JPS63298963A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPS63298963A
JPS63298963A JP62131352A JP13135287A JPS63298963A JP S63298963 A JPS63298963 A JP S63298963A JP 62131352 A JP62131352 A JP 62131352A JP 13135287 A JP13135287 A JP 13135287A JP S63298963 A JPS63298963 A JP S63298963A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode body
lithium
separator
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62131352A
Other languages
Japanese (ja)
Other versions
JPH0646579B2 (en
Inventor
Hiroyoshi Nose
博義 能勢
Katsuharu Ikeda
克治 池田
Kuniaki Inada
稲田 圀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP62131352A priority Critical patent/JPH0646579B2/en
Publication of JPS63298963A publication Critical patent/JPS63298963A/en
Publication of JPH0646579B2 publication Critical patent/JPH0646579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To retard self discharge and to lengthen charge-discharge cycle life by forming a negative electrode with lithium or alkali metal mainly comprising lithium supported, so as to be reduced on the side facing a separator on carbon obtained by baking organic compounds. CONSTITUTION:Phenol resin is baked in an atmosphere of nitrogen to carbonize it, and carbon powder obtained is mixed with polytetrafluoroethylene powder, then a mixture is pressed to form a pellet. The pellet is immersed in an electrolyte prepared by dissolving LiClO4 in propylene carbonate, then electrolysis is conducted using the pellet as an anode and metallic lithium as a cathode. In the electrolysis, current density in the early stage is reduced, then gradually increased with the advance of electrolysis. A large amount of lithium is supported on the side facing the metallic lithium compared with the back side. By forming a negative electrode 5 in which the content of active material is larger on the side facing a separator 4, self discharge is retarded and charge- discharge cycle life is lengthened.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は非水溶媒二次電池に関し、更に詳しくは、貯蔵
時の自己放電による放電容量低下を抑制することができ
、かつ充放電サイクル寿命が長い非水溶媒二次電池に関
する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous solvent secondary battery, and more specifically, it is capable of suppressing a decrease in discharge capacity due to self-discharge during storage, The present invention also relates to a non-aqueous solvent secondary battery having a long charge/discharge cycle life.

(従来の技術) 従来、非水溶媒二次電池としては、例えば、負極体とし
て、リチウム(Li)又はLiを主体とするアルカリ金
属からなるシートと、正極体として、活物質が遷移金属
カルコゲン化合物である粉末成形体とをセパレータを介
して積層し、負極体を負極端子を兼ねる負極毎に、正極
体を正極端子を兼ねる正極缶にそれぞれ着設せしめてな
る構造のものがあり、これは高エネルギー密度を有する
ので商品化の努力が払われている。
(Prior Art) Conventionally, non-aqueous solvent secondary batteries have, for example, a sheet made of lithium (Li) or an alkali metal mainly composed of Li as a negative electrode body, and a transition metal chalcogen compound as an active material as a positive electrode body. There is a structure in which a powder compact is laminated with a separator in between, and a negative electrode body is attached to each negative electrode that also serves as a negative electrode terminal, and a positive electrode body is attached to a positive electrode can that also serves as a positive electrode terminal. Efforts are being made to commercialize it because of its energy density.

ところが、かかる非水溶媒二次電池においては、負極体
がLi箔またはLiを主体とするアルカリ金属の箔その
ものであることに基づく問題が生じている。
However, in such non-aqueous solvent secondary batteries, problems arise due to the fact that the negative electrode body is a Li foil or an alkali metal foil containing Li as a main component itself.

すなわち、電池の放電時には負極体からLiがLiイオ
ンとなって電解液に移動し、充電時にはこのLiイオン
が金EAL+となって再び負極体に電析するが、この充
放電サイクルを反復させるとそれに伴って電析する金属
L+は′デンドライト状となる。このデンドライト状L
iは極めて活性な物質であるため、電解液を分解せしめ
、その結果、電池の充放電サイクル特性が劣化するとい
う不都合が生ずる。さらに成長していくと、最後には、
このデンドライト形状の金属Li電析物がセパレータを
貫通して正極体に達し、短絡現象を起すという問題であ
る。別言すれば、充放電サイクル寿命が短いという問題
である。
In other words, when the battery is discharged, Li from the negative electrode body becomes Li ions and moves to the electrolyte, and during charging, these Li ions become gold EAL+ and are deposited on the negative electrode body again, but if this charge-discharge cycle is repeated, Accordingly, the metal L+ deposited becomes 'dendritic'. This dendrite-like L
Since i is an extremely active substance, it decomposes the electrolyte, resulting in the disadvantage that the charge/discharge cycle characteristics of the battery deteriorate. As we continue to grow, in the end,
The problem is that this dendrite-shaped metal Li deposit penetrates the separator and reaches the positive electrode body, causing a short circuit phenomenon. In other words, the problem is that the charge/discharge cycle life is short.

このような問題を回避するために、負極体として、各種
の有機化合物を焼成した炭素質物を担持体とし、これに
Li又はLiを主体とするアルカリ金属を担持せしめて
構成することが試みられており、例えば、特開昭60−
235372号公報には、このような負極体が開示され
ている。
In order to avoid such problems, attempts have been made to construct the negative electrode by using a carbonaceous material obtained by calcining various organic compounds as a carrier, and supporting Li or an alkali metal mainly composed of Li. For example, Japanese Patent Application Laid-open No. 1986-
No. 235372 discloses such a negative electrode body.

この負極体の場合は、有機化合物を焼成した炭素質物と
金属Li箔とを一体的に積層した構造であり、金属Li
箔がセパレータ側になるようにして電池内に組込んで用
いられる。そして、電池製造後、自己放電により金属L
i箔はLiイオンとなって多孔質の炭素質物中にセパレ
ータ側ほど多く担持されるようになる。
In the case of this negative electrode body, it has a structure in which a carbonaceous material obtained by firing an organic compound and a metal Li foil are integrally laminated.
It is used by being assembled into a battery with the foil facing the separator side. After the battery is manufactured, metal L is
The i-foil turns into Li ions, and the more the i-foil is supported in the porous carbonaceous material, the closer it is to the separator.

(発明が解決しようとする問題点) ところが、かかる非水溶媒二次電池では、負極体のLi
担持量がセパレータ側ほど多いことに基づく問題が生じ
ている。
(Problems to be Solved by the Invention) However, in such non-aqueous solvent secondary batteries, Li in the negative electrode body
A problem arises due to the fact that the amount supported is greater on the separator side.

すなわち、負極体では、充電時にLiイオンのドープ現
象が起こり、放電時には負極体に担持されているLiイ
オンの脱ド・−プ現象が生起する。
That is, in the negative electrode body, a doping phenomenon of Li ions occurs during charging, and a dedoping phenomenon of Li ions supported on the negative electrode body occurs during discharging.

しかしながら、負極体のLi担持量がセパレータ側ほど
多いため充放電時には負極体表面での電流分布が不均一
となり、負極体表面の一部分でLiイオンのドープ現象
、脱ドープ現象が生起するようになる。その結果、充放
電サイクルを反復させるとそれに伴って負極体表面のそ
の一部分のLi担持量は増加し、最後にはデンドライト
状Liが電析するようになり、前記したような充放電サ
イクル寿命が短くなるという問題が生ずる。
However, since the amount of Li supported in the negative electrode body is larger toward the separator side, the current distribution on the surface of the negative electrode body becomes uneven during charging and discharging, and doping and dedoping phenomena of Li ions occur in a part of the surface of the negative electrode body. . As a result, as the charge/discharge cycle is repeated, the amount of Li supported on that part of the negative electrode surface increases, and eventually dendrite-like Li is deposited, which reduces the charge/discharge cycle life as described above. The problem arises that the length becomes shorter.

更には、負極体のセパレータ側ほどLi担持量が多いた
め担持されているLiがLiイオンとなり電解液中た移
動しやすい、すなわち、自己放電による放電容量低下が
著しいという問題もある。
Furthermore, since the amount of Li supported is larger on the separator side of the negative electrode body, the supported Li becomes Li ions and is more likely to move into the electrolyte, that is, there is a problem that the discharge capacity is significantly reduced due to self-discharge.

本発明は、上記問題点を解決し、電池貯蔵時の自己放電
による放電容量低下を抑制することができ、かつ充放電
サイクル寿命の長い非水溶媒二次電池を提供することを
目的とする。
An object of the present invention is to solve the above-mentioned problems and provide a non-aqueous solvent secondary battery that can suppress a decrease in discharge capacity due to self-discharge during battery storage and has a long charge-discharge cycle life.

[発明の構成] (問題点を解決するための手段) 本発明者らは、上記目的を達成すべく鋭意検討を重ねた
結果、後述するような炭素質物に担持される活物質の担
持量をセパレータ側ほど少なくすればよいことを見出し
、本発明を完成するに至った。
[Structure of the Invention] (Means for Solving the Problems) As a result of intensive studies to achieve the above object, the present inventors have determined that the amount of active material supported on the carbonaceous material as described below They discovered that it is sufficient to reduce the amount toward the separator, and have completed the present invention.

すなわち、本発明の非水溶媒二次電池は、正極体と、セ
パレータと、負極体とをこの順序で一体的に積層して成
る発電要素を具備する非水溶媒二次1!池において、該
負極体が、有機化合物の焼成体である炭素質物と該炭素
質物に担持されたLi又はLiを主体とするアルカリ金
属とからなり、かつ該Li又はLiを主体とするアルカ
リ金属の担持量が該セパレータ側ほど少ないことを特徴
とする。
That is, the non-aqueous solvent secondary battery of the present invention includes a non-aqueous solvent secondary battery including a power generating element formed by integrally laminating a positive electrode body, a separator, and a negative electrode body in this order. In the pond, the negative electrode body is composed of a carbonaceous material which is a fired body of an organic compound and Li or an alkali metal mainly composed of Li supported on the carbonaceous material, and It is characterized in that the amount supported is smaller toward the separator.

本発明の非水溶媒二次電池は、負極体に特徴を有するも
のであり、その他の構造は従来と変わりがない。
The non-aqueous solvent secondary battery of the present invention is characterized by a negative electrode body, and other structures are the same as conventional batteries.

本発明にかかる負極体は、上記したように有機化合物を
焼成してなる炭素質物に、Li又はLiを主体とするア
ルカリ金属、をセパレータ側ほど少なくなるように担持
されたものである。
The negative electrode body according to the present invention has Li or an alkali metal mainly composed of Li supported on a carbonaceous material obtained by firing an organic compound as described above so that the amount decreases toward the separator side.

この炭素質物の原料となる有機化合物としては、通常使
用されているものであれば特に限定されるものではなく
、例えば、エポキシ樹脂;フェノール樹脂;ポリアクリ
ロニトリル、ポリ(α−ハロゲン化アクリロニトリル)
などのアクリル樹脂;ポリ塩化ビニル、ポリ塩化ビニリ
デン、ポリ塩素化塩化ビニルなどのハロゲン化ビニル樹
脂;ポリアミドイミドvA脂:ボリアミド樹脂;ポリア
セチレン、ポリ(p−フェニレン)などの共役系樹脂の
ような任意の有機高分子化合物;例えば、ナフタレン、
フェナントレン、アントラセン、トリフェニレン、ピレ
ン、クリセン、ナフタセン、ピセン、ペリレン、ペンタ
フェン、ペンタセンのような3員環以上の単環炭化水素
化合物が互いに2個以上縮合してなる縮合多環炭化水素
化合物、または、上記化合物のカルボン酸、カルボン酸
無水物、カルボン酸イミドのような誘導体、上記各化合
物の混合物を主成分とする各種のピッチ;例えば、イン
ドール、イソインドール、キノリン、インキノリン、キ
ノキサリン、フタラジン、カルバゾール、アクリジン、
フェナジン、ツェナトリジンのような3員環以上の複素
環化合物が互いに少なくとも2個以上結合するか、又は
1個以上の3員環以上の単環炭化水素化合物と結合して
なる縮合複素環化合物、上記各化合物のカルボン酸、カ
ルボン酸無水物、カルボン酸イミドのような誘導体、更
にベンゼンの1.2,4.5−テトラカルボン酸、その
二無水物またはそのジイミド;などをあげることができ
る。
The organic compound that serves as the raw material for this carbonaceous material is not particularly limited as long as it is commonly used, such as epoxy resin; phenol resin; polyacrylonitrile, poly(α-halogenated acrylonitrile).
Acrylic resins such as; halogenated vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polychlorinated vinyl chloride; polyamideimide vA resins; polyamide resins; conjugated resins such as polyacetylene, poly(p-phenylene), etc. organic polymer compounds; for example, naphthalene,
A condensed polycyclic hydrocarbon compound formed by condensing two or more monocyclic hydrocarbon compounds with three or more members, such as phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, picene, perylene, pentaphene, and pentacene, or Various pitches based on derivatives of the above compounds such as carboxylic acids, carboxylic acid anhydrides, and carboxylic acid imides, and mixtures of the above compounds; for example, indole, isoindole, quinoline, inquinoline, quinoxaline, phthalazine, carbazole , acridine,
A fused heterocyclic compound formed by at least two or more 3-membered ring or more heterocyclic compounds such as phenazine or zenatridine bonded to each other or bonded to one or more 3-membered or more monocyclic hydrocarbon compounds; Examples include derivatives of each compound such as carboxylic acid, carboxylic acid anhydride, and carboxylic acid imide, as well as 1,2,4,5-tetracarboxylic acid of benzene, its dianhydride, or its diimide.

この炭素質物は、上記した有機化合物の一種又は2種以
上を非酸化性雰囲気中、温度1100〜1300°C1
時間2〜3時間で焼成e熱分解し炭素化することによっ
て調製することができる。
This carbonaceous material is prepared by combining one or more of the above-mentioned organic compounds in a non-oxidizing atmosphere at a temperature of 1,100 to 1,300° C.
It can be prepared by calcination e pyrolysis and carbonization for 2 to 3 hours.

このようにして調製された炭素質物を所定粒径(例えば
、平均粒径20〜50u)に粉砕して粉末とし、この粉
末と結着剤とを所定量比(例えば、重量比で80〜90
 : 20〜10)で混練し、この混練物をペレット又
はシートに圧縮・成形すれば、比較的多孔質な担持体と
なる。
The carbonaceous material thus prepared is pulverized to a predetermined particle size (for example, an average particle size of 20 to 50 u) to form a powder, and this powder and a binder are mixed in a predetermined quantitative ratio (for example, a weight ratio of 80 to 90 μm).
: 20 to 10), and the kneaded product is compressed and molded into pellets or sheets, resulting in a relatively porous carrier.

本発明にかかる負極体は、例えば、次のようにして製造
することができる。
The negative electrode body according to the present invention can be manufactured, for example, as follows.

すなわち、上記活物質を上記炭素質物に担持させる方法
としては、化学的方法、物理的方法、電気化学的方法が
あり、例えば、所定濃度のLiイオン又はアルカリ金属
イオンを含有する電解液中に上記したような炭素質物を
陽極とし、金属Liを陰極として浸漬し、電解含浸する
方法を適用することができる。
That is, methods for supporting the active material on the carbonaceous material include chemical methods, physical methods, and electrochemical methods. It is possible to apply a method of electrolytically impregnating a carbonaceous material such as that described above as an anode and metal Li as a cathode by immersing it.

このときの電解条件としては、電流密度は電解所期には
低く設定し、電解の進行に伴って逐次電流密度を上げれ
ばよい。
As for the electrolysis conditions at this time, the current density may be set low during the electrolysis stage, and the current density may be increased successively as the electrolysis progresses.

かくすることにより、活物質は、炭素質物の金属Liに
対向する面倒はど多量に担持されるようになる。
By doing so, a large amount of the active material is supported on the carbonaceous material facing the metal Li.

なお、このような活物質の担持は、炭素質物に対してば
かりでなく、正極体に行ってもよい。
Note that such active material may be supported not only on the carbonaceous material but also on the positive electrode body.

本発明の非水溶媒二次電池を第1図に基づいて説明する
。図において、1は正極端子を兼ねる正極缶であり、例
えば、ステンレス鋼板からなる。2は正極体である。正
極体2はV2O5、MoO3、V6O13、Cr301
2、WO2などの酸化物;Ti2 S、MoS2 、V
2 S5、M OSs 、 Cu S、 CrO,5V
O,5S2などの硫化物; VSe2、NbS2などの
セレン化物;などの遷移金属カルコゲン化合物を正極活
物質とし、この正極活物質の粉末とカーボンブック、ア
セチレンブラック、DBP吸油量160〜500cm3
/100g、表面積800〜1300rn2/gで表面
にうすい黒鉛層をもつ中空シェル状のコンダクティブフ
ァーネスブラック(商品名ケッチェンブラック:ライオ
ンアクゾ社)などの導電剤とポリテトラフルオロエチレ
ン、ポリエチレンなどの結着剤との混合物をベレット化
又はシート化したものである。
The non-aqueous solvent secondary battery of the present invention will be explained based on FIG. 1. In the figure, 1 is a positive electrode can that also serves as a positive electrode terminal, and is made of, for example, a stainless steel plate. 2 is a positive electrode body. The positive electrode body 2 is made of V2O5, MoO3, V6O13, Cr301
2. Oxides such as WO2; Ti2S, MoS2, V
2 S5, MOSs, CuS, CrO, 5V
Transition metal chalcogen compounds such as sulfides such as O and 5S2; selenides such as VSe2 and NbS2 are used as positive electrode active materials, and the powder of this positive electrode active material, carbon book, acetylene black, and DBP oil absorption amount is 160 to 500 cm3.
/100g, a surface area of 800 to 1300rn2/g, and a hollow shell-like conductive furnace black with a thin graphite layer on the surface (trade name: Ketjen Black: Lion Akzo Co., Ltd.) and other conductive agents and binding of polytetrafluoroethylene, polyethylene, etc. The mixture with the agent is made into pellets or sheets.

3は正極集電体であり、正極集電体3は、ニッケル、ス
テレンスなどからなる網体、エキスバンドメタル、パン
チトメタルシートなどからなり、正極体2の正極缶1側
に圧着して一体化されており、正極缶lの底部に着設し
て収納されている°。
3 is a positive electrode current collector, and the positive electrode current collector 3 is made of a net made of nickel, stainless steel, etc., expanded metal, punched metal sheet, etc., and is crimped to the positive electrode can 1 side of the positive electrode body 2 to be integrated. It is attached and stored at the bottom of the positive electrode can.

4はセパレータであり、多孔質ポリプロピレン製薄膜、
ポリエチレン多孔質薄膜などのような保液性を有する材
料で構成されている。セパレ−タ44mは、LiCJ1
04.LiPF6、LiBF4.LiAsF6などのよ
うな電解質をプロピレンカーボネート、1.2−ジメト
キシエタン、γ−ブチロラクトン、ジオキソラン、エチ
レンカーボネート、2−メチルテトラヒドロフランのよ
うな非プロトン性有機溶媒に溶解せしめた電解液が含浸
されている。
4 is a separator, which is a porous polypropylene thin film;
It is made of a material with liquid retention properties, such as a porous thin film of polyethylene. Separator 44m is LiCJ1
04. LiPF6, LiBF4. It is impregnated with an electrolytic solution in which an electrolyte such as LiAsF6 is dissolved in an aprotic organic solvent such as propylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, dioxolane, ethylene carbonate, or 2-methyltetrahydrofuran.

5は前述したような負極体であり、負極体5は担持され
ている活物質の担持量が少ない表面がセパレータ4側に
なるようにしてセパレータ4上に載置されている。
Reference numeral 5 denotes the negative electrode body as described above, and the negative electrode body 5 is placed on the separator 4 such that the surface on which the amount of supported active material is small faces the separator 4 side.

6は負極端子を兼ねる負極毎であり、この負極毎6に負
極体5が着設されている。また負極毎6は絶縁バッキン
グ7を介して正極缶lに嵌合され、正極缶1の開口周縁
部が内方に折曲されて電池全体が封口されている。
Each negative electrode 6 also serves as a negative electrode terminal, and a negative electrode body 5 is attached to each negative electrode 6. Each negative electrode 6 is fitted into a positive electrode can 1 via an insulating backing 7, and the opening peripheral portion of the positive electrode can 1 is bent inward to seal the entire battery.

なお、本発明の非水溶媒二次電池の形状は、第1図の如
きボタン形のものに限定されるものではなく、円筒形、
扁平形、角形などであってもよい。
Note that the shape of the non-aqueous solvent secondary battery of the present invention is not limited to the button shape as shown in FIG. 1, but may be cylindrical,
It may be flat, square, or the like.

(作用) 本発明の二次電池において、負極体の炭素質物中に担持
される活物質の担持量をセパレータ側ほど少なくなるよ
うにしたため、活物質が電解液中へ移動することを抑制
することができる。また、充放電時の負極体表面の電流
分布は均一になり、負極体表面の一部分でのLiイオン
のドープ現象、脱ドープ現象はなくなり、その結果、充
放電サイクルを反復しても負極体中の活物質の相持量が
セパレータ側ほど多かった場合に生起したデンドライト
状の電析物の形成はなくなる。したがって、電池貯蔵時
の自己放電による放電容量の低下を著しく抑制すること
かてさ、かつ充放電サイクル寿命を長くすることができ
る。
(Function) In the secondary battery of the present invention, since the amount of active material supported in the carbonaceous material of the negative electrode body is made smaller toward the separator side, movement of the active material into the electrolyte can be suppressed. Can be done. In addition, the current distribution on the surface of the negative electrode during charging and discharging becomes uniform, and Li ion doping and dedoping phenomena on a part of the surface of the negative electrode disappear. The formation of dendrite-like deposits that occurred when the amount of active material supported was larger toward the separator side is eliminated. Therefore, a decrease in discharge capacity due to self-discharge during battery storage can be significantly suppressed, and the charge/discharge cycle life can be extended.

(実施例) 実施例 (1)正極体の製造 v2o5粉末4gとアセチレンブラック1gとポリテト
ラフルオロエチレン粉末0.5gとを混練し、得られた
混練物をロール成形して厚さ0.5mmのシートとした
。このシートの片面を正極集電体である線径9+u+、
60メツシユのステンレス鋼ネットに圧着した。
(Example) Example (1) Production of positive electrode body 4 g of V2O5 powder, 1 g of acetylene black, and 0.5 g of polytetrafluoroethylene powder were kneaded, and the resulting kneaded product was roll-formed to a thickness of 0.5 mm. It was made into a sheet. One side of this sheet is a positive electrode current collector with a wire diameter of 9+u+,
It was crimped onto a 60 mesh stainless steel net.

(2)負極体の製造 フェノール樹脂を窒素ガス中において1100°Cにお
いて3時間焼成して炭素化した。得られた炭素質物を粉
砕し、この粉末4gとポリテトラフルオロエチレン粉末
1gとを混合し、この混合物5gを加圧成形して厚さ0
.5mm、直径9■のペレットにした。
(2) Manufacture of negative electrode body The phenol resin was carbonized by firing at 1100° C. for 3 hours in nitrogen gas. The obtained carbonaceous material was pulverized, 4 g of this powder was mixed with 1 g of polytetrafluoroethylene powder, and 5 g of this mixture was press-molded to a thickness of 0.
.. It was made into pellets of 5 mm and 9 cm in diameter.

次いで、このペレットをプロピレンカーボネートにLi
C文04を1モル/見の濃度となるように溶解せしめた
電解液中に浸漬し、このペレットを陽極、金属Liを陰
極とする電解処理を施した。電解条件は、まず浴温20
℃、電流密度0 、1−mA/ cs2.電解時間8時
間とした。次いで、浴温20゛Cのままで電流密度を0
.5+*A/cm2.電解時間8時間とし、更に電流密
度1.0mA/cm2.電解時間8時間とした。
Next, this pellet was dissolved in propylene carbonate with Li.
The pellets were immersed in an electrolytic solution in which C-Fun 04 was dissolved to a concentration of 1 mol/ml, and subjected to electrolytic treatment using the pellet as an anode and metal Li as a cathode. The electrolysis conditions are: first, the bath temperature is 20
°C, current density 0, 1-mA/cs2. The electrolysis time was 8 hours. Next, the current density was reduced to 0 while keeping the bath temperature at 20°C.
.. 5+*A/cm2. The electrolysis time was 8 hours, and the current density was 1.0 mA/cm2. The electrolysis time was 8 hours.

このような処理により、ペレットでは、陰極側ほどLi
の担持量が多くなった。この負極体の放電容量は3.5
mAhであった。
Due to this treatment, in the pellet, Li is concentrated closer to the cathode side.
The amount of supported was increased. The discharge capacity of this negative electrode body is 3.5
It was mAh.

(3)電池の組立 ステンレス鋼製の正極缶に、上記した正極体を集電体を
下にして着設し、その上にセパレータとして多孔質ポリ
プロピレン薄膜を載置したのち、そこにLiCJlog
を濃度1モル/交でプロピレンカーボネートに溶解せし
めた非水電解液を含浸せしめた。ついでその上に活物質
の相持量が少ない表面をセパレータ側にして上記負極体
を載置して発電要素を構成した。
(3) Assembly of the battery The above-mentioned positive electrode body was installed in a stainless steel positive electrode can with the current collector facing down, and a porous polypropylene thin film was placed on top of it as a separator.
It was impregnated with a non-aqueous electrolyte prepared by dissolving 1 mol/aq in propylene carbonate. Then, the negative electrode body was placed thereon with the surface having a smaller amount of active material facing the separator side to form a power generation element.

なお、正極体も、電池に組込むに先立ち、濃度1モル/
文のLiイオン電解液中に浸清し、正極体を陽極とし、
金属Liを陰極とする電解処理に付した。電解条件は、
浴温20℃、″FrL流密度0 、5+ 1 、0+1
 、5mA/cm2’、電解時間各々8時間とした。こ
のような処理により、正極体には放電容量2.5mAh
のLiが担持されたことになる。
In addition, the positive electrode body should also be prepared at a concentration of 1 mol/min before being incorporated into the battery.
Immerse it in a Li-ion electrolyte solution, and use the positive electrode body as an anode.
It was subjected to electrolytic treatment using metal Li as a cathode. The electrolytic conditions are
Bath temperature 20℃, "FrL flow density 0, 5+ 1, 0+1
, 5 mA/cm2', and electrolysis time were 8 hours each. Through such treatment, the positive electrode body has a discharge capacity of 2.5 mAh.
This means that Li is supported.

しかるのち、負極毎を絶縁バッキングを介して正極缶に
嵌合し、電池全体を封口した。
Thereafter, each negative electrode was fitted into a positive electrode can via an insulating backing, and the entire battery was sealed.

比較のために、負極体として、厚さ0.5mm、直径9
mmのペレットと厚さ0 、5mm、直PA9fflf
fiの金属L i f匁を一体化したものを用い、金属
Li箔をセパレータ側になるようにして電池に組込んだ
ことを除いては実施例と同様にして゛1セ池を製造した
For comparison, a negative electrode body with a thickness of 0.5 mm and a diameter of 9
mm pellet and thickness 0, 5mm, straight PA9fflf
A cell battery was manufactured in the same manner as in the example except that the metal Li foil of fi was integrated into the battery so that the metal Li foil was placed on the separator side.

(4)各電池の特性 このようにして得られた非水溶媒二次電池につき、以下
に述べる評価試験を行なった。
(4) Characteristics of each battery The evaluation tests described below were conducted on the non-aqueous solvent secondary batteries thus obtained.

10にΩの定抵抗負荷で3vから2vまでの充放電を1
サイクルとする充放電サイクル試験を行ない、初期放電
容量を100%とした場合の各サイクルにおける放電容
量維持率(%)を測定し、結果を第2図に示した。
Charging and discharging from 3V to 2V with a constant resistance load of 10Ω
A charge/discharge cycle test was conducted, and the discharge capacity retention rate (%) in each cycle was measured when the initial discharge capacity was taken as 100%. The results are shown in FIG.

また、lOkΩの定抵抗負荷で3Vから2Vまでの充放
電を1サイクルとする充放電サイクルを3サイクル反復
した後放電容量を測定した1次いで、これらの電池を温
度20℃で貯蔵し、貯蔵期ffffごとに放電容量を測
定して貯蔵前の放電容量に対する放電容量維持率を求め
た。結果を第3図に示した。
In addition, the discharge capacity was measured after repeating 3 cycles of charging and discharging from 3V to 2V under a constant resistance load of 1OkΩ.Next, these batteries were stored at a temperature of 20℃, and the storage period was The discharge capacity was measured for each ffff, and the discharge capacity retention rate with respect to the discharge capacity before storage was determined. The results are shown in Figure 3.

[発明の効果] 以上の説明で明らかなように、本発明の非水溶媒二次電
池は、貯蔵時の自己放電による放電容量低下を抑制する
ことができ、かつ充放電サイクル寿命が長い。したがっ
て、その工業的価値は犬である。
[Effects of the Invention] As is clear from the above description, the non-aqueous solvent secondary battery of the present invention can suppress a decrease in discharge capacity due to self-discharge during storage, and has a long charge-discharge cycle life. Therefore, its industrial value is a dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるボタン型非水溶媒二次
電池の断面図、第2図は本発明の実施例、比較例におけ
る電池の充放電サイクル−放電容量維持率の関係を表わ
す図、第3図は本発明の実施例、比較例における電池の
貯蔵日数−放電容量維持率を表わす図である・。 1・・・・・・正極缶     2・・・・・・正極体
3・・・・・・正極集電体   4・・・・・・セパレ
ータ5・・・・・・負極体     6・・・・・・負
極缶7・・・・・・絶縁バッキング 第1図 第2図 第3図
Fig. 1 is a cross-sectional view of a button-type non-aqueous solvent secondary battery which is an example of the present invention, and Fig. 2 shows the relationship between charge/discharge cycle and discharge capacity retention rate of the battery in the example of the present invention and a comparative example. FIG. 3 is a diagram showing storage days vs. discharge capacity retention rate of batteries in Examples and Comparative Examples of the present invention. 1... Positive electrode can 2... Positive electrode body 3... Positive electrode current collector 4... Separator 5... Negative electrode body 6... ... Negative electrode can 7 ... Insulating backing Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 正極体と、セパレータと、負極体とをこの順序で一体的
に積層して成る発電要素を具備する非水溶媒二次電池に
おいて、該負極体が、有機化合物の焼成体である炭素質
物と該炭素質物に担持されたリチウム又はリチウムを主
体とするアルカリ金属とからなり、かつ該リチウム又は
リチウムを主体とするアルカリ金属の担持量が該セパレ
ータ側ほど少ないことを特徴とする非水溶媒二次電池。
In a non-aqueous solvent secondary battery equipped with a power generation element formed by integrally laminating a positive electrode body, a separator, and a negative electrode body in this order, the negative electrode body is composed of a carbonaceous material that is a fired body of an organic compound, and a carbonaceous material that is a fired body of an organic compound. A non-aqueous solvent secondary battery comprising lithium or an alkali metal mainly composed of lithium supported on a carbonaceous material, and characterized in that the amount of the lithium or the alkali metal mainly composed of lithium supported is smaller toward the separator side. .
JP62131352A 1987-05-29 1987-05-29 Method for producing negative electrode body for non-aqueous solvent secondary battery Expired - Fee Related JPH0646579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62131352A JPH0646579B2 (en) 1987-05-29 1987-05-29 Method for producing negative electrode body for non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62131352A JPH0646579B2 (en) 1987-05-29 1987-05-29 Method for producing negative electrode body for non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPS63298963A true JPS63298963A (en) 1988-12-06
JPH0646579B2 JPH0646579B2 (en) 1994-06-15

Family

ID=15055925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62131352A Expired - Fee Related JPH0646579B2 (en) 1987-05-29 1987-05-29 Method for producing negative electrode body for non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH0646579B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458456A (en) * 1990-06-25 1992-02-25 Sharp Corp Electrode for battery and manufacture thereof
WO1995008852A1 (en) * 1993-09-22 1995-03-30 Kanebo Ltd. Organic electrolyte cell
JPH10312811A (en) * 1997-03-11 1998-11-24 Matsushita Electric Ind Co Ltd Nonaqeous electrolyte secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235372A (en) * 1984-05-07 1985-11-22 Sanyo Chem Ind Ltd Secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235372A (en) * 1984-05-07 1985-11-22 Sanyo Chem Ind Ltd Secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458456A (en) * 1990-06-25 1992-02-25 Sharp Corp Electrode for battery and manufacture thereof
JP2642223B2 (en) * 1990-06-25 1997-08-20 シャープ株式会社 Battery electrode and method of manufacturing the same
WO1995008852A1 (en) * 1993-09-22 1995-03-30 Kanebo Ltd. Organic electrolyte cell
JPH10312811A (en) * 1997-03-11 1998-11-24 Matsushita Electric Ind Co Ltd Nonaqeous electrolyte secondary battery
JP4507284B2 (en) * 1997-03-11 2010-07-21 パナソニック株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH0646579B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
JP3154719B2 (en) Non-aqueous electrolyte secondary battery
JPH11219731A (en) Organic electrolyte secondary battery
JPH0544143B2 (en)
JP2001085016A (en) Non-aqueous electrolyte battery
JPH11339778A (en) Manufacture of secondary battery negative electrode
JP3056519B2 (en) Non-aqueous solvent secondary battery
JPH0580791B2 (en)
JPS63298963A (en) Nonaqueous solvent secondary battery
JPS63114056A (en) Nonaqueous solvent secondary battery
JPS63193463A (en) Nonaqueous solvent secondary battery
JPH0546670B2 (en)
JPH02121258A (en) Secondary cell
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JPH04296471A (en) Non-aqueous electrolyte secondary battery
JPH02215043A (en) Nonaqueous solvent secondary battery
JP3057499B2 (en) Non-aqueous electrolyte secondary battery
JPH05290888A (en) Nonaqueous solvent secondary battery
JPH01274360A (en) Secondary battery
JPS62283571A (en) Nonaqueous solvent secondary cell
JPH05182691A (en) Nonaqueous electrolyte secondary battery
JP3434557B2 (en) Non-aqueous solvent secondary battery
JP2738708B2 (en) Rechargeable battery
JPH07142092A (en) Nonaqueous solvent secondary battery
JPH053110B2 (en)
JPH11219707A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees