JPH02121258A - Secondary cell - Google Patents

Secondary cell

Info

Publication number
JPH02121258A
JPH02121258A JP63273146A JP27314688A JPH02121258A JP H02121258 A JPH02121258 A JP H02121258A JP 63273146 A JP63273146 A JP 63273146A JP 27314688 A JP27314688 A JP 27314688A JP H02121258 A JPH02121258 A JP H02121258A
Authority
JP
Japan
Prior art keywords
metal
electrode body
active material
negative electrode
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63273146A
Other languages
Japanese (ja)
Other versions
JP2726285B2 (en
Inventor
Mitsutaka Miyabayashi
宮林 光孝
Hiroshi Yui
浩 由井
Katsuharu Ikeda
克治 池田
Hiromi Nose
能勢 博美
Kenji Tsuchiya
土屋 謙二
Kuniaki Inada
稲田 圀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Mitsubishi Petrochemical Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63273146A priority Critical patent/JP2726285B2/en
Priority to US07/305,795 priority patent/US4945014A/en
Priority to CA000590574A priority patent/CA1311013C/en
Priority to EP89102323A priority patent/EP0328131B1/en
Priority to DE89102323T priority patent/DE68910843T2/en
Publication of JPH02121258A publication Critical patent/JPH02121258A/en
Application granted granted Critical
Publication of JP2726285B2 publication Critical patent/JP2726285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the cell capacity and the self-discharge property by making an active substance with lithium or an alkaline metal including lithium as the main component, and a holding body with a composite material obtained by making an organic metal compound including a metal to alloy with an active substance react to a specific carbonaceous substance. CONSTITUTION:The active substance is lithium or an alkaline metal including lithium as the main component, and the active substance holding body has the atomic ratio of hydrogen/carbon less than 0.15; the surface interval of the 002 surface on the X-ray wide-angle diffraction method 3.37Angstrom or more; and the size of the crystalline in the c axis direction less than 150Angstrom . Under the condition an organic metal compound including a metal to alloy with an active substance is contacted to such a carbonaceous substance, a composite material of a carbonaceous substance obtained by pyrolyzing the organic metal compound and the metal to alloy with the active substance is used to form the cell. As a result, the charge and discharge cycle is extended, and the charge and discharge property under a large current is also improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は二次電池に関し、更に詳しくは、小型で、充放
電サイクル寿命が長く、安定な高容量を有する二次電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a secondary battery, and more particularly to a secondary battery that is small, has a long charge/discharge cycle life, and has a stable high capacity.

(従来技術) 正極体の主要成分がT i S 2、M o S 2の
ような遷移金属のカルコゲン化合物であり、負極体がL
lまたはLlを主体とするアルカリ金属である二次電池
は、高エネルギー密度を有するので商品化の努力が払わ
れている。
(Prior art) The main component of the positive electrode body is a chalcogen compound of a transition metal such as T i S 2 or Mo S 2, and the negative electrode body is L
BACKGROUND ART Efforts are being made to commercialize secondary batteries, which are alkali metals mainly composed of L or Ll, and have a high energy density.

また、正極にポリアセチレン等の導電性高分子を、負極
体にLlまたはLiを主体とするアルカノ金属を用いた
二次電池も研究されている。
Further, secondary batteries using a conductive polymer such as polyacetylene for the positive electrode and an alkanometal mainly composed of Ll or Li for the negative electrode are also being studied.

(発明が解決しようとする課題) しかしながら、かかる二次電池においては、負極体がL
l箔またはLlを主体とするアルカリ金属の箔そのもの
であることに基づく問題が生しでいる。
(Problem to be solved by the invention) However, in such a secondary battery, the negative electrode body is
Problems arise due to the fact that the foil itself is an alkali metal foil mainly composed of Ll or Ll.

すなわち、電池の放電時には負極体からLiがLiイオ
ンとなって電解液中に移動し、充電時にはこのLiイオ
ンが金属Liとなって再び負極体に電析するが、この充
放電サイクルを反復させるとそれに伴って電析する金属
Liはデンドライト状となることである。このデンドラ
イト状Liは極めて活性な物質であるため、電解液を分
解せしめ、その結果、電池の充放電サイクル特性が劣化
するという不都合が生ずる。さらにこれが成長していく
と、最後には、このデンドライト状の金属Li電析物が
セパレータを貫通して正極体に達し、短絡現象を起すと
いう問題を生ずる。別言すれば、充放電サイクル寿命が
短いという問題が生ずるのである。
That is, when the battery is discharged, Li from the negative electrode body becomes Li ions and moves into the electrolyte solution, and during charging, these Li ions become metal Li and are deposited on the negative electrode body again, but this charge-discharge cycle is repeated. As a result, the metal Li deposited becomes dendrite-like. Since this dendrite-like Li is an extremely active substance, it decomposes the electrolyte, resulting in the disadvantage that the charge/discharge cycle characteristics of the battery deteriorate. If this continues to grow, the dendrite-like metal Li deposits will eventually penetrate the separator and reach the positive electrode body, causing a short circuit phenomenon. In other words, the problem arises that the charge/discharge cycle life is short.

このような聞届を回避するために、負極体として有機化
合物を焼成した炭素質物な担持体とし、これにLiまた
はLiを主体とするアルカリ金属を担持せしめて構成す
ることが試みられている。
In order to avoid such problems, attempts have been made to construct the negative electrode by using a carbonaceous material carrier prepared by firing an organic compound and supporting Li or an alkali metal mainly composed of Li.

このような負極体を用いることにより、Liデンドライ
トの析出は防止されるようになったが、しかし一方では
、この負極体を組込んだ電池は同サイズの一次i71に
比べてその放電容量がはるかに小さく、また、自己放電
の大きさについても必ずしも満足する程に低減されてい
なかった。
By using such a negative electrode body, the precipitation of Li dendrites has been prevented, but on the other hand, a battery incorporating this negative electrode body has a much higher discharge capacity than a primary i71 of the same size. Furthermore, the magnitude of self-discharge was not necessarily reduced to a satisfactory level.

本発明は、かかる状況の下に、より大きな電池容量を有
し、自己放電特性が改善された二次電池の提供を目的と
するものである。
Under such circumstances, the present invention aims to provide a secondary battery having a larger battery capacity and improved self-discharge characteristics.

(課題を解決するための手段) 本発明者らは上記聞届を解決すべく、負極体に関して鋭
意研究を重ねた結果、負極体を後述する特徴を有する担
持体に活物質を担持せしめて構成すると、上述の目的達
成のために有効であるとの事実を見出し、本発明に到っ
た。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present inventors have conducted intensive research on negative electrode bodies, and have found that the negative electrode body is constructed by carrying an active material on a support having the characteristics described below. Then, they discovered that it is effective for achieving the above-mentioned object, and arrived at the present invention.

すなわち、本発明の二次電池は、活物質と該活物質を担
持する担持体とから成る負極体を具備しており、 (a)該活物質が、リチウムまたはリチウムを主体とす
るアルカリ金属であり、 (b)該担持体が、 (イ)水素/炭素の原子比が015未満。
That is, the secondary battery of the present invention includes a negative electrode body consisting of an active material and a carrier supporting the active material, and (a) the active material is lithium or an alkali metal mainly composed of lithium. (b) the support has (a) a hydrogen/carbon atomic ratio of less than 0.015;

かつ、 Dr)XFA広f/′1回折法による(002)面の面
間隔(〔」oo2)が337Å以上:8よびC軸方向の
結晶子の大きさ(Lc)が150Å以下 である炭素質物に、該活物質と合金可能な金属を含有す
る有機金属化合物を接触させた状態で、該有機金属化合
物を熱分解して得られる、炭素質物と該活物質と合金可
能な金属との複合物材料からなる、 ことを特徴とする。
and a carbonaceous material in which the interplanar spacing ([''oo2) of the (002) plane determined by the Dr) XFA wide f/'1 diffraction method is 337 Å or more: 8, and the crystallite size (Lc) in the C-axis direction is 150 Å or less. A composite of a carbonaceous material and a metal that can be alloyed with the active material, which is obtained by thermally decomposing the organometallic compound while in contact with the organometallic compound containing the metal that can be alloyed with the active material. It is characterized by being made of material.

本発明の電池は、負極体が上記した構成をとるところに
特徴があり、他の要素は従来の二次電池と同じであって
もよい。
The battery of the present invention is characterized in that the negative electrode body has the above-described configuration, and other elements may be the same as conventional secondary batteries.

本発明にかかる負極体において、活物質はLiまたはL
 iを主体とするアルカリ金属であるが、この活物質は
、電池の充放電に対応して負極体を出入する。
In the negative electrode body according to the present invention, the active material is Li or L.
This active material, which is mainly an alkali metal containing i, moves in and out of the negative electrode body in response to charging and discharging of the battery.

本発明における負極体を構成する活物質の担持体は、後
述する特性を有する炭素質物に、活物質と合金可能な金
属を含有する有機金属化合物を接触させた状態で、該有
機金属化合物を熱分解して得られる、炭素質物と金属と
の複合物材料からなる。
The support for the active material constituting the negative electrode body in the present invention is produced by heating an organometallic compound containing a metal that can be alloyed with the active material in a state where the carbonaceous material having the characteristics described below is brought into contact with the organometallic compound containing a metal that can be alloyed with the active material. Consists of a composite material of carbonaceous material and metal obtained by decomposition.

すなわち、本発明において用いられる炭素質物は、水素
/炭素の原子比(H/C)が0.15未満で、xtji
l広角回折法による(002)面の面間隔d。。2が3
.37Å以上、C軸方向の結晶子の大きさ(Lc)が1
50Å以下である、という特性を有する。
That is, the carbonaceous material used in the present invention has a hydrogen/carbon atomic ratio (H/C) of less than 0.15, and xtji
l Planar spacing d of (002) plane by wide-angle diffraction method. . 2 is 3
.. 37 Å or more, the crystallite size (Lc) in the C-axis direction is 1
It has the characteristic that it is 50 Å or less.

この炭素質物には、他の原子1例えば窒素、酸素、ハロ
ゲン等の原子が好ましくは7モル%以下、さらに好まし
くは4モル%以下、特に好ましくは2モル%以下の割合
で存在していてもよい。
Other atoms such as nitrogen, oxygen, halogen, etc. may be present in this carbonaceous material in a proportion of preferably 7 mol % or less, more preferably 4 mol % or less, particularly preferably 2 mol % or less. good.

1−1 / Cは好ましくは0.10未満、さらに好ま
しくは0.07未満、特に好ましくは0.05未満であ
る6 また、(002)面の面間隔(doo2)は、好ましく
は339〜3.75人、さらに好ましくは3,41〜3
.70人、特に好ましくは、345〜3.70人、1良
も好ましくは3.51〜3.70人であり:C軸方向の
結晶子の大きさ1、cは好ましくは5〜150人、さら
に好ましくは10〜80人、特に好ましく(ま12〜7
0人である。
1-1/C is preferably less than 0.10, more preferably less than 0.07, particularly preferably less than 0.05.6 Also, the interplanar spacing (doo2) of the (002) plane is preferably 339 to 3. .75 people, more preferably 3,41-3
.. 70 people, particularly preferably 345 to 3.70 people, 1 good is also preferably 3.51 to 3.70 people: the crystallite size in the C axis direction is 1, c is preferably 5 to 150 people, More preferably 10 to 80 people, particularly preferably 12 to 7 people
There are 0 people.

これらのパラメータ、すなわちH/C,d、o2および
Lcのいずれかが上記範囲から逸脱している場合は、負
極体における充放電時の過電圧が大きくなり、その結果
、負極体からガスが発生して電池の安全性が著しく損わ
れるばかりでな(充放電(tイクル特性も低下する。
If any of these parameters, namely H/C, d, o2, and Lc, deviate from the above range, the overvoltage during charging and discharging in the negative electrode body will increase, and as a result, gas will be generated from the negative electrode body. This not only significantly impairs the safety of the battery (charge/discharge characteristics also deteriorate).

さらに、本発明にかかる負極体の担持体に用いる複合物
材料を構成する炭素質物にあっては、次に述べる特性を
有することが好ましい。
Furthermore, the carbonaceous material constituting the composite material used for the carrier of the negative electrode body according to the present invention preferably has the following characteristics.

すなわち、波長5145人のアルゴンイオンレーザ光を
用いたラマンスペクトル分析において、下記式: で定義されるG値が2,5未満であることが好ましく、
さらに好ましくは20未満であり、特に好ましくは02
以上12未涌である。
That is, in Raman spectrum analysis using argon ion laser light with a wavelength of 5145, the G value defined by the following formula is preferably less than 2.5,
More preferably less than 20, particularly preferably 02
That's 12 outstanding results.

ここで、G値とは、上述の炭素質物に対し波長5145
人のアルゴンイオンレーザ光を用いてラマンスペクトル
分析を行なった際にチャートに記録されているスペクト
ル強度曲線において、波数1580±100cm−’の
範囲内のスペクトル強度の積分値(面積強度)を波数1
360±100C(11−’の範囲内の面積強度で除し
た値を指し、その炭素質物の黒鉛化度の尺度に相当する
ものである。
Here, the G value is the wavelength of 5145 for the carbonaceous material mentioned above.
In the spectrum intensity curve recorded on the chart when Raman spectrum analysis was performed using human argon ion laser light, the integral value (area intensity) of the spectrum intensity within the range of wave number 1580 ± 100 cm-' is calculated as wave number 1
It refers to the value divided by the area intensity within the range of 360±100C (11-'), and corresponds to a measure of the degree of graphitization of the carbonaceous material.

すなわち、この炭素質物は結晶質部分と非結晶部分を有
していて、G値はこの炭素質組織における結晶質部分の
割合を示すパラメータであるといえる、 さらに、本発明に用いられる炭素質物にあっては、次の
条件を満足していることが望ましい。
In other words, this carbonaceous material has a crystalline portion and an amorphous portion, and the G value can be said to be a parameter indicating the ratio of the crystalline portion in this carbonaceous structure. If so, it is desirable that the following conditions be satisfied.

すなわち、X線広角回折分析における(110)面の面
間隔(d、8102倍の距離a o (= 2 d +
 to)が、好ましくは2.38人〜2.47人、さら
に好ましくは2.39人〜2.46A : a軸方向の
結晶子の大きさLaが好ましくは10Å以上、さらに好
ましくは15人〜150人、特に好ましくは19人〜7
0人である。
That is, the interplanar spacing (d, 8102 times the distance a o (= 2 d +
to) is preferably 2.38 to 2.47 people, more preferably 2.39 to 2.46A: the crystallite size La in the a-axis direction is preferably 10 Å or more, more preferably 15 people to 150 people, particularly preferably 19 to 7 people
There are 0 people.

本発明にかかる負極体の担持体に用いられる炭素質物は
、その体積平均粒径が好ましくは500μm以下、さら
に好ましくは05μm以上300μm以下、特に好まし
くはll1m以上150μm以下、最も好ましくは5u
m以上100μm以下の粒子である。
The carbonaceous material used for the carrier of the negative electrode body according to the present invention preferably has a volume average particle size of 500 μm or less, more preferably 05 μm or more and 300 μm or less, particularly preferably 11 m or more and 150 μm or less, and most preferably 5 μm or less.
Particles with a size of 5 m or more and 100 μm or less.

また、上記の炭素質物の粒子は、内部に細孔を有し、そ
の全細孔容積が、1.5xlO−”mff/g以上であ
ることが好ましく、より好ましくは2、Qx l 0−
3m!27g以上、さらに好ましくは3、Qx 10−
′3mj2/g以上、特に好ましくは4、OXIO−3
mβ/g以上である。また、平均細孔半径は、8〜10
0人であることが好ましく、より好ましくは10〜80
人、さらに好ましくは12〜60人、特1こ好ましくは
14〜40人である。
Further, the carbonaceous material particles have pores inside, and the total pore volume is preferably 1.5xlO-"mff/g or more, more preferably 2,QxlO-"mff/g or more.
3m! 27g or more, more preferably 3, Qx 10-
'3mj2/g or more, particularly preferably 4, OXIO-3
mβ/g or more. In addition, the average pore radius is 8 to 10
Preferably 0 people, more preferably 10 to 80 people
More preferably 12 to 60 people, particularly preferably 14 to 40 people.

全細孔容積および平均細孔半径は、定容法を用いて平i
すi圧力下で試料に吸着したガス量を測定することによ
り求める。
The total pore volume and average pore radius were calculated using the constant volume method.
It is determined by measuring the amount of gas adsorbed on a sample under pressure.

すなわち、本発明においで全細孔容積および平均細孔半
径は以下のようにして求めたものを意味する。
That is, in the present invention, the total pore volume and average pore radius mean those determined as follows.

全細孔容積は、細孔が例えば液体窒素により充填されて
いると仮定して、定容法を用いて求めた相対圧力P/P
、=0.995 (P:吸着ガスの蒸気圧、Po:冷却
温度での吸着ガスの飽和蒸気圧)において吸着した窒素
ガスの全容積(V、。5)を求め、次いで次式、 [式中、P、は大気圧fkgf/cm2) 、 Tは測
定温度(K)、V、は吸着したガスの分子容積(cm3
1モル;N2では34.7)、V、、、は液体窒素容積
(am3)であるコ により、細孔中に充填されている液体窒素量(V 、 
、qlに換算することによって求める。
The total pore volume is the relative pressure P/P determined using the constant volume method, assuming that the pores are filled with liquid nitrogen, for example.
, = 0.995 (P: vapor pressure of adsorbed gas, Po: saturated vapor pressure of adsorbed gas at cooling temperature), calculate the total volume (V, .5) of nitrogen gas adsorbed, and then use the following equation, [Equation P is the atmospheric pressure fkgf/cm2), T is the measurement temperature (K), and V is the molecular volume of the adsorbed gas (cm3).
1 mol; 34.7 for N2), V, is the liquid nitrogen volume (am3), and the amount of liquid nitrogen filled in the pores (V,
, ql.

次に平均細孔半径(γ、)は、上述の式(1)より求め
たvll、と、試料のBET比表面積(S)の値から、
次式 により換算して求める。なお、細孔は円筒形であると仮
定している。
Next, the average pore radius (γ,) is calculated from vll obtained from the above equation (1) and the BET specific surface area (S) of the sample.
It is calculated by converting using the following formula. Note that the pores are assumed to be cylindrical.

さらに、本発明にかかる負極体の担持体に用いられる炭
素質物は、その断面の平均半径が1mm以下の、好まし
くは500μm以下の、より好ましくは0.2μm以上
200μm以下の、さらに好ましくは05以上100μ
m以下の、特に好ましくは2μm以上50μm以下の、
繊維状もしくは棒状のものも望ましい。
Further, the carbonaceous material used for the carrier of the negative electrode body according to the present invention has an average cross-sectional radius of 1 mm or less, preferably 500 μm or less, more preferably 0.2 μm or more and 200 μm or less, and even more preferably 0.5 μm or more. 100μ
m or less, particularly preferably 2 μm or more and 50 μm or less,
Fiber-like or rod-like materials are also desirable.

また、これらの炭素質物の繊維等の内部にも、前記した
粒子状の炭素質物の場合と同様に、細孔を有し、その全
細孔容積が1.5XlO−3mQ/g以上であり、その
平均細孔半径が8〜100人であることが好ましい。
In addition, the fibers of these carbonaceous materials also have pores, as in the case of the particulate carbonaceous materials described above, and the total pore volume is 1.5XlO-3mQ/g or more, Preferably, the average pore radius is between 8 and 100 pores.

上述の炭素質物は、有機化合物を通常不活性ガス(M下
に、300〜3000°Cの温度で加熱・分解し、炭素
化させで得ることができる。
The above-mentioned carbonaceous material can be obtained by carbonizing an organic compound by heating and decomposing it at a temperature of 300 to 3000° C. usually under an inert gas (M).

出発源となるイf機化合物としては、具体的には1例え
ばセル〔J−ス、フェノール樹脂:ポリアクリロニトリ
ル、ポリ(α−ハロゲン化アクノロニトリル)などのア
クリル樹脂:ポリ塩化ビニル、ポリ塩化ビニリデン、ポ
リ塩素化塩化ビニルなどのハロゲン化ビニル樹脂、ポリ
アミドイミド樹脂、ポリアミド樹脂、ポリアセチレン、
ポリ(p−フェニレン)などの共役系樹脂のような任意
の有機高分子化合物1例えば、ナフタレン。フェナント
レン、アントラセン、トリフェニレン。
Examples of the if compound as a starting source include, for example, cell [J-S, phenolic resin: polyacrylonitrile, acrylic resin such as poly(α-halogenated acrylonitrile), polyvinyl chloride, polychlorinated Vinylidene, halogenated vinyl resins such as polychlorinated vinyl chloride, polyamideimide resins, polyamide resins, polyacetylene,
Any organic polymer compound such as conjugated resin such as poly(p-phenylene) 1 For example, naphthalene. Phenanthrene, anthracene, triphenylene.

ピレン、クリセン、ナフタセン、ビセン、ペリレン、ペ
ンタフェン、ペンタセンのような3員環以トのIifm
炭化水素化合物かがいに2個以七縮合してなる縮合環式
炭化水素化合物、または、上記化合物のカルボン酸、カ
ルボン酸無水物、カルボン酸イミドのような誘導体、上
記各化合物の混合物を主成分とする各種のピッチ:例え
ば、イントル、イソインドール、キノリン、イソキノリ
ン。
Iifm with three or more members such as pyrene, chrysene, naphthacene, bisene, perylene, pentaphene, and pentacene
A fused cyclic hydrocarbon compound formed by condensing two to seven hydrocarbon compounds, or a derivative of the above compound such as carboxylic acid, carboxylic acid anhydride, or carboxylic acid imide, or a mixture of the above compounds as the main component. Various pitches such as: intole, isoindole, quinoline, isoquinoline.

キノキサリン、フクラジン、カルバゾール、アクノジン
、フェナジン、ツェナトリジンのような3員環以上の複
素重環化合物が丘いに少なくとも2個以上結合するか、
または1個以上の3員環以Fの単環炭化水素化合物と結
合してなる縮合複素環化合物、上記各化合物のカルボン
酸、カルボン酸無水物、カルボン酸イミドのような誘導
体、川にベンゼンおよびそのカルボン酸、カルボン酸無
水物、カルボン酸イミドのような誘導体、すなわち、1
..2.4.5−テトラカルボン酸、その無水物または
そのジイミド、あるいはトルエン、キシレンなどをあげ
ることができる。
At least two or more heteroheavy ring compounds having three or more members such as quinoxaline, fuclazine, carbazole, acunodine, phenazine, and zenatridine are bonded to each other,
or fused heterocyclic compounds formed by bonding with one or more 3-membered or F monocyclic hydrocarbon compounds; derivatives of the above compounds such as carboxylic acids, carboxylic acid anhydrides, and carboxylic acid imides; Derivatives thereof such as carboxylic acids, carboxylic acid anhydrides, carboxylic acid imides, i.e. 1
.. .. Examples include 2.4.5-tetracarboxylic acid, its anhydride or its diimide, toluene, and xylene.

また、出発源としてカーボンブラック等の炭素質物を用
い、これをさらに加熱して炭素化を適当に進めて、本発
明にかかる負極体を構成する炭素質物としてもよい。
Alternatively, a carbonaceous material such as carbon black may be used as a starting source and further heated to appropriately advance carbonization to form the carbonaceous material constituting the negative electrode body according to the present invention.

本発明にかかる負極体を構成する活物質の担持体は、上
述した特定の炭素質物に、該活物質と合金可能な金属を
含有する有機金属化合物を接触させた状態で、該有機金
属化合物を熱分解して得られる炭素質物と金属との複合
物材料よりなるので、次に、活物質と合金可能な金属を
含有する有機金属化合物について述べる。
The carrier for the active material constituting the negative electrode body according to the present invention is prepared by contacting the above-mentioned specific carbonaceous material with an organometallic compound containing a metal that can be alloyed with the active material. Since it is made of a composite material of a carbonaceous material and a metal obtained by thermal decomposition, the organometallic compound containing a metal that can be alloyed with the active material will be described next.

活物質は、LiまたはLiを主体とするアルカノ金属で
あるから、活物質と合金可能な金属を含有する有機金属
化合物としては、通常、Liと合金可能な金属を含有す
る有機金属化合物である。
Since the active material is Li or an alkanometal mainly composed of Li, the organometallic compound containing a metal that can be alloyed with the active material is usually an organometallic compound containing a metal that can be alloyed with Li.

そのような有機金属化合物としては、例えば、アルミニ
ウム(At) 、鉛(pb) 、亜鉛(2nl、スズ(
Sn)、ビスマス(旧)、インジウム(Inl、マグネ
シウムfMgl、ガリウム(Ga)、カドミウム(Cd
)、ケイ素(Si)、アンチモン(sb)、パラジウム
fPd)、ホウ素(B)、銀fAg)等を含有する有機
金属化合物が挙げられ、好ましくはAI、Pb、 In
、 BiおよびCdを含有する有機金属化合物であり、
さらに好ましくはA1. Pb、 Biを含有する有機
金属化合物であり、特に好ましくはAIを含有する有機
金属化合物である。
Examples of such organometallic compounds include aluminum (At), lead (PB), zinc (2nl), and tin (2nl).
Sn), bismuth (old), indium (Inl, magnesium fMgl, gallium (Ga), cadmium (Cd)
), silicon (Si), antimony (sb), palladium (fPd), boron (B), silver (fAg), etc., and preferably AI, Pb, In
, an organometallic compound containing Bi and Cd,
More preferably A1. It is an organometallic compound containing Pb or Bi, and particularly preferably an organometallic compound containing AI.

上記の有機金属化合物としては、一般式:MRo (M
は上述の金属を表し、R,、は金属Mと結合しつるn個
のアルキル基を表す)で示される有機金属化合物がよく
用いられる。
The above organometallic compound has the general formula: MRo (M
represents the above-mentioned metal, and R, , represents n alkyl groups bonded to the metal M). Organometallic compounds are often used.

上記式中、Rが表すアルキル基としては、例えば、メチ
ル基、エチル基、プロピル基、イソプロピル基、ブチル
基、5ec−ブチル基、tert−ブチル基、ペンチル
基、ヘキシル基等が挙げられる。
In the above formula, examples of the alkyl group represented by R include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 5ec-butyl group, tert-butyl group, pentyl group, and hexyl group.

特に好ましい有機金属化合物として、例えば有機アルミ
ニウム化合物の例を具体的に挙げると、トリエチルアル
ミニウム、トリプロピルアルミニウム、トリブチルアル
ミニウム、トリペンチルアルミニウム等である。
Specific examples of particularly preferred organometallic compounds include organoaluminum compounds such as triethylaluminum, tripropylaluminum, tributylaluminum, and tripentylaluminum.

上述の有機金属化合物は、単独で、あるいは2種以上を
混合して用いることができる。
The above-mentioned organometallic compounds can be used alone or in combination of two or more.

また、上述の有機金属化合物は、活物質と合金可能な金
属以外の金属を含有する他の有機金属化合物が少量割合
混合されて用いることもできる。
Further, the above-mentioned organometallic compound may be used in combination with a small proportion of another organometallic compound containing a metal other than the metal that can be alloyed with the active material.

本発明にかかる負極体を構成する活物質の担持体は、上
記した炭素質物に、上述の有機金属化合物を接触させた
状態で、該有機金属化合物を熱分解して得られる捏合物
材料よりなる。
The active material carrier constituting the negative electrode body according to the present invention is made of a mixture material obtained by thermally decomposing the above-mentioned organometallic compound while the above-mentioned carbonaceous material is in contact with the organometallic compound. .

ここで、炭素質物に有機金属化合物を接触させた状態で
該有機金属化合物を熱分解するとは、該有機金属化合物
の少なくとも一部分が上記した炭素質物に接するように
して熱分解を行なうことであり、例えば有機金属化合物
を炭素質物に含浸させて加熱分解する方法、あるいは有
機金属化合物をその分解温度まで安定で不活性な有機溶
媒中に溶解させ、この溶液に炭素質物を浸漬して熱分解
する方法等が用いられる。このとき、炭素質物lに対し
て、有機金属化合物は通常0,03〜10の重量比で用
いられる。
Here, thermally decomposing the organometallic compound in a state where the organometallic compound is in contact with the carbonaceous material means thermally decomposing the organometallic compound so that at least a portion of the organometallic compound is in contact with the above-mentioned carbonaceous material, For example, a method of impregnating a carbonaceous material with an organometallic compound and thermally decomposing it, or a method of dissolving the organometallic compound in a stable and inert organic solvent up to its decomposition temperature, and immersing the carbonaceous material in this solution and thermally decomposing it. etc. are used. At this time, the organometallic compound is usually used in a weight ratio of 0.03 to 10 to 1 of the carbonaceous material.

熱分解における加熱温度は、有機金属化合物に含有され
る金属の融点以下、好ましくは該金属の融点より1.0
0℃以上低い温度であり、さらに好ましくは該金属の融
点より200°C以上低い温度である。具体的には、有
機アルミニウム化合物を用いた場合には、好ましくは1
50°C以上500℃以下、さらに好ましくは200°
C以上400°C以下、特に好ましくは250℃以上3
80℃以下の熱分解温度を選択する。
The heating temperature during thermal decomposition is below the melting point of the metal contained in the organometallic compound, preferably 1.0 below the melting point of the metal.
The temperature is 0°C or more lower, more preferably 200°C or more lower than the melting point of the metal. Specifically, when an organoaluminum compound is used, preferably 1
50°C or more and 500°C or less, more preferably 200°
C or more and 400°C or less, particularly preferably 250°C or more3
Select a pyrolysis temperature below 80°C.

加熱時間は、使用する有機金属化合物により異なるが、
有機アルミニウム化合物を用いた場合は30秒〜10時
間、より好ましくは1分〜3時間、さらに好ましくは3
分〜1時間、特に好ましくは5分〜30分である。
Heating time varies depending on the organometallic compound used, but
When an organoaluminum compound is used, the heating time is 30 seconds to 10 hours, more preferably 1 minute to 3 hours, and even more preferably 3 hours.
The time period is from minutes to 1 hour, particularly preferably from 5 minutes to 30 minutes.

加熱の際の雰囲気は、通常N2、Ar等の不活性ガス雰
囲気を用いる。
The atmosphere during heating is usually an inert gas atmosphere such as N2 or Ar.

次に、熱分解により得られた捏合物材料がとりつる形態
としては、例えば、炭素質物の表面を金属がコーティン
グした形で複合された形態、金属が炭素質物の表面に粒
子状に析出して複合された形態、もしくは両者が混在し
た形で複合された形態等が挙げられる。これらの複合形
態は、該炭素質物と該有機金属化合物の比率、有機金属
化合物の濃度、有機金属化合物の分解温度等の製造条件
を選択することにより調整することができる。
Next, the forms that the mixture material obtained by pyrolysis takes include, for example, a composite form in which the surface of a carbonaceous material is coated with a metal, and a form in which a metal is precipitated in the form of particles on the surface of a carbonaceous material. Examples include a composite form or a composite form in which both are mixed. These composite forms can be adjusted by selecting production conditions such as the ratio of the carbonaceous material to the organometallic compound, the concentration of the organometallic compound, and the decomposition temperature of the organometallic compound.

上記の捏合物材料における活物質と合金可能な金属の含
有量は、好ましくは3重量%以上70重量%未満、さら
に好ましくは5重量%以上50重量%未満、特に好まし
くは10重量%以上30重量%未満である。
The content of the metal that can be alloyed with the active material in the above kneaded material is preferably 3% by weight or more and less than 70% by weight, more preferably 5% by weight or more and less than 50% by weight, particularly preferably 10% by weight or more and less than 30% by weight. less than %.

また、本発明にかかる負極体の担持体を構成する捏合物
材料には、上記の炭素質物と活物質と合金可能な金属の
ほかに、導電剤、結着剤等を含有することもできる。
Further, the mixture material constituting the carrier of the negative electrode body according to the present invention may contain a conductive agent, a binder, etc. in addition to the above-mentioned carbonaceous material and metal that can be alloyed with the active material.

導電剤は、膨張黒鉛、金属粉等を、通常50重量%未満
、好ましくは30重量%未満添加することができる。
As the conductive agent, expanded graphite, metal powder, etc. can be added in an amount usually less than 50% by weight, preferably less than 30% by weight.

また、結着剤は、ポリオレフィン樹脂等のパウダー等を
50重量%未満、好ましくは3o重量%未満、特に好ま
しくは5重量%以上10屯量%未満添加することができ
る。
Further, as the binder, less than 50% by weight, preferably less than 30% by weight, particularly preferably 5% by weight or more and less than 10% by weight, such as a powder such as a polyolefin resin, can be added.

担持体は、例えば、上述の材料をそのまま、もしくは結
着剤等を添加して、圧縮成形により成形することにより
製造することができる。
The carrier can be manufactured, for example, by compression molding the above-mentioned materials as they are or by adding a binder or the like.

このようにして得られた担持体に、さらに活物質を担持
させる方法としては、化学的方法、電気化学的方法、物
理的方法などがあり1例えば、所定濃度のLiイオンま
たはアルカリ金属イオンを含む電解液中に上記した担持
体を浸漬しかつ対極にリチウムを用いてこの担持体を陽
極にして電解含浸する方法、簡易的には、上述の担持体
とリチウムを電気的に接触させた状態で、電解液中に浸
漬する方法、担持体の成形体を得る過程でリチウム粉末
を混合する方法等を適用することができる。
Methods for further supporting the active material on the support obtained in this way include chemical methods, electrochemical methods, and physical methods. A method of electrolytic impregnation in which the above-mentioned support is immersed in an electrolytic solution and lithium is used as a counter electrode, and this support is used as an anode.Simply, the above-mentioned support and lithium are electrically contacted. , a method of immersing the carrier in an electrolytic solution, a method of mixing lithium powder in the process of obtaining a molded body of the carrier, etc. can be applied.

かくすることにより、Liイオンまたはアルカリ金属イ
オンは担持体の炭素質物中にドープされ、さらに担持体
中の活物質と合金可能な金属の少なくとも一部分中に含
有されてそこに担持されることになる。
In this way, Li ions or alkali metal ions are doped into the carbonaceous material of the support, and are further contained in at least a portion of the metal that can be alloyed with the active material in the support and are supported therein. .

なお、このような活物質の担持は、負極体の担持体に限
らず正極体の担持体に対してもまたは両極に対して行な
ってもよい。
Note that such active material may be supported not only on the carrier of the negative electrode body but also on the carrier of the positive electrode body or on both electrodes.

また、本発明にかかる負極体の担持体への活物質の担持
量は、好ましくは。
Further, the amount of active material supported on the carrier of the negative electrode body according to the present invention is preferably as follows.

■上記の炭素質物に対して、1〜20重量%であり、さ
らに好ましくは3〜10重量%であり:かつ、 ■活物質と合金可能な金属に対して1〜80モル%、さ
らに好ましくは5〜60モル%、特に好ましくは10〜
50モル%であり、最も好ましくは20〜50モル%で
ある。
■ 1 to 20% by weight, more preferably 3 to 10% by weight based on the above carbonaceous material; and ■ 1 to 80% by mole, more preferably 1 to 80% by weight based on the metal that can be alloyed with the active material. 5-60 mol%, particularly preferably 10-60 mol%
50 mol%, most preferably 20-50 mol%.

負極体中の活物質の担持量が、上記■、■で限定した範
囲より小さいと、活物質の相持量が少なすぎて電池の容
量が少な(なり、この範囲より大きいと、充放電に伴う
負極体の体積変化が太き(なり、集電の不良が生じたり
、また、リチウムデンドライトの形成が容易となり、充
放電サイクル寿命が著しく低下する。
If the amount of active material supported in the negative electrode body is smaller than the range limited in above ■ and ■, the amount of active material supported will be too small and the battery capacity will be small. The volume change of the negative electrode body becomes large, resulting in poor current collection, and lithium dendrites are easily formed, resulting in a significant reduction in charge/discharge cycle life.

次に、図を参照して本発明の二次電池の構成について説
明する1図において、正極端子を兼ねる正極缶(1)内
には正極体(2)が正極缶(Hの底部に着設収納されて
いる。この正極体は、とくに限定されないが、例えば、
Liイオン等のアルカリ金属カチオンを充放電反応に伴
なって放出もしくは獲得する金属カルコゲン化合物から
なることが好ましい。そのような金属カルコゲン化合物
としてはバナジウムの酸化物、バナジウムの硫化物、モ
リブデンの酸化物、モリブデンの硫化物、マンガンの酸
化物、クロムの酸化物、チタンの酸化物、チタンの硫化
物およびこれらの複合酸化物、複合硫化物等が挙げられ
る。好ましくは。
Next, the structure of the secondary battery of the present invention will be explained with reference to the drawings. In Fig. 1, a positive electrode body (2) is attached to the bottom of the positive electrode can (H) in a positive electrode can (1) which also serves as a positive electrode terminal. This positive electrode body is not particularly limited, but for example,
It is preferable to use a metal chalcogen compound that releases or acquires alkali metal cations such as Li ions during charging and discharging reactions. Such metal chalcogen compounds include vanadium oxide, vanadium sulfide, molybdenum oxide, molybdenum sulfide, manganese oxide, chromium oxide, titanium oxide, titanium sulfide, and these. Examples include composite oxides and composite sulfides. Preferably.

Cri Oa 、Va 0S 、Va O+z、vo2
、Cra Os 、 M nO2、Tiot、MoVz
Os、T i Sa 、Va Ss 、vo32 、M
oSi、vS2、Cr a、 zsV o、 ts S
 2、Cro、s vo、s S2等である。また、L
 I Mn204 、 L 10H・Mn0i 、L 
i COO2、WOx等の酸化物、Cu S、 F e
a、asVo、tss z、Nao、+ Cr5s等の
硫化物、N1PSx 、FePSs 、等のリン、イ才
つ化合物、VSea 、Nb5es等のセレン化合物な
どを用いることもできる。
Cri Oa, Va 0S, Va O+z, vo2
,CraOs,MnO2,Tiot,MoVz
Os, T i Sa, Va Ss, vo32, M
oSi, vS2, Cr a, zsV o, ts S
2, Cro, s vo, s S2, etc. Also, L
I Mn204, L 10H・Mn0i, L
i Oxides such as COO2 and WOx, Cu S, Fe
It is also possible to use sulfides such as a, asVo, tss z, Nao, +Cr5s, phosphorus compounds such as N1PSx, FePSs, and selenium compounds such as VSea and Nb5es.

そして、正極体(2)とセパレータ(3)を介して負極
体(4)が対峙されている。
A positive electrode body (2) and a negative electrode body (4) are opposed to each other with a separator (3) interposed therebetween.

電解液を保持するセパレータ(3)は、保液性に優れた
材料、例えば、ポリオレフィン系樹脂の不織布よりなる
。そして、このセパレータ(3)には、プロピレンカー
ボネート、1.3−ジオキソラン、1.2−ジメトキシ
エタン等の非プロトン性有機溶媒に、LiCl20.。
The separator (3) that holds the electrolyte is made of a material with excellent liquid retention properties, such as a nonwoven fabric made of polyolefin resin. This separator (3) is made of LiCl20. .

LIBF4.LtAsFs、LtPFa等の電解質を溶
解せしめた所定濃度の非水電解液が含浸されている。
LIBF4. It is impregnated with a non-aqueous electrolyte of a predetermined concentration in which an electrolyte such as LtAsFs or LtPFa is dissolved.

また、Liまたはアルカリ金属イオンの導電体である固
体電解質を正極体および負極体の間に介在させることも
できる。
Furthermore, a solid electrolyte that is a conductor of Li or alkali metal ions can be interposed between the positive electrode body and the negative electrode body.

負極体(4)は、上述した炭素質物と活物質と合金可能
な金属との複合物材料からなる担持体に、活物質を担持
させたものであり、負極端子も兼ねる負極缶(5)内に
着設されている。
The negative electrode body (4) has an active material supported on a support made of a composite material of the above-mentioned carbonaceous material and a metal that can be alloyed with the active material. It is installed in

これら正極体(2)、セパレータ(3)、および負極体
(4)は全体として発電要素を構成する。そして、この
発電要素が正極缶(1)および負極缶(5)から成る電
池容器に内蔵されて電池が組立てられる。
These positive electrode body (2), separator (3), and negative electrode body (4) constitute a power generation element as a whole. Then, this power generation element is housed in a battery container consisting of a positive electrode can (1) and a negative electrode can (5), and a battery is assembled.

6は正・負極体を分ける絶縁バッキングであり、電池は
正極缶(1)の開口部を内方向へ折曲させて密封されて
いる。
6 is an insulating backing that separates the positive and negative electrode bodies, and the battery is sealed by bending the opening of the positive electrode can (1) inward.

本発明の二次電池において、負極体では放電時に担持さ
れているLiイオン(またはLiを主体とするアルカリ
金属イオン)の放出が起こり、また、充電時には担持体
中の炭素質物へのLiイオンのドープと合金可能な金属
中への■−lイオンの蓄積により、Liイオンが負極体
の担持体に担持される。
In the secondary battery of the present invention, Li ions (or alkali metal ions mainly composed of Li) supported in the negative electrode body are released during discharge, and Li ions are transferred to the carbonaceous material in the carrier during charging. Due to the accumulation of -1 ions in the metal that can be alloyed with the dope, Li ions are supported on the carrier of the negative electrode body.

このようなLiイオンの担持、放出により、電池の充放
電サイクルが繰り返される。
By carrying and releasing Li ions in this manner, the charge/discharge cycle of the battery is repeated.

本発明の二次電池は、負極体に、前述の炭素質物と活物
質と合金可能な金属との複合物材料からなる担持体を用
いることにより、負極体に活物質を多量に担持させるこ
とができ、また、充放電に際しては円滑に活物質の担持
および放出を繰り返すことを可能にしたため、従来にな
い大容量で優れた充放電特性を発揮しつる。
The secondary battery of the present invention allows the negative electrode body to support a large amount of the active material by using a carrier made of a composite material of the above-mentioned carbonaceous material and a metal that can be alloyed with the active material. In addition, the active material can be smoothly loaded and released repeatedly during charging and discharging, resulting in an unprecedentedly large capacity and excellent charging and discharging characteristics.

なお、本発明において、元素分析およびX線広角回折の
各測定は下記方法により実施した。
In the present invention, elemental analysis and X-ray wide-angle diffraction measurements were carried out by the following methods.

「元素分析」 サンプルを120℃で約15時間減圧乾燥し、その後ド
ライボックス内のホットプレート上で100°Cにおい
て1時間乾燥した。ついで、アルゴン雰囲気中でアルミ
ニウムカップにサンプリングし、燃焼により発生するC
O□ガスの重量から炭素含有量を、また、発生するH2
Oの重量から水素含有量を求める。なお、後述する本発
明の実施例では、パーキンエルマー240C型元素分析
計を使用して測定した。
"Elemental Analysis" Samples were dried under reduced pressure at 120°C for approximately 15 hours, then dried on a hot plate in a dry box at 100°C for 1 hour. Then, the sample was collected in an aluminum cup in an argon atmosphere, and the carbon generated by combustion was collected.
The carbon content can be determined from the weight of O□ gas, and the generated H2
Determine the hydrogen content from the weight of O. In the Examples of the present invention described later, measurements were made using a PerkinElmer 240C elemental analyzer.

「X線広角回折」 (1)(002)面の面間隔(dooalおよび(11
0)面の面間隔(d、、、) 炭素質材料が粉末の場合はそのまま、微小片状の場合に
はメノウ乳鉢で粉末化し、試料に対して約15重量%の
X線標準用高純度シリコン粉末を内部標準物質として加
え混合し、試料セルにつめ、グラファイトモノクロメー
タ−で単色化したCuK α線を線源とし、反射式デイ
フラクトメタ−法によって広角X線回折曲線を測定する
1曲線の補正には、いわゆるローレンツ、偏光因子、吸
収因子、原子散乱因子等に関する補正は行なわず次の簡
便法を用いる。即ち(002)、および(+、1.O)
回折に相当する曲線のベースラインを引き、ベースライ
ンからの実質強度をプロットし直して(002)面、お
よび(110)面の補正曲線を得る。この曲線のピーク
高さの3分の2の高さに引いた角度軸に平行な線が回折
曲線と交わる線分の中点を求め、中点の角度を内部標準
で補正し、これを回折角の2倍とし、Cuにα線の妓長
えとから次式のブラック式によってd。。2およびd 
116を求める。
"X-ray wide-angle diffraction" (1) Interplanar spacing of (002) plane (dooal and (11
0) Interplanar spacing (d,,,) If the carbonaceous material is a powder, it is used as it is, or if it is in the form of minute pieces, it is powdered in an agate mortar, and the amount of high purity for X-ray standards is approximately 15% by weight based on the sample. Silicon powder is added as an internal standard substance, mixed, packed into a sample cell, and made monochromatic with a graphite monochromator. A wide-angle X-ray diffraction curve is measured using the reflection diffraction meter method as a radiation source. For the correction, the following simple method is used without making corrections for so-called Lorentz factors, polarization factors, absorption factors, atomic scattering factors, etc. i.e. (002), and (+, 1.O)
A baseline of a curve corresponding to diffraction is drawn, and the real intensity from the baseline is plotted again to obtain correction curves for the (002) plane and the (110) plane. Find the midpoint of the line segment where a line parallel to the angular axis drawn at two-thirds of the peak height of this curve intersects with the diffraction curve, correct the angle at the midpoint using an internal standard, and calculate this. d by the following Black formula from the α-ray elongation to Cu. . 2 and d
Find 116.

え:1.5418人 θ、θ′: dooz、 d+toに相当する回折角(
2)c軸およびa軸方向の結晶子の大きさ:Lc : 
La 前項で得た補正回折曲線において、ピーク高さの半分の
位置におけるいわゆる半価中βを用いてC軸およびa軸
方向の結晶子の大きさを次式より求める。
E: 1.5418 people θ, θ': Diffraction angle corresponding to dooz, d+to (
2) Crystallite size in c-axis and a-axis directions: Lc:
La In the corrected diffraction curve obtained in the previous section, the size of the crystallite in the C-axis and a-axis directions is determined from the following equation using the so-called half value β at the position half the peak height.

K −え β cosθ β cosθ′ 形状因子Kについては種々議論もあるが、K=0.90
を用いた。え、θおよびθ′については前項と同じ意味
である。
K −Eβ cosθ β cosθ′ There are various discussions about the shape factor K, but K=0.90
was used. Well, θ and θ' have the same meaning as in the previous section.

(実施例) 以下、実施例をあげて本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

夫胤胴 (1)正極体の製造 470℃で焼成したM n O2粉末5gおよび粉末状
のポリテトラフルオロエチレン0.5gとを混練し、得
られた混線物をロール成形して厚み0.411+mのシ
ートとした。
(1) Manufacture of positive electrode body 5 g of MnO2 powder calcined at 470°C and 0.5 g of powdered polytetrafluoroethylene were kneaded, and the resulting mixed wire was roll-formed to a thickness of 0.411+ m. It was made into a sheet.

このシートの片面を集電体である線径0.1開、60メ
ツシユのステンレス鋼ネットに圧着して正極体とした。
One side of this sheet was crimped to a current collector, a stainless steel net with a wire diameter of 0.1 and 60 mesh, to form a positive electrode body.

(2)負極体の製造 結晶セルロースの粒子を電気加熱炉にセットし、N2ガ
ス流下、200℃/ h rの昇温速度で1000℃ま
で昇温し、さらに1000℃で1時間保持した。これを
放冷して得られた炭素質物の粒子を、別な電気加熱炉に
セットし、N2ガス流下、]、OOO°C/hrの昇温
速度で1800℃まで昇温し、さらに1800℃で1時
間保持した。
(2) Manufacture of negative electrode body Crystalline cellulose particles were set in an electric heating furnace, heated to 1000°C at a heating rate of 200°C/hr under N2 gas flow, and further held at 1000°C for 1 hour. The particles of carbonaceous material obtained by cooling this were set in a separate electric heating furnace, and heated to 1800°C under a flow of N2 gas at a heating rate of ], OOO°C/hr, and further heated to 1800°C. It was held for 1 hour.

かくして得られた炭素質物を500mJ2のメノウ製容
器に入れ、直径30mmのメノウ製ポール2個、直径2
5mn+のメノウ製ボール6個および直径20mmのメ
ノウ製ボール16個をいれて3分間粉砕した。
The carbonaceous material thus obtained was placed in a 500 mJ2 agate container, and two agate poles with a diameter of 2
Six 5mm+ agate balls and 16 agate balls 20mm in diameter were added and crushed for 3 minutes.

この炭素質物は、元素分析、X線広角回折、粒度分布、
比表面積測定等の分析の結果、以下の特性を有していた
This carbonaceous material was analyzed by elemental analysis, X-ray wide-angle diffraction, particle size distribution,
As a result of analysis such as specific surface area measurement, it had the following characteristics.

水素/炭素(H/C)=0.04 doo2=3− 59人、Lc=14人ao(2dzo
l=2.41人、La=25人体積平均粒径=38μm 比表面積(BET)=8.2rn”/g次いで、上記の
炭素質物にトリイソブチルアルミニウムを接触させて熱
分解した。すなわち、上記の炭素質物5gをトリイソブ
チルアルミニウムの1モル/aヘキサン溶液t8.5r
nJ2中に加え、よく含浸させた後、N2気流下300
″Cまで昇温し、さらに300℃で30分間加熱して、
熱分解を行なった。
Hydrogen/carbon (H/C) = 0.04 doo2 = 3-59 people, Lc = 14 people ao (2dzo
l = 2.41 persons, La = 25 persons Volume average particle diameter = 38 μm Specific surface area (BET) = 8.2 rn''/g Next, the above carbonaceous material was brought into contact with triisobutylaluminum and thermally decomposed. 5g of carbonaceous material was added to a 1 mol/a hexane solution of triisobutylaluminum (t8.5r).
After adding it to nJ2 and thoroughly impregnating it, it was heated for 300 minutes under a N2 stream.
Raise the temperature to ``C, further heat at 300℃ for 30 minutes,
Pyrolysis was performed.

か(して、アルミニウムが10重量%混合されている。(Therefore, 10% by weight of aluminum is mixed.

前述の炭素質物とアルミニウムとの複合物材料が得られ
た。
A composite material of the carbonaceous material and aluminum described above was obtained.

これに平均粒径5LLmのポリエチレンパウダーを7重
量%混合した後、圧縮成形して厚み0. 5+mmのペ
レット状の担持体とした。
After mixing 7% by weight of polyethylene powder with an average particle size of 5LLm, it was compression molded to a thickness of 0. It was made into a pellet-like carrier of 5+mm.

次いで、担持体ベレットをL iイオン濃度1モル/2
の電解液中に浸漬し、このベレットを陽極とし、金属L
iを陰極とする電解処理に付した。
Next, the support pellet was adjusted to a Li ion concentration of 1 mol/2.
The pellet is immersed in an electrolytic solution, and the pellet is used as an anode.
It was subjected to electrolytic treatment using i as a cathode.

電解処理条件は、浴温20℃、電流密度0.511IA
/c112であり、担持体に12+oAhのLiを担持
させ、負極体とした。
The electrolytic treatment conditions were a bath temperature of 20°C and a current density of 0.511IA.
/c112, and 12+oAh of Li was supported on the carrier to form a negative electrode body.

(3)電池の組立 ステンレス鋼製の正極治に、上記した正極体を集電体を
下にして着設し、その上にセパレータとしてのポリプロ
ピレン不織布を数置したのち、そこにLiCl204を
濃度1モル/βでプロピレンカーボネートに溶解せしめ
た非水電解液を含浸せしめた。ついでその上に上記負極
体を載置して発電要素を構成した。
(3) Assembling the battery Place the above-mentioned positive electrode body on a stainless steel positive electrode jig with the current collector facing down, place several polypropylene nonwoven fabrics as separators on top of it, and then add LiCl204 at a concentration of 1. It was impregnated with a non-aqueous electrolyte dissolved in propylene carbonate at mol/β. Then, the negative electrode body was placed thereon to form a power generation element.

なお、正極体も、電池に組込むに先立ち、負極体と同様
の電解処理を行ない、容量5 mAhのLiを担持させ
た。電解処理条件は、浴温20’C1電流密度0 、5
 mA/ cm2であった。かくして、図に示したよう
なボタン形二次電池を製作した。
The positive electrode body was also subjected to the same electrolytic treatment as the negative electrode body before being incorporated into a battery, so that it supported Li with a capacity of 5 mAh. The electrolytic treatment conditions are: bath temperature 20'C1 current density 0,5
It was mA/cm2. In this way, a button-shaped secondary battery as shown in the figure was manufactured.

(4)電池の特性 このようにして製作した電池について、8oOuAの定
電流で、電池電圧が上限3.3V、下限1.8Vの範囲
で充放電を反復し、サイクル評価を行なった。IOサイ
クル目、90サイクル目の性能を表1に示した。
(4) Characteristics of the Battery The battery manufactured in this way was repeatedly charged and discharged at a constant current of 8oOuA within a range of battery voltage from 3.3V to 1.8V to perform cycle evaluation. Table 1 shows the performance at the IO cycle and the 90th cycle.

また、10サイクル目の充電が終った後1回路を開にし
て60日間放置した後11サイクル目の放電を実施した
。10サイクル目と11サイクル目の性能を表2に示し
た。
Further, after the 10th cycle of charging was completed, one circuit was opened and left for 60 days, and then the 11th cycle of discharging was performed. Table 2 shows the performance at the 10th and 11th cycles.

なお、電池組立て直後の電池の内部抵抗は15Ωであり
、充放電を6サイクル経過した後の電池の内部抵抗は1
7Ωであった。
The internal resistance of the battery immediately after assembly is 15Ω, and the internal resistance of the battery after 6 cycles of charging and discharging is 1.
It was 7Ω.

±較溺 (1)正極体の製造 実施例と同様にして正極体を製造した。±comparison (1) Manufacture of positive electrode body A positive electrode body was manufactured in the same manner as in the example.

(2)負極体の製造 実施例と同様にして製造した炭素質物のみを用い、有機
アルミニウムを接触させて熱分解することを行なわなか
ったほかは、実施例と同様にして担持体ペレットを製造
した。
(2) Manufacture of negative electrode body Support pellets were manufactured in the same manner as in Example, except that only the carbonaceous material manufactured in the same manner as in Example was used, and the organic aluminum was not brought into contact with and thermally decomposed. .

これを実施例と同様の電解処理に付して、12IIIA
hのLiを担持させて、負極体とした。
This was subjected to the same electrolytic treatment as in the example, and 12IIIA
A negative electrode body was prepared by supporting Li of h.

(3)電池の組立 実施例と同様にして電池を組み立てた。(3) Battery assembly A battery was assembled in the same manner as in the example.

(4)電池の特性 実施例と同様にして同一の条件で、電池特性を測定し、
結果を表1および表2に併記した。
(4) Battery characteristics Measure the battery characteristics under the same conditions as in the example,
The results are also listed in Tables 1 and 2.

なお、電池組立て直後の電池の内部抵抗は18Ωであり
、充放電を6サイクル経過した後の電池の内部抵抗は3
4Ωであった。
The internal resistance of the battery immediately after assembly is 18Ω, and the internal resistance of the battery after 6 cycles of charging and discharging is 3Ω.
It was 4Ω.

表1 表2 [発明の効果] 以上の説明で明らかなように、本発明の二次電池は充放
電サイクル寿命が長く、大電流における充放電特性も良
好であり、また充電時にあっては活物質であるLiまた
はLlを主体とするアルカノ金属を安定した形で相持体
に定着せしめることができるため、安定した高容量、す
なわち大電流放電が可能となり、さらに自己放電特性も
良く信頼性の高い電池であるので、その工業的価値は大
である。
Table 1 Table 2 [Effects of the Invention] As is clear from the above explanation, the secondary battery of the present invention has a long charge/discharge cycle life, good charge/discharge characteristics at large currents, and is not active during charging. Since the alkanometal, which is mainly composed of Li or Ll, can be stably fixed on the supporting material, stable high capacity, that is, large current discharge is possible, and it also has good self-discharge characteristics and is highly reliable. Since it is a battery, its industrial value is great.

なお、これまでの説明はボタン形構造の二次電池につい
て行なったが、本発明の技術思想はこの構造のものに限
定されるものではな(、例えば。
Although the explanation so far has been made regarding a secondary battery having a button-shaped structure, the technical idea of the present invention is not limited to this structure (for example,

円筒形、扁平形、角形等の形状の二次電池に適用するこ
ともできる。
It can also be applied to secondary batteries having shapes such as cylindrical, flat, and square.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例であるボタン形構造の二次電池の
縦断面図である。 ■・・・正極缶 2・・・正極体 3・・・セパレータ 4・・・負極体 5・・・負極子 6・・・絶縁パッキング
The figure is a longitudinal sectional view of a secondary battery having a button-shaped structure, which is an embodiment of the present invention. ■...Positive electrode can 2...Positive electrode body 3...Separator 4...Negative electrode body 5...Negative electrode element 6...Insulating packing

Claims (1)

【特許請求の範囲】  活物質と該活物質を担持する担持体とから成る負極体
を具備する二次電池において、 (a)該活物質が、リチウムまたはリチウムを主体とす
るアルカリ金属であり、 (b)該担持体が、 (イ)水素/炭素の原子比が0.15未満;かつ、 (ロ)X線広角回折法による(002)面の面間隔(d
_0_0_2)が3.37Å以上:およびc軸方向の結
晶子の大きさ(Lc) が150Å以下: である炭素質物に、該活物質と合金可能な金属を含有す
る有機金属化合物を接触させた状態で、該有機金属化合
物を熱分解して得られる、炭素質物と該活物質と合金可
能な金属との複合物材料からなる、 ことを特徴とする二次電池。
[Scope of Claims] A secondary battery comprising a negative electrode body comprising an active material and a carrier supporting the active material, wherein: (a) the active material is lithium or an alkali metal mainly composed of lithium; (b) The support has (a) a hydrogen/carbon atomic ratio of less than 0.15; and (b) an interplanar spacing (d) of the (002) plane determined by X-ray wide-angle diffraction.
_0_0_2) is 3.37 Å or more: and the crystallite size (Lc) in the c-axis direction is 150 Å or less: A state in which an organometallic compound containing a metal that can be alloyed with the active material is brought into contact with the carbonaceous material. A secondary battery comprising a composite material of a carbonaceous material obtained by thermally decomposing the organometallic compound and a metal that can be alloyed with the active material.
JP63273146A 1988-02-10 1988-10-31 Rechargeable battery Expired - Fee Related JP2726285B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63273146A JP2726285B2 (en) 1988-10-31 1988-10-31 Rechargeable battery
US07/305,795 US4945014A (en) 1988-02-10 1989-02-02 Secondary battery
CA000590574A CA1311013C (en) 1988-02-10 1989-02-09 Secondary battery
EP89102323A EP0328131B1 (en) 1988-02-10 1989-02-10 Secondary battery
DE89102323T DE68910843T2 (en) 1988-02-10 1989-02-10 Secondary battery.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63273146A JP2726285B2 (en) 1988-10-31 1988-10-31 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH02121258A true JPH02121258A (en) 1990-05-09
JP2726285B2 JP2726285B2 (en) 1998-03-11

Family

ID=17523758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63273146A Expired - Fee Related JP2726285B2 (en) 1988-02-10 1988-10-31 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP2726285B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000717A1 (en) * 1991-06-20 1993-01-07 Mitsubishi Petrochemical Co., Ltd. Electrode for secondary battery
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
US6083645A (en) * 1995-02-02 2000-07-04 Hitachi, Ltd. Secondary battery using system and material for negative electrode of secondary battery
KR100373837B1 (en) * 1999-09-28 2003-02-26 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and method of preparing negative active materia for lithium secondary battery
EP1746674A1 (en) 2005-07-22 2007-01-24 Samsung SDI Co., Ltd. Electrode including si-containing material layer and porous film, and lithium battery employing the same
JP2019061901A (en) * 2017-09-27 2019-04-18 トヨタ自動車株式会社 Metal negative electrode secondary battery and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000717A1 (en) * 1991-06-20 1993-01-07 Mitsubishi Petrochemical Co., Ltd. Electrode for secondary battery
US6083645A (en) * 1995-02-02 2000-07-04 Hitachi, Ltd. Secondary battery using system and material for negative electrode of secondary battery
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
KR100373837B1 (en) * 1999-09-28 2003-02-26 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and method of preparing negative active materia for lithium secondary battery
EP1746674A1 (en) 2005-07-22 2007-01-24 Samsung SDI Co., Ltd. Electrode including si-containing material layer and porous film, and lithium battery employing the same
US8741488B2 (en) 2005-07-22 2014-06-03 Samsung Sdi Co., Ltd. Electrode including Si-containing material layer and porous film, and lithium battery employing the same
JP2019061901A (en) * 2017-09-27 2019-04-18 トヨタ自動車株式会社 Metal negative electrode secondary battery and manufacturing method thereof
US10873087B2 (en) 2017-09-27 2020-12-22 Toyota Jidosha Kabushiki Kaisha Metal negative electrode secondary battery and method of manufacturing same

Also Published As

Publication number Publication date
JP2726285B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
US4945014A (en) Secondary battery
JPH02121258A (en) Secondary cell
JPH0544143B2 (en)
JP2728448B2 (en) Rechargeable battery
JP3140443B2 (en) Rechargeable battery
JP3053844B2 (en) Secondary battery electrode
JPS63193463A (en) Nonaqueous solvent secondary battery
JP3056519B2 (en) Non-aqueous solvent secondary battery
JP2749826B2 (en) Rechargeable battery
JPS63114056A (en) Nonaqueous solvent secondary battery
JPH0580791B2 (en)
JP2691555B2 (en) Rechargeable battery
JP2801599B2 (en) Rechargeable battery
JP2957202B2 (en) Rechargeable battery
JP2685777B2 (en) Rechargeable battery
JP2957188B2 (en) Rechargeable battery
JPH04206168A (en) Secondary battery
JP2738708B2 (en) Rechargeable battery
JPH01274360A (en) Secondary battery
JP3581631B2 (en) Anode materials for non-aqueous solvent secondary batteries
JPS63298963A (en) Nonaqueous solvent secondary battery
JPH05290888A (en) Nonaqueous solvent secondary battery
JPS63236259A (en) Nonaqueous solvent secondary battery
JPH01255166A (en) Secondary battery
JPH0233868A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees