high energy density.

(発明が解決しようとする問題点) しかしながら、かかる非水溶媒二次電池においては、負
極体がLf箔またはLfを主体とするアルカリ金属の箔
そのものであることに基づく問題が生じている。
(Problems to be Solved by the Invention) However, in such a nonaqueous solvent secondary battery, a problem arises due to the fact that the negative electrode body is an Lf foil or an alkali metal foil mainly composed of Lf itself.

すなわち、電池の放電時には負極体からLiがLiイオ
ンとなって電解液中に移動し、充電時にはこのLiイオ
ンが金属L+となって再び負極体に電析するが、この充
放電サイクルを反復させるとそれに伴って電析する金属
Liはデンドライト状となる。このデンドライト状LX
は極めて活性な物質であるため、電解液を分解せしめ、
その結果、電池の充放電サイクル特性が劣化するという
不都合が生ずる。さらにこれらが成長していくと、最後
には、このデンドライト状の金属Li電析物がセパレー
タを貫通して正極体に達し、短絡現象を起すという問題
が生ずる。別言すれば、充放電ザイクル寿命が短いとい
う問題である。
That is, when the battery is discharged, Li from the negative electrode body becomes Li ions and moves into the electrolyte solution, and during charging, these Li ions become metal L+ and are deposited on the negative electrode body again, but this charge-discharge cycle is repeated. As a result, the metal Li deposited becomes dendrite-like. This dendrite LX
is an extremely active substance, it decomposes the electrolyte,
As a result, a disadvantage arises in that the charge/discharge cycle characteristics of the battery deteriorate. As they grow further, a problem arises in that the dendrite-like metal Li deposits eventually penetrate the separator and reach the positive electrode body, causing a short circuit phenomenon. In other words, the problem is that the charge/discharge cycle life is short.

このような問題を回避するために、負極体として、各種
の有機化合物を焼成した炭素質物を担持体どし、これに
Li又はL iを主体とするアルカリ金属を担持せしめ
て構成することが試みられている。
In order to avoid such problems, attempts have been made to construct the negative electrode body by using a carbonaceous material obtained by calcining various organic compounds as a carrier, and supporting Li or an alkali metal mainly composed of Li. It is being

このような負極体を用いることにより、Liデンドライ
トの析t8は防止されるようになったが、しかし一方で
は、この負極体を組込んだ電池は同サイズの一次電池に
比べてその放電容量が1/Zoo程度と非常に小さく、
しかも自己放電が大きく、またこの電池を搭載した機器
の動作期間は非常に短く、かつ大電流放電は不可能であ
るなど、実用面において種々の不都合な問題がありその
用途は限定されている。
By using such a negative electrode body, the separation t8 of Li dendrites has been prevented, but on the other hand, a battery incorporating this negative electrode body has a lower discharge capacity than a primary battery of the same size. Very small, about 1/Zoo,
Furthermore, there are various practical problems, such as large self-discharge, very short operating period of equipment equipped with this battery, and inability to discharge large currents, which limit its use.

本発明は、炭素質物を担持体とする負極体を備えた非水
溶媒二次電池において、上記したような不都合を解消1
.た非水溶媒二次電池の提供を目的とする。
The present invention solves the above-mentioned disadvantages in a non-aqueous solvent secondary battery equipped with a negative electrode body using a carbonaceous material as a carrier.
.. The purpose of this invention is to provide a non-aqueous solvent secondary battery.

[発明の構成] (問題点を解決するための手段) 本発明者らは1〕記問題を解決すべく、負極体に関して
鋭意研究を重ねた結果、上記担持体を後述するパラメー
タを有する炭素質物の粒子で構成すると、目的達成にと
って有効であるとの事実を見出し本発明の非水溶媒二次
電池を開発するに到った。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the problem 1), the present inventors have conducted extensive research on negative electrode bodies, and as a result, the above-mentioned carrier has been developed using a carbonaceous material having the parameters described below. The inventors discovered that the non-aqueous solvent secondary battery of the present invention is effective in achieving the objective when the non-aqueous solvent is composed of particles.

すなわち、本発明の非水溶媒二次電池は、活物質と該活
物質を担持する担持体とから成る負極体を備えた非水溶
媒二次電池において、 (A)該活物質が、リチウムまたはリチウムを主体とす
るアルカリ金属であり、 (B)該相持体が、 (1)  水素/炭素の原子比が0.15未満;(11
)  波長5145人のアルゴンイオンレーザ光を用い
たラマンスペクトル分析において、下記式: 1360±100cm−’の波数域におけるスペクトル
強度の積分値で示されるG値が2.5未満; (iii)  X線広角回折法による(002)面の面
間隔(d 002)が3.37A以上、C軸方向の結晶
子の大きさくL c)が150A以下: (財)体積平均粒径が500Å以下; である炭素質物粒子を構成単位とし、かつ比表面積が1
m″/g以上であることを特徴とする。
That is, the nonaqueous solvent secondary battery of the present invention is a nonaqueous solvent secondary battery equipped with a negative electrode body consisting of an active material and a carrier supporting the active material, in which (A) the active material is lithium or (B) the carrier is an alkali metal mainly composed of lithium; (1) the hydrogen/carbon atomic ratio is less than 0.15;
) In Raman spectrum analysis using argon ion laser light with a wavelength of 5145, the following formula: The G value indicated by the integrated value of the spectral intensity in the wave number region of 1360 ± 100 cm-' is less than 2.5; (iii) X-ray The interplanar spacing (d 002) of the (002) plane by wide-angle diffraction method is 3.37 A or more, and the crystallite size in the C-axis direction (L c) is 150 A or less: The volume average particle diameter is 500 Å or less; The structural unit is carbonaceous material particles, and the specific surface area is 1.
m″/g or more.

本発明の電池は、負極体が上記した構成をとるところに
特徴があり、他の要素は従来の非水溶媒二次電池と同じ
であってもよい。
The battery of the present invention is characterized in that the negative electrode body has the above-described configuration, and other elements may be the same as conventional non-aqueous solvent secondary batteries.

本発明にかかる負極体において、活物質はLi又はLi
を主体とするアルカリ金属であるが、この活物質は、電
池の充放電に対応して正極体と負極体との間を往復移動
する。
In the negative electrode body according to the present invention, the active material is Li or Li
This active material, which is mainly an alkali metal, moves back and forth between the positive electrode body and the negative electrode body in response to charging and discharging of the battery.

本発明の担持体は、後述する特性を有する炭素質物粒子
を構成単位とし、これら単位の集合体として形成されて
いる。
The carrier of the present invention has carbonaceous material particles having the characteristics described below as a constituent unit, and is formed as an aggregate of these units.

この炭素質物粒子は炭素のみで構成されていなくてもよ
く、例えば、窒素、ハロゲン等の他の原子が7モル%以
下、好ましくは4モル%以下。
The carbonaceous material particles do not need to be composed only of carbon; for example, the content of other atoms such as nitrogen and halogen is 7 mol% or less, preferably 4 mol% or less.

更に好ましくは2モル%以下含まれていてもよい。More preferably, it may be contained in an amount of 2 mol% or less.

炭素質物粒子を特定する各パラメータにおいて、まず、
H/Cは0.15以下であることが必要で、好ましくは
0.10未満、更に好ましくは0.07未満、とくに好
ましくは0.05未満である。
For each parameter that specifies carbonaceous material particles, first,
H/C is required to be 0.15 or less, preferably less than 0.10, more preferably less than 0.07, particularly preferably less than 0.05.

また、G値は0.25未満であることが必要で、好まし
くは2.0未満。更に好ましくは0.1〜1.5.とく
に好ましくは0.2〜1.2である。
Further, the G value needs to be less than 0.25, preferably less than 2.0. More preferably 0.1 to 1.5. Particularly preferably 0.2 to 1.2.

ここで、G値とは、この炭素質物に対し波長5145A
のアルゴンイオンレーザ光を用いてラマンスペクトル分
析を行なった際にチャートに記録されているスペクトル
強度曲線において、波数1580±100cm−’の範
囲内のスペクトル強度の積分値(面積強度)を波数13
60±100CI’の範囲内の面積強度で除した値を指
し、その炭素質物の黒鉛化度の尺度に相当する。
Here, the G value means a wavelength of 5145A for this carbonaceous material.
In the spectral intensity curve recorded on the chart when performing Raman spectrum analysis using argon ion laser light, the integral value (area intensity) of the spectral intensity within the range of wave number 1580 ± 100 cm-' is calculated as wave number 13
It refers to the value divided by the area intensity within the range of 60±100 CI', and corresponds to a measure of the degree of graphitization of the carbonaceous material.

すなわち、この炭素質物は結晶質部分と非結晶部分を有
し、G値はこの炭素質組織における結晶質部分の割合を
示すパラメータである。
That is, this carbonaceous material has a crystalline portion and an amorphous portion, and the G value is a parameter indicating the ratio of the crystalline portion in this carbonaceous structure.

更に、X線広角回折方で測定りまたときのd 002は
3.37Å以上、Lcは150Å以下であることが必要
で5好ましくはdQ(123,39〜3.75人、Lc
  5〜150A、更に好ましくはd0023.41〜
3.70A、Lo  10〜80人、とくに好ましくは
12〜70Aである。
Furthermore, when measured by X-ray wide-angle diffraction, d002 must be 3.37 Å or more and Lc must be 150 Å or less, preferably dQ (123,39 to 3.75, Lc
5 to 150A, more preferably d0023.41 to
3.70A, Lo 10-80 people, particularly preferably 12-70A.

また、この炭素質物粒子の体積平均粒径は500Å以下
であることが必要で、好ましくは300Å以下、更に好
ましくは200A以下である。なお、ここでいう体積平
均粒径とは体積加重の平均粒径であり、炭素質物粒子の
断面を電子顕微鏡を用いて写真撮影し、炭素質物粒子(
二次粒子)を構成する一次粒子の大きさを測定すること
によって知ることができる。
Further, the volume average particle diameter of the carbonaceous material particles needs to be 500 Å or less, preferably 300 Å or less, and more preferably 200 Å or less. Note that the volume average particle size here is the volume-weighted average particle size, and the cross section of the carbonaceous material particles is photographed using an electron microscope, and the carbonaceous material particles (
This can be determined by measuring the size of the primary particles that make up the secondary particles.

炭素質物粒子を特定するこれらパラメータにおいて、H
/C、d002およびLeのいずれかが上記範囲を逸脱
している場合は、負極体における充放電時の過電圧が高
くなり、その結果、負極体からはガスが発生して電池の
安全性が著しく損われる。しかも充放電サイ、クル特性
が不満足な状態を呈する。
Among these parameters that specify carbonaceous material particles, H
If any of /C, d002 and Le are out of the above range, the overvoltage at the negative electrode during charging and discharging will increase, and as a result, gas will be generated from the negative electrode, significantly reducing the safety of the battery. be damaged. Moreover, the charge/discharge cycle and cycle characteristics are unsatisfactory.

また、G値が上記の2.5以上の場合は、その炭素質物
は黒鉛化が進んだ状態になっていて、炭素質物粒子の内
部に存在できる活物質はその量が少なくなると同時に不
安定な状態となり、その結果、電池の容量が低下する。
In addition, if the G value is 2.5 or more, the carbonaceous material is in a highly graphitized state, and the amount of active material that can exist inside the carbonaceous material particles decreases and becomes unstable. As a result, the capacity of the battery decreases.

更に、該炭素質物にあっては次の条件を満足しているこ
とが望ましい、すなわち、X線広角回折分析における(
110)面の面間隔d110の2倍の距離ao  (=
2clllO)が、好ましくは2.38〜2.47人、
さらに好ましくは2.39〜2.46λ;a軸方向の結
晶子の大きさLaが好ましくは10Å以上、さらに好ま
しくは15〜150人、とくに好ましくは19〜70人
である。
Furthermore, it is desirable that the carbonaceous material satisfies the following conditions, that is, in X-ray wide-angle diffraction analysis (
110) Distance ao twice the interplanar spacing d110 (=
2clllO), preferably 2.38 to 2.47 people,
More preferably 2.39 to 2.46λ; crystallite size La in the a-axis direction is preferably 10 Å or more, still more preferably 15 to 150, particularly preferably 19 to 70.

また、炭素質物粒子の体積平均粒径が500人よりも大
きい場合は、活物質の担持能力が充分ではなく多量の活
物質を担持することができず、その結果、負極体の電極
容量を増大せしめることができない。
In addition, if the volume average particle size of the carbonaceous material particles is larger than 500, the ability to support the active material is insufficient and a large amount of active material cannot be supported, resulting in an increase in the electrode capacity of the negative electrode body. I can't force it.

本発明の担持体は、上記した炭素質物粒子を構成単位と
し、この単位を集合せしめて成る集合体である。そして
この相持体は、その比表面積が1rr?/g以上であり
、好ましくは10rn’/g以上、さらに好ましくは1
00rrr’/g以上である。比表面積が、J二記範囲
を逸脱すると電池容量が小さくなり、電池の性能が低下
する。
The carrier of the present invention has the above-mentioned carbonaceous material particles as its constituent units, and is an aggregate formed by aggregating these units. And this carrier has a specific surface area of 1rr? /g or more, preferably 10rn'/g or more, more preferably 1
00rrr'/g or more. When the specific surface area deviates from the J2 range, the battery capacity decreases and the battery performance deteriorates.

本発明にかかる炭素質物の構成単位は次のようにして製
造することができる。
The structural unit of the carbonaceous material according to the present invention can be produced as follows.

まず、後述する有機高分子化合物、縮合多環炭化水素化
合物、多環複素環系化合物の1種又は2種以上を焼成・
熱分解し炭素化することによって調製することができる
。この炭素化過程で重要な因子は熱処理温度であって、
この温度が低すざる場合は炭素化が進まず、また高すぎ
る場合は炭素質状態から黒鉛に転化してG値が大きくな
ってしまうからである。用いる出発源によっても異なる
が、熱処理温度は通常800〜3000℃の範囲に設定
される。
First, one or more of the following organic polymer compounds, condensed polycyclic hydrocarbon compounds, and polycyclic heterocyclic compounds are calcined and
It can be prepared by pyrolysis and carbonization. An important factor in this carbonization process is the heat treatment temperature,
If this temperature is too low, carbonization will not proceed, and if it is too high, the carbonaceous state will be converted to graphite and the G value will become large. Although it varies depending on the starting source used, the heat treatment temperature is usually set in the range of 800 to 3000°C.

炭素質物の出発源としては、例えばセルロース樹脂;フ
ェノール樹脂;ポリアクリロニトリル、ポリ(α−ハロ
ゲン化アクリロニトリル)などのアクリル樹脂;ポリ塩
化ビニル、ポリ塩化ビニリデン、ポリ塩素化塩化ビニル
などのハロゲン化ビニル樹脂:ボリアミドイミド樹脂;
ポリアミド樹脂;ポリアセチレン、ポリ(p−フェニレ
ン)などの共役系樹脂のような任意の有機高分子化合物
;例えば、ナフタレン、フェナントレン、アントラセン
、トリフェニレン、ピレン、クリセン。
Examples of starting sources of carbonaceous materials include cellulose resins; phenolic resins; acrylic resins such as polyacrylonitrile and poly(α-halogenated acrylonitrile); halogenated vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polychlorinated vinyl chloride. : Boryamideimide resin;
Polyamide resin; Any organic polymer compound such as conjugated resin such as polyacetylene, poly(p-phenylene); For example, naphthalene, phenanthrene, anthracene, triphenylene, pyrene, chrysene.

ナフタセン、ビセン、ペリレン、ペンタフェン。naphthacene, vicene, perylene, pentaphene.

ペンタセンのような3員環以上の単環炭化水素化合物が
互いに2個以上縮合してなる縮合多環炭化水素化合物、
または、上記化合物のカルボン酸、カルボン酸無水物、
カルボン酸イミドのような誘導体、上記各化合物の混合
物を主成分とする各種のピッチ;例えば、インドール、
イソインドール、キノリン、イソキノリン、キノキサリ
ン、フタラジン、カルバゾール、アクリジン。
A condensed polycyclic hydrocarbon compound formed by condensing two or more monocyclic hydrocarbon compounds with three or more members such as pentacene,
Or carboxylic acid, carboxylic acid anhydride of the above compound,
Derivatives such as carboxylic acid imides, various pitches based on mixtures of the above compounds; for example, indoles,
Isoindole, quinoline, isoquinoline, quinoxaline, phthalazine, carbazole, acridine.

フェナジン、ツェナトリジンのような3員環以上の複素
単環化合物が互いに少なくとも2個以上結合するか、又
は1個以上の3員環以上の単環炭化水素化合物と結合し
てなる縮合複素環化合物。
A fused heterocyclic compound formed by at least two heteromonocyclic compounds having 3 or more members such as phenazine and zenatridine bonded to each other or to one or more monocyclic hydrocarbon compounds having 3 or more members.

上記各化合物のカルボン酸、カルボン酸無水物。Carboxylic acids and carboxylic acid anhydrides of each of the above compounds.

カルボン酸イミドのような誘導体、更にベンゼンの1.
2,4.5−テトラカルボン酸、その二無水物またはそ
のジイミド;などをあげることができる。
derivatives such as carboxylic acid imides, as well as benzene 1.
Examples include 2,4.5-tetracarboxylic acid, its dianhydride, or its diimide.

この場合、炭素質物の出発源に例えば架橋処理などの前
処理を施し、また炭素化の条件を適宜選定することによ
り、前述した各パラメータを適正な範囲に調整すること
ができる。
In this case, each of the above-mentioned parameters can be adjusted to an appropriate range by subjecting the starting source of the carbonaceous material to a pretreatment such as crosslinking treatment, and by appropriately selecting carbonization conditions.

得られる炭素質物は粉末状、塊状など種々の形態がある
が、いずれにしても、その構成単位は上記パラメータで
特定されるものである。そして、これら諸形態において
、構成単位は相互に凝集して二次粒子を形成している。
The obtained carbonaceous material has various forms such as powder and block, but in any case, its constituent units are specified by the above parameters. In these forms, the constituent units aggregate with each other to form secondary particles.

この場合、構成単位の体積平均粒径が500Å以下であ
るときには、二次粒子のそれは通常0.05〜300J
iIMとなる。そして本発明においては、この二次粒子
の体積平均粒径が100μ以下であることが好ましく、
更には50μ以下、とくに20−以下であることが好ま
しい。
In this case, when the volume average particle diameter of the structural unit is 500 Å or less, that of the secondary particles is usually 0.05 to 300 J.
It becomes iIM. In the present invention, it is preferable that the volume average particle diameter of the secondary particles is 100μ or less,
Furthermore, it is preferably 50 microns or less, particularly 20 microns or less.

このような炭素質物粒子を成形して目的とする担持体が
製造される。すなわち、焼成して得られた炭素質物を適
宜な手段で粉砕して所定粒径の粉末とし、この粉末と結
着剤(例えばポリエチレンのようなポリオレフィン系熱
可塑性高分子の粉末)とを所定量比(例えば1重量比で
前者:後者=98〜80:2〜20)で混練し、この混
線物をペレット、シートなどに成形して多孔体とするの
である。
A desired carrier is manufactured by molding such carbonaceous material particles. That is, the carbonaceous material obtained by firing is pulverized by an appropriate means to form a powder with a predetermined particle size, and this powder and a binder (for example, a powder of a polyolefin thermoplastic polymer such as polyethylene) are mixed in a predetermined amount. They are kneaded at a ratio of 98 to 80:2 to 20 (for example, former: latter = 98 to 80: 2 to 20 by weight), and the mixed material is formed into pellets, sheets, etc. to form a porous body.

また、前述た出発源を予め任意の形状に賦形したのち上
記条件で炭素化して、これを担持体として用いることも
できる。
Alternatively, the above-mentioned starting source may be previously shaped into an arbitrary shape and then carbonized under the above conditions, and this may be used as a support.

なお、担持体の比表面積の調節は、例えば水蒸気、炭酸
ガスのような酸化性ガスを用いた賦活化処理を適用すれ
ばよい。
Note that the specific surface area of the support may be adjusted by applying an activation treatment using an oxidizing gas such as water vapor or carbon dioxide gas, for example.

本発明の負極体は、上記担持体にLiまたはLiを主体
とするアルカリ金属を担持せしめて製造される。
The negative electrode body of the present invention is manufactured by making the above-mentioned carrier support Li or an alkali metal mainly composed of Li.

このときの担持の方法としては、化学的方法、電気化学
的方法、物理的方法などがあるが、例えば、所定濃度の
し1イオン又はアルカリ金属イオンを含む電解液中に上
記した粉末成形体である担持体を浸漬しかつ対極にリチ
ウムを用いてこの担持体を陽極にして電解含浸する方法
を適用することができる。かくすることにより、Liイ
オン又はアルカリ金属イオンは担持体の層間にドープさ
れてそこに担持されることになる。なお、このような活
物質の担持は、担持体に限らず正極体の相持体に対して
も又は両極に対して行なってもよい。
Supporting methods at this time include chemical methods, electrochemical methods, and physical methods. A method can be applied in which a certain carrier is immersed and electrolytically impregnated using lithium as a counter electrode and the carrier as an anode. By doing so, Li ions or alkali metal ions are doped between the layers of the carrier and supported therein. Note that the active material may be supported not only on the carrier but also on the supporting body of the positive electrode body or on both electrodes.

本発明の二次電池において、例えば負極体では充電時に
Liイオンのドープ現象が起り、また放電時には負極体
に担持されているLiイオンの脱ドープ現象が生起して
、可逆的な電気化学的酸化還元反応が充放電に伴って進
行するため、負極体がLi箔であった場合にその表面で
生起したデンドライト形状の電析物の形成はなくなるの
である。したがって、自己放電は小さくなり、充放電サ
イクル特性を大幅に向上しうる。
In the secondary battery of the present invention, for example, a doping phenomenon of Li ions occurs in the negative electrode body during charging, and a dedoping phenomenon of Li ions supported on the negative electrode body occurs during discharging, resulting in reversible electrochemical oxidation. Since the reduction reaction progresses with charging and discharging, the formation of dendrite-shaped deposits that occur on the surface of the negative electrode when it is made of Li foil disappears. Therefore, self-discharge is reduced and charge-discharge cycle characteristics can be significantly improved.

次に、第1図を参照して本発明の非水溶媒二次電池の構
成について説明する0図において、正極端子を兼ねる正
極缶(1)内には正極体(2)が正極缶(1)の底部に
着設収納されている。
Next, in FIG. 0, which describes the structure of the non-aqueous solvent secondary battery of the present invention with reference to FIG. ) is installed and stored at the bottom.

この正極体は、とくに限定されないが、例えば、V20
5 、MoO3、WO3、Ti S2、CuS、NrP
Ss、FePS3 、VSe2などの遷移金属カルコゲ
ン化合物を活物質とし、この活物質とカーボン粉末およ
びニッケル粉末と結着剤とを混合、シート化金属芯体(
集電体)と一体化して得られたものなどが使用される。
This positive electrode body is not particularly limited, but for example, V20
5, MoO3, WO3, TiS2, CuS, NrP
A transition metal chalcogen compound such as Ss, FePS3, or VSe2 is used as an active material, and this active material, carbon powder, nickel powder, and a binder are mixed to form a sheet metal core (
Those obtained by integrating with a current collector) are used.

そして。and.

正極体(2)上にはセパレータ(3)を介して負極体(
4)が積層されている。
On the positive electrode body (2), the negative electrode body (
4) are laminated.

電解液を保持するセパレータ(3)は、保液性に優れた
材料、例えば、ポリオレフィン系樹脂の不織布よりなる
。そして、このセパレータ(3)には、プロピレンカー
ボネート、1,2−ジメトキシエタンまたはγ−ブチル
ラクトン等の非プロトン性有機溶媒に、LiC交04+
LiA文On  、 L i BF4 、 T、 i 
PFsまたはLiAsF6等の電解質を溶解せしめた所
定濃度の非水電解液が含浸されている。
The separator (3) that holds the electrolyte is made of a material with excellent liquid retention properties, such as a nonwoven fabric made of polyolefin resin. This separator (3) contains LiC 04+ in an aprotic organic solvent such as propylene carbonate, 1,2-dimethoxyethane, or γ-butyl lactone.
LiA sentence On, Li BF4, T, i
It is impregnated with a non-aqueous electrolyte of a predetermined concentration in which an electrolyte such as PFs or LiAsF6 is dissolved.

負極体(4)は1本発明の上述した特性を有する炭素質
物の担持体を結着・成形し、活物質としてLiを担持さ
せたものであり、負極端子も兼ねる負極缶(5)内に着
設されている。
The negative electrode body (4) is made by bonding and molding a carbonaceous material carrier having the above-mentioned characteristics of the present invention to support Li as an active material, and is placed in a negative electrode can (5) which also serves as a negative electrode terminal. It has been installed.

これら正極体(2)、セパレータ(非水電解液)(3)
、および負極体(4)は全体として発電要素を構成する
。そして、この発電要素が正極缶(1)および負極缶(
5)から成る電池容器に内蔵されて電池が組立てられる
These positive electrode bodies (2), separators (non-aqueous electrolyte) (3)
, and the negative electrode body (4) constitute a power generation element as a whole. This power generation element is then connected to a positive electrode can (1) and a negative electrode can (
5) The battery is assembled into a battery container.

6は正中負極体を分ける絶縁バッキングであり、電池は
正極缶(1)の開口部を内方向へ折曲させて密封されて
いる。
6 is an insulating backing that separates the positive and negative electrode bodies, and the battery is sealed by bending the opening of the positive electrode can (1) inward.

(発明の実施例) (1)正極体の製造 ■205粉末9gとwo3粉末2.5g(VzOsに対
し 17 、9%ル%) ’Ft混合混合−の混合物を
1100℃で4時間溶融した。得られた溶融物をドライ
アイスで冷却しである銅板の上に流下して急冷し、つい
で平均粒径3μmに粉砕した。
(Embodiments of the Invention) (1) Manufacture of positive electrode body ■ A mixture of 9 g of 205 powder and 2.5 g of WO3 powder (17.9% with respect to VzOs)' Ft mixture was melted at 1100° C. for 4 hours. The resulting melt was cooled with dry ice and poured onto a copper plate for rapid cooling, and then ground to an average particle size of 3 μm.

この固溶体の粉末5gと粉末状のポリテトラフルオロエ
チレン0.5gとを混練し、得られた混練物をロール成
形して厚み0.4腸mのシートとした。
5 g of this solid solution powder and 0.5 g of powdered polytetrafluoroethylene were kneaded, and the resulting kneaded product was roll-formed to form a sheet with a thickness of 0.4 mm.

このシートの片面を集電体である線径0.1am、60
メツシユのステンレス鋼ネットに圧着して正極体とした
One side of this sheet is a current collector with a wire diameter of 0.1 am, 60
It was crimped onto a mesh stainless steel net to form a positive electrode body.

(2)負極体の製造 オルトクレゾール108g、バラホルムアルデヒド32
gおよびエチルセロソルブ240gを硫酸Logと共に
115℃で反応させた0反応終了後、ここにN a H
COs 17 gと水30gを加えて中和した。ついで
、高速で攪拌しなから水2fL中に上記反応液を投入し
、沈澱した生成物をか別乾燥して115gの線状高分子
量ノボラック樹脂を得た。この樹脂の数平均分子量を蒸
気圧法(メチルエチルケトン中、40℃)により測定し
たところ、2600であった。
(2) Manufacture of negative electrode body 108 g of orthocresol, 32 g of rose formaldehyde
After the completion of the reaction, 240 g of ethyl cellosolve and 240 g of ethyl cellosolve were reacted with Log sulfuric acid at 115°C.
It was neutralized by adding 17 g of COs and 30 g of water. Then, the reaction solution was poured into 2 fL of water while stirring at high speed, and the precipitated product was separated and dried to obtain 115 g of a linear high molecular weight novolak resin. The number average molecular weight of this resin was measured by vapor pressure method (in methyl ethyl ketone, 40°C) and was found to be 2,600.

得られたノボラック樹脂2.25gとへキサミン0.2
5gとをロールで溶融混練したのち、混練物を窒素雰囲
気中でガラス容器に収容し、窒素雰囲気中において25
0℃で2時間加熱処理をした。
2.25g of the obtained novolak resin and 0.2g of hexamine
After melting and kneading 5g with a roll, the kneaded product was placed in a glass container in a nitrogen atmosphere, and 25g was melted in a nitrogen atmosphere.
Heat treatment was performed at 0°C for 2 hours.

得られた熱処理物を電気炉内にセットし、窄素気流中、
昇温速度り0℃/分で1900℃にまで昇温し、1時間
保持した。黒色の炭素質物が得られた。これを試料aと
する。
The obtained heat-treated product was placed in an electric furnace and heated in a concentrated air stream.
The temperature was raised to 1900°C at a heating rate of 0°C/min and held for 1 hour. A black carbonaceous material was obtained. This is designated as sample a.

この試料のH/Cは0.04.dQQ2は3.6OA、
Lcは16人、2dlIOは2.42A、Laは23人
であり、G値は0.68であった。
The H/C of this sample is 0.04. dQQ2 is 3.6OA,
Lc was 16 people, 2dlIO was 2.42A, La was 23 people, and G value was 0.68.

また、試料aにつき、電子顕微鏡写真を撮影し、この写
真を基にして体積平均粒径を算出した。すなわち、写真
において1辺2cmの正方形区画を任意に選定し、そこ
に存在する粒子の粒径(di)を測定しΣ(di)’/
(di)”の式から粒径を算出し、3区画における平均
値として求めた。その結果、体積平均粒径は300Å以
下であった。
Further, an electron micrograph was taken for sample a, and the volume average particle diameter was calculated based on this photograph. That is, a square section of 2 cm on a side is arbitrarily selected in the photograph, the particle size (di) of the particles present there is measured, and Σ(di)'/
The particle size was calculated from the formula ``(di)'' and determined as an average value in three sections. As a result, the volume average particle size was 300 Å or less.

試料aを粉砕し、体積平均粒径が14戸の粒子群とした
。この粒子群における比表面積をBET法で測定したと
ころ18m”7gであった。
Sample a was pulverized to form a particle group with a volume average particle size of 14 units. The specific surface area of this particle group was measured by the BET method and was found to be 18 m''7 g.

ついでこの粉末9.5gとポリエチレン粉末085gと
を混合し、この混合物50mgを加圧成形して厚み0.
5mi+のペレットにした。
Next, 9.5 g of this powder and 085 g of polyethylene powder were mixed, and 50 mg of this mixture was pressure-molded to a thickness of 0.
It was made into 5mi+ pellets.

ついでこのベレットを濃度1モル/又のLiイオン電解
液中に浸漬し、このベレットを陽極としLiを陰極とす
る電解処理に付した。電解条件は、浴温20℃、電流密
度0.5mA/c■2.電解時間15時間とした。この
ような処理により担持体(ペレット)には容量1 、 
OmAhのLiを担持した負極体が得られた。
Next, this pellet was immersed in a Li ion electrolyte solution having a concentration of 1 mol/mole, and subjected to an electrolytic treatment using the pellet as an anode and Li as a cathode. The electrolytic conditions were a bath temperature of 20°C and a current density of 0.5 mA/c. The electrolysis time was 15 hours. Through such treatment, the carrier (pellet) has a capacity of 1,
A negative electrode body supporting OmAh of Li was obtained.

(3)電池の組立 ステンレス鋼製の正極缶に、上記した正極体を集電体を
下にして着設し、その上にセパレータとしてのポリプロ
ピレン不織布を載置したのち、そこにL i CfLO
<を濃度1モル/lでプロピレンカーボネートに溶解せ
しめた非水電解液を含浸せしめた。ついでその上に上記
負極体を載置して発電要素を構成した。
(3) Assembly of the battery The above-mentioned positive electrode body was installed in a stainless steel positive electrode can with the current collector facing down, and after placing a polypropylene nonwoven fabric as a separator on top of it, Li CfLO was placed thereon.
It was impregnated with a non-aqueous electrolyte prepared by dissolving << in propylene carbonate at a concentration of 1 mol/l. Then, the negative electrode body was placed thereon to form a power generation element.

なお、正極体も、電池に組込むに先立ち、濃度1モル/
lのLIイオン電解液中に浸漬し、正極体を陽極とし、
リチウムを陰極とする電解処理に付した。電解条件は、
浴温20℃、電流密度0 、5mA/cm2.″i!解
時開時間15時間た。このような処理により、正極体に
は容量8.OmAhのLiが担持されたことになる。
In addition, the positive electrode body should also be prepared at a concentration of 1 mol/min before being incorporated into the battery.
immersed in LI ion electrolyte of 1 ml, using the positive electrode body as an anode,
It was subjected to electrolytic treatment using lithium as a cathode. The electrolytic conditions are
Bath temperature 20°C, current density 0, 5mA/cm2. "i!The opening time was 15 hours. Through this treatment, Li with a capacity of 8.0 mAh was supported on the positive electrode body.

かくして、第1図に示したようなボタン形二次電池を製
作した。
In this way, a button-shaped secondary battery as shown in FIG. 1 was manufactured.

比較のために、負極体がLi箔そのものであったことを
除いては実施例と同様の電池を製作し、これを比較例1
電池とした。
For comparison, a battery similar to that in Example except that the negative electrode body was made of Li foil itself was fabricated, and this was used as Comparative Example 1.
It was used as a battery.

また、tg持体の構造パラメータおよび物性等が第1表
に示した値であることを除いては実施例と同様の電池を
製作し、これを比較例2電池とした。
In addition, a battery similar to that of the example was manufactured, except that the structural parameters and physical properties of the tg carrier were as shown in Table 1, and this was used as a comparative example 2 battery.

第1表 なお、この担持体の構成単位については実施例の場合と
同様に電子顕微鏡写真を撮影してその体積平均粒径を算
出したところ、500人より大きかった。
Table 1 Note that for the constituent units of this support, electron micrographs were taken in the same manner as in Examples, and the volume average particle diameter was calculated, and it was found to be larger than 500 particles.

(4)各電池の特性 これらの電池につき、3〜2vの間で定電圧充電−20
にΩ定抵抗放電を反復し、このときの各サイクルにおけ
る電池の容量維持率(%:初期容量をlOOとする)を
測定した。その結果を第2図に示した。
(4) Characteristics of each battery For these batteries, constant voltage charging between 3 and 2V -20
Ω constant resistance discharge was repeated, and the capacity retention rate (%: initial capacity is taken as lOO) of the battery in each cycle was measured. The results are shown in Figure 2.

また、3.5〜2.OVの間で定電圧充電−20にΩ定
抵抗放電を反復し、そのときの各サイクルにおける電池
の容量維持率を測定して過充電サイクル評価を行なった
。その結果を第3図に示した。
Also, 3.5 to 2. Overcharge cycle evaluation was performed by repeating constant voltage charging at -20Ω and constant resistance discharging between OV and measuring the capacity retention rate of the battery in each cycle. The results are shown in Figure 3.

さらに、20℃貯蔵中の自己放電評価実験を行ない、貯
蔵前の容量に対する容量維持率を測定し、その結果を第
4図に示した。
Furthermore, a self-discharge evaluation experiment during storage at 20° C. was conducted to measure the capacity retention rate relative to the capacity before storage, and the results are shown in FIG.

各図から明らかなように、本発明の電池は充放電サイク
ル評価、過充電サイクル評価および自己放電評価のいず
れの場合においても放電が可能で、またその容量の劣化
が遅く充放電サイクル寿命は著しく長くなることが判明
した。
As is clear from each figure, the battery of the present invention can be discharged in all cases of charge/discharge cycle evaluation, overcharge cycle evaluation, and self-discharge evaluation, and its capacity deteriorates slowly and the charge/discharge cycle life is significantly shortened. It turned out to be long.

[発明の効果] 以上の説明で明らかなように1本発明の二次電池は過充
電に影響されることなく充放電サイクル寿命が長く、ま
た充電時にあっては活物質であるLi又はLlを主体と
するアルカリ金属を安定した形で担持体に定着せしめる
ことができるため、安定した高容量、すなわち大電流放
電が可能となり、さらに自己放電特性も良く信頼性の高
い電池であるので、その工業的価値は大である。
[Effects of the Invention] As is clear from the above explanation, the secondary battery of the present invention has a long charge/discharge cycle life without being affected by overcharging, and also uses the active material Li or Ll during charging. Since the main alkali metal can be stably fixed on the carrier, stable high capacity, that is, large current discharge is possible, and the battery has good self-discharge characteristics and is highly reliable. The value is great.

なお、説明はボタン形構造の二次電池について進めたが
、本発明の技術思想はこの構造のものに限定されるもの
ではなく、例えば、円筒形、扁平形、角形等の形状の非
水溶媒二次電池に適用することもできる。
Although the explanation has been given regarding a secondary battery having a button-shaped structure, the technical idea of the present invention is not limited to this structure, and for example, non-aqueous solvents having a cylindrical, flat, or square shape may be used. It can also be applied to secondary batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるボタン形構造の非水溶
媒二次電池の断面略図である。 1・・・正極缶、     2・・・正極体。 3・・・セパレータ(非水電解液)。 4・・・負極体、     5・・・負極毎。 6・・・絶縁バッキング、 7・・・集電体第2図、第
3図は本発明の実施例、比較例における電池の充放電サ
イクル−容量維持率との関係を表わす図であり、第4図
は20℃貯蔵中の自己放電の様子を経過日数に対する容
量維持率の値で示したものである。 第1図 0     50    too    150   
200膚−ツ(電 “すイ クルR(巨り一 第2図
FIG. 1 is a schematic cross-sectional view of a button-shaped non-aqueous solvent secondary battery according to an embodiment of the present invention. 1... Positive electrode can, 2... Positive electrode body. 3...Separator (non-aqueous electrolyte). 4... Negative electrode body, 5... Each negative electrode. 6... Insulating backing 7... Current collector FIGS. 2 and 3 are diagrams showing the relationship between charge/discharge cycles and capacity retention rates of batteries in Examples and Comparative Examples of the present invention. Figure 4 shows the state of self-discharge during storage at 20° C. in terms of the capacity retention rate versus the number of days that have passed. Figure 1 0 50 too 150
200 skins (electronic “Suikuru R”)

Claims (1)

【特許請求の範囲】[Claims] (1)活物質と該活物質を担持する担持体とから成る負
極体を備えた非水溶媒二次電池において、(A)該活物
質がリチウムまたはリチウムを主体とするアルカリ金属
であり、 (B)該担持体が、 (i)水素/炭素の原子比が0.15未満;(ii)波
長5145Åのアルゴンイオンレーザ光を用いたラマン
スペクトル分析において、下記式: 1580±100cm^−^1の波数域におけるスペク
トル強度の積分値/1360±100cm^−^1の波
数域におけるスペクトル強度の積分値▲数式、化学式、
表等があります▼ で示されるG値が2.5未満; (iii)X線広角回折法による(002)面の面間隔
(d_0_0_2)が3.37Å以上、C軸方向の結晶
子の大きさ(Lc)が150Å以下; (iv)体積平均粒径が500Å以下; である炭素質物粒子を構成単位とし、かつ比表面積が1
m^2/g以上であることを特徴とする非水溶媒二次電
池。
(1) In a non-aqueous solvent secondary battery equipped with a negative electrode body consisting of an active material and a carrier supporting the active material, (A) the active material is lithium or an alkali metal mainly composed of lithium; B) The support has (i) a hydrogen/carbon atomic ratio of less than 0.15; (ii) Raman spectrum analysis using argon ion laser light with a wavelength of 5145 Å, as determined by the following formula: 1580 ± 100 cm^-^1 Integral value of spectral intensity in the wave number range of /1360±100cm^-^1 ▲Mathematical formula, chemical formula,
There are tables, etc. ▼ G value shown by is less than 2.5; (iii) Interplanar spacing (d_0_0_2) of (002) plane by X-ray wide-angle diffraction method is 3.37 Å or more, crystallite size in C-axis direction (Lc) is 150 Å or less; (iv) the volume average particle diameter is 500 Å or less; and the specific surface area is 1
A non-aqueous solvent secondary battery characterized in that it is m^2/g or more.
JP62109790A 1987-05-07 1987-05-07 Nonaqueous solvent secondary battery Granted JPS63276873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62109790A JPS63276873A (en) 1987-05-07 1987-05-07 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62109790A JPS63276873A (en) 1987-05-07 1987-05-07 Nonaqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPS63276873A true JPS63276873A (en) 1988-11-15
JPH0544143B2 JPH0544143B2 (en) 1993-07-05

Family

ID=14519285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62109790A Granted JPS63276873A (en) 1987-05-07 1987-05-07 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPS63276873A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000717A1 (en) * 1991-06-20 1993-01-07 Mitsubishi Petrochemical Co., Ltd. Electrode for secondary battery
FR2728252A1 (en) * 1994-12-16 1996-06-21 Moli Energy 1990 Ltd PREGRAPHIC CARBONACEOUS INSERTION COMPOUNDS AND THEIR USE AS ANODES IN RECHARGEABLE BATTERIES
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US8620059B2 (en) 2007-12-13 2013-12-31 Fpinnovations Characterizing wood furnish by edge pixelated imaging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838627A (en) * 1994-08-04 1996-02-13 Meiwa Gravure Kk Band-shaped body for magnetic traetment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000717A1 (en) * 1991-06-20 1993-01-07 Mitsubishi Petrochemical Co., Ltd. Electrode for secondary battery
FR2728252A1 (en) * 1994-12-16 1996-06-21 Moli Energy 1990 Ltd PREGRAPHIC CARBONACEOUS INSERTION COMPOUNDS AND THEIR USE AS ANODES IN RECHARGEABLE BATTERIES
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US8620059B2 (en) 2007-12-13 2013-12-31 Fpinnovations Characterizing wood furnish by edge pixelated imaging

Also Published As

Publication number Publication date
JPH0544143B2 (en) 1993-07-05

Similar Documents

Publication Publication Date Title
JP3430614B2 (en) Non-aqueous electrolyte secondary battery
JP3291756B2 (en) Non-aqueous solvent secondary battery and its electrode material
JP3154719B2 (en) Non-aqueous electrolyte secondary battery
JPS63276873A (en) Nonaqueous solvent secondary battery
JPS63193463A (en) Nonaqueous solvent secondary battery
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JP2726285B2 (en) Rechargeable battery
JPS63114056A (en) Nonaqueous solvent secondary battery
JPH0580791B2 (en)
JP3056519B2 (en) Non-aqueous solvent secondary battery
JP3140443B2 (en) Rechargeable battery
JP3154714B2 (en) Electrodes for secondary batteries
JP3291758B2 (en) Non-aqueous solvent secondary battery and its electrode material
JPH01274360A (en) Secondary battery
JPS6369155A (en) Nonaqueous electrolyte secondary battery
JP2957202B2 (en) Rechargeable battery
JPH02267873A (en) Nonaqueous solvent secondary cell
JPH053110B2 (en)
JP2691555B2 (en) Rechargeable battery
JP2801599B2 (en) Rechargeable battery
JPH04237949A (en) Electrode material
JPS63193462A (en) Nonaqueous solvent secondary battery
JPH04296471A (en) Non-aqueous electrolyte secondary battery
JPS63298963A (en) Nonaqueous solvent secondary battery
JPS63304572A (en) Nonaqueous solvent secondary cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees