JPH0580791B2 - - Google Patents

Info

Publication number
JPH0580791B2
JPH0580791B2 JP61212691A JP21269186A JPH0580791B2 JP H0580791 B2 JPH0580791 B2 JP H0580791B2 JP 61212691 A JP61212691 A JP 61212691A JP 21269186 A JP21269186 A JP 21269186A JP H0580791 B2 JPH0580791 B2 JP H0580791B2
Authority
JP
Japan
Prior art keywords
electrode body
negative electrode
positive electrode
separator
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61212691A
Other languages
Japanese (ja)
Other versions
JPS6369154A (en
Inventor
Kuniaki Inada
Katsuharu Ikeda
Juichi Sato
Mitsutaka Myabayashi
Akira Itsubo
Hiroshi Yui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Mitsubishi Petrochemical Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP61212691A priority Critical patent/JPS6369154A/en
Publication of JPS6369154A publication Critical patent/JPS6369154A/en
Publication of JPH0580791B2 publication Critical patent/JPH0580791B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は非水電解液二次電池に関し、更に詳し
くは、小型で、充放電サイクル寿命が長く、耐過
放電性が優れた新規な非水電解液二次電池に関す
る。 (従来の技術) 正極体の主要成分がMoS2、TiS2のような選移
金属のカルゴゲン化合物であり、負極体がLi又は
Liを主体とするアルカリ金属である非水電解液二
次電池は、高エネルギー密度を有するので商品化
の努力が払われている。 このような二次電池の1例を第3図に示す。図
はボタン形非水電解液二次電池の縦断面図であ
る。 図において、1が正極体である。正極体1は、
上記したような金属カルコゲン化合物の粉末とポ
リテトラフルオロエチレンのような結着剤との混
合物をペレツト化又はシート化したものである。 2はセパレータで、例えば多孔質ポリプロピレ
ン薄膜、ポリプロピレン不織布のような保液性を
有する材料で構成され、正極体1の上に載置され
る。そして、このセパレータ2には、プロピレン
カーボネート、1,2−ジメトキシエタンのよう
な非プロトン性有機溶媒に、LiClO4、LiAl 4
LiBF4、LiPF6、LiAsF6のような電解質を溶解せ
しめた所定濃度の非水電解液が含浸されている。 3は、セパレータ2を介して正極体1に載置さ
れている負極体で、Li箔又はLiを主体とするアル
カル金属箔で構成されている。 これら正極体1、セパレータ(非水電解液)
2、及び負極体3は全体として発電要素を構成す
る。そして、この発電要素が正極缶4及び負極缶
5から成る電池容器に内蔵されて電池が組立てら
れる。6は絶縁パツキングであり、7は正極体1
と正極缶4の間に介在せしめられた集電体であ
る。この集電体7は、通常、ニツケル、ステンレ
ス鋼製の金属金網、パンチドメタル、フオームメ
タルで構成され、ペレツト化又はシート化された
正極体1の片面に圧着されている。 (発明が解決しようとする問題点) 上記したような従来構造の二次電池において
は、次のような問題が生じており、その改善が求
められている。 第1の問題は、負極体がLi箔又はLiを主体とす
るアルカリ金属の箔そのものであることに基づく
問題である。すなわち、電池の放電時には負極体
からLiがLiイオンとなつて電解液に移動し、充電
時にはこのLiイオンが金属Liとなつて再び負極体
に電析するが、この充放電サイクルを反復させる
とそれに伴つて電析する金属Liはデンドライド状
となりかつ成長していき、最後には、このデンド
ライド形状の金属Li電析物がセパレータを貫通し
て正極体に達し、短絡現象を起すという問題であ
る。別言すれば、充放電サイクル寿命が短いとい
う問題である。 第2の問題は、正極体が金属カルコゲン化合物
を主要成分とすることに基づく問題である。すな
わち、一般に電池の充放電における放電深度が深
くなるに伴い、金属カルコゲン化合物はその不活
性化が急速に進行する。その結果、数回の充放電
サイクルの反復で電池容量は大幅に低下してしま
い、実用に耐え得なくなるのである。 この第2の問題を解決するために、正極体の活
物質としてV2O5とP2O5の固溶体を用いることが
提案されている(特開昭59−134561号参照)。し
かしながら、ここで提案されている電池も上記し
た問題点を全て完全に解消したものといえず、し
かも、負極体は従来と同様にLi箔又はLiを主体と
するアルカリ金属箔であるため、充放電サイクル
寿命が短いという問題は依然として未解決であ
る。 本発明は、上記した問題を解消し、充放電サイ
クル寿命が長いと同時に耐過放電性も優れている
非水電解液二次電池の提供を目的とする。 (問題点を解決するための手段) 本発明の非水電解液二次電池は、正極体と、該
正極体に載置されたセパレータと、該セパレータ
に保持された非水電解液と、該セパレータに載置
された負極体と、該正極体及び/又は該負極体に
包含され充放電反応に対応して該正・負極体間を
移動する活物質とから成る発電要素が内蔵された
非水電解液二次電池において、 (a) 該正極体が、V2O5と、該V2O5に対し30モル
%以下に相当する量のP2O5との混合物を溶融
急冷法で調製して成る非晶質物の、平均粒径が
3〜100μmの粉末の成形体であり、 (b) 該負極体が、水素/炭素の原子比が0.04以上
0.10未満、X線広角回折法による(002)面の
面間隔(d002)が3.41Å以上3.70Å以下、c軸
方向の結晶子の大きさ(Lc)が10Å以上70Å
以下、及びa軸方向の結晶子の大きさ(La)
が18Å以上70Å以下の炭素質物の粉末の成形体
であり、 (c) 該活物質が、リチウム又はリチウムを主体と
するアルカリ金属である ことを特徴とする。 本発明の電池は、上記した(a)、(b)、(c)、とりわ
け(a)、(b)を具備するところに特徴を有するもので
あり、その他の要素は第3図に例示した電池と同
じであつてよい。 本発明の電池において、活物質はLi又はLiを主
体とするアルカリ金属であるが、この活物質は、
電池の充放電に対応して正極体と負極体との間を
往復移動する。 まず、正極体は後述する非晶質物の粉末成形体
である。この非晶質物はV2O5とP2O5とから成
り、これらの量比関係はV2O5のモル数に対し、
P2O5のモル数が30%以下に設定される。P2O5
30モル%より多く含まれているものは、それを電
池に用いた場合得られる容量は非常に少なくなる
ので不適である。P2O5の量は、V2O5に対し3〜
15モル%に相当する量であることが好ましい。 なお、本発明における比晶質物とは、これをX
線回折法で同定したとき、V2O5、P2O5などの結
晶に基づく回折ピークが観察されない状態のもの
をいう。 このような非晶質物は、常用の溶融急冷法を適
用して調製することができる。すなわち、P2O5
V2O5の各粉末を所定量比で混合し、得られた混
合物を溶融し、この溶融物を例えば冷却された銅
板や銅製ドラムに接触させて急冷するのである。
このときの冷却速度を104〜108℃/sec.に設定す
ると良質の非晶質物が得られるので好適である。 本発明にかかる正極体は次のようにして製造さ
れる。すなわち、まず、上記非晶質物を粉砕して
所定粒径の粉末にする。平均粒径は3〜100μm
である。平均粒径が3μm未満では、非晶質物の
表面積は大きいがかさ密度が小さくなる。そのた
め、正極体中の充填量が少なくなるので、容量維
持率が下がり、充放電サイクル寿命が低下するの
で好ましくない。また、非晶質物の平均粒径が
100μmを超えると、非晶質物の表面積が小さく
なつて放電利用率が下がり、充放電サイクル寿命
が低下するので好ましくない。ついで、この粉末
に所定量の結着剤を添加して両者を充分に混練す
る。結着剤としては、ポリテトラフルオロエチレ
ン、ポリエチレン、クロロスルホン化ポリエチレ
ン、ポリスチレンのようなものをあげることがで
きる。結着剤の添加量が多すぎると得られた正極
体の電気抵抗が高くなつて不都合であり、通常、
非晶質物の粉末重量に対し0〜15重量%の範囲が
好ましい。 得られた混練物を所定厚みのパレツト又はシー
トに成形して、ステンレス鋼、ニツケル等の金属
金網又はパンチドメタル等に着設し比較的多孔質
な正極体が形成される。 次に負極体について説明する。 負極体は後述する炭素質物の粉末成形体であ
る。この炭素質物は、H/Cが0.04以上0.10未
満、d002が3.41Å以上3.70Å以下、Lcが10Å以上
70Å以下、及びLaが18Å以上70Å以下というパ
ラメータで特定される炭素質物である。 更に、この負極体の炭素物質は、H/Cが好ま
しくは0.07未満、とくに好ましくは0.05未満であ
る。 ここで、H/Cが0.10以上の場合、d002が3.41
Å未満の場合、又はLcが70Åより大きい場合の
いずれかであつても、そのような炭素質物を負極
体として用いると、負極体における充放電時の過
電圧が大きくなり、その結果、負極体からガスが
発生するおそれがあり、電池の安全性が損われ
る。しかも充放電サイクル特性も不満足になる。 更に、本発明の負極体の炭素質物は、上記条件
の他に下記のような条件をみたすことが好まし
い。 すなわち、X線広角回折において求められる
(110)面の面間隔d100の2倍の距離a0(=2d100
が好ましくは2.38Å以上、更に好ましくは2.39Å
以上2.46Å以下である。 このようなパラメータを有する炭素質物は、後
述する有機高分子化合物、縮合多環炭化水素化合
物、多環複素環系化合物の1種又は2種以上を焼
成・熱分解し炭素化することによつて調製するこ
とができる。この炭素化過程で重要な因子は熱処
理温度であつて、この温度が低すぎる場合は炭素
化が進まず、また高すぎる場合は炭素質状態から
黒鉛に添加してしまうからである。用いる出発源
によつても異なるが、熱処理温度は通常800〜
3000℃の範囲に設定される。 炭素質物の出発源としては、例えばセルロース
樹脂;フエノール樹脂;ポリアクリロニトリル、
ポリ(α−ハロゲン化アクリロニトリル)などの
アクリル樹脂;ポリ塩化ビニル、ポリ塩化ビニリ
デン、ポリ塩素化塩化ビニルなどのハロゲン化ビ
ニル樹脂;ポリアミドイミド樹脂;ポリアミド樹
脂;ポリアセチレン、ポリ(p−フエニレン)な
どの共役系樹脂のような任意の有機高分子化合
物;例えば、ナフタレン、フエナントレン、アン
トラセン、トリフエニレン、ピレン、クリセン、
ナフタセン、ピセン、ペリレン、ペンタフエン、
ペンタセンのような3員環以上の単環炭化水素化
合物が互いに2個以上縮合してなる縮合多環炭化
水素化合物;例えば、インドール、イソインドー
ル、キノリン、イソキノリン、キノキサリン、フ
タラジン、カルバゾール、アクリジン、フエナジ
ン、フエナントリジンのような3員環以上の複素
単環化合物が互いに少なくとも2個以上結合する
か、又は1個以上の3員環以上の単環炭化水素化
合物と結合してなる縮合複素環化合物をあげるこ
とができる。 このようにして調製された炭素質物を所定粒径
(例えば平均粒径5〜10μm)に粉砕して粉末と
し、この粉末と結着剤とを所定量比(例えば、重
量比で、95〜80:5〜20)で混練し、この混練物
をペレツト、シートに成形して比較的多孔質な負
極体が得られる。 本発明の二次電池は、上記したような正極体、
負極体を従来と同様の方法で他の要素とともに組
込んで製作することができる。このとき、この負
極体を電池に組込むに先立ち、活物質であるLi又
はLiを主体とするアルカリ金属をこの負極体に担
持せしめる。担持の方法としては、例えば、所定
濃度のLiイオン又はアルカリ金属イオンを含む電
解液中に上記した粉末成形体である負極体を浸漬
しかつ対極にリチウムを用いてこの負極体を陽極
にして電解含浸する方法を適用することができ
る。かくすることにより、Liイオン又はアルカリ
金属イオンは負極体の層間にドープされてそこに
担持されることになる。なお、このような活物質
の担持は、負極体に限らず正極体に対しても又は
両極に対して行なつてもよい。 かくして、本発明の二次電池においては、次の
ような反応が進行する。すなわち、 充電時: 正極体では、V2O5(Li)→V2O5+Li++e 負極体では、C+Li++e→C・Li 放電時: 正極体では、V2O5+Le++e→V2O5(Li) 負極体では、C・Li→C+Li++e の反応である。 すなわち、本発明の二次電池において、例えば
負極体では充電時にLiイオンのドープ現象が起
り、また放電時には負極体に担持されているLiイ
オンの脱ドープ現象が生起して、可逆的な電気化
学的酸化還元反応が充放電に伴つて進行するた
め、負極体がLi箔であつた場合にその表面で生起
したデンドライド形状の電析物の形成はなくなる
のである。 [発明の実施例] 実施例、比較例1、2 (1) 正極体の製造 V2O5粉末9gをP2O5粉末1.3g(V2O5に対
し8モル%)を混合し、この混合物を800℃で
溶融した。得られた溶融物をドライアイスで冷
却してある銅板の上に流下して急冷し、ついで
平均粒径100μmに粉砕した。得られた粉末を
X線回折法で同定したところ非晶質であつた。 この非晶質物の粉末5gと粉末状ポリテトラ
フルオロエチレン0.5gとを混練し、得られた
混練物をロール成形して厚み0.4mmのシートと
した。 このシートの片面を集電体である線径0.1mm、
60メツシユのステンレス鋼ネツトに圧着して正
極とした。 (2) 負極体の製造 フエノール樹脂の粉末を窒素ガス中において
1700℃で2時間焼成した。得られた炭素質物の
粉末を粉砕して平均粒径5μmの粉末を得た。
このものの構造パラメータは、H/Cが0.04、
d002が3.68Å、Lcが14Åであつた。 ついでこの粉末9.5gとポリエチレン粉末0.5
gとを混合しこの混合物50mgを加圧成形して厚
み0.5mmのペレツトにした。 (3) 電池の組立 ステンレス鋼製の正極缶に、上記した正極体
を集電体を下にして着設し、その上にポリプロ
ピレン不織布を載置したのち、そこにLiClO4
を濃度1モル/でプロピレンカーボネートに
溶解せしめた非水電解液を含浸せしめた。つい
でその上に上記負極体を載置して発電要素を構
成した。 なお、正極体は、組込むに先立ち、濃度1モ
ル/のLiイオン電解液中に浸漬し、正極体を
陽極とし、リチウムを陰極とする電解処理に付
した。電解条件は、浴温20℃、電流密度
0.5A/cm2、電解時間15時間とした。このよう
な処理により、正極体には容量6.0mAhのLiが
担持されたことになる。 かくして、第3図に示したようなボタン形二
次電池を製作した。 比較のために、負極体がLi箔そのもの、正極
体が結晶質のV2O5粉末とポリテトラフルオロ
エチレンとの成形体であつたことを除いては、
実施例と同様の電池を製作し、これを比較例1
電池とした。 また、負極体がLi箔そのものであつたことを
除いては実施例と同様の電池を製作しこれを比
較例2電池とした。 (4) 各電池の特性 これらの電池につき、3〜2Vの間で定電圧
充電−20KΩ定抵抗放電を反復し、このときの
各サイクルにおける電池の容量維持率(%:初
期容量を100とする)を測定した。その結果を
第1図に示した。 また、3V〜0.9Vの間で定電圧充電−20KΩ定
抵抗放電を反復し、そのときの各サイクルにお
ける電池の容量維持率を測定して深放電評価を
行なつた。その結果を第2図に示した。 図から明らかなように、本発明の電池は放電
深度の深さに関りなく容量維持率が小さく充放
電サイクル寿命は著しく長くなることが判明し
た。 比較例 3、4 (1) 負極体の製造 ポリアクリロニトリルの粉末を、窒素ガス中
で、温度1000℃(比較例3)または2500℃(比
較例4)で2時間焼成した。得られた炭素質物
をそれぞれ粉砕して、平均粒径5μmの粉末を
得た。これらの粉末の構造パラメータは、第1
表に示すとおりであつた。 (2) 電池の組立 上記のようにして得られた負極体を、実施例
で用いた正極体と組み合せて、実施例に準じ
て、ボタン形二次電池を製作した。 (3) 各電池の特性 これらの電池につき、3〜2Vの間で定電圧
充電−20kΩ定抵抗放電を反復し、100サイクル
及び200サイクルにおける電池の容量維持率
(%:初期容量を100とする)を測定した。その
結果を、実施例の電池についての測定結果とと
もに、第1表に示す。
(Industrial Application Field) The present invention relates to a nonaqueous electrolyte secondary battery, and more particularly, to a novel nonaqueous electrolyte secondary battery that is small, has a long charge/discharge cycle life, and has excellent overdischarge resistance. . (Prior art) The main component of the positive electrode body is a cargogen compound of a transition metal such as MoS 2 or TiS 2 , and the negative electrode body is made of Li or
BACKGROUND ART Efforts are being made to commercialize nonaqueous electrolyte secondary batteries, which are mainly made of alkali metals such as Li, and have a high energy density. An example of such a secondary battery is shown in FIG. The figure is a longitudinal cross-sectional view of a button-shaped non-aqueous electrolyte secondary battery. In the figure, 1 is a positive electrode body. The positive electrode body 1 is
A mixture of the metal chalcogen compound powder as described above and a binder such as polytetrafluoroethylene is formed into pellets or sheets. A separator 2 is made of a liquid-retaining material such as a porous polypropylene thin film or a polypropylene nonwoven fabric, and is placed on the positive electrode body 1 . This separator 2 contains LiClO 4 , LiAl O 4 , LiClO 4 , LiAl O 4 ,
It is impregnated with a nonaqueous electrolyte solution of a predetermined concentration in which an electrolyte such as LiBF 4 , LiPF 6 , or LiAsF 6 is dissolved. Reference numeral 3 denotes a negative electrode body placed on the positive electrode body 1 with a separator 2 in between, and is made of Li foil or an alkali metal foil containing Li as a main component. These positive electrode body 1, separator (non-aqueous electrolyte)
2 and the negative electrode body 3 constitute a power generation element as a whole. Then, this power generation element is housed in a battery container consisting of a positive electrode can 4 and a negative electrode can 5, and a battery is assembled. 6 is an insulating packing, 7 is a positive electrode body 1
This is a current collector interposed between the positive electrode can 4 and the positive electrode can 4. The current collector 7 is usually made of nickel, stainless steel metal wire mesh, punched metal, or foam metal, and is crimped onto one side of the pelletized or sheeted positive electrode body 1. (Problems to be Solved by the Invention) In the secondary battery having the conventional structure as described above, the following problems have occurred, and improvement thereof is required. The first problem is based on the fact that the negative electrode body is a Li foil or an alkali metal foil mainly composed of Li. In other words, when the battery is discharged, Li from the negative electrode body becomes Li ions and moves to the electrolyte, and during charging, these Li ions become metallic Li and are deposited on the negative electrode body again, but if this charge-discharge cycle is repeated, As a result, the metal Li deposited becomes dendrite-like and grows, and eventually the dendrite-shaped metal Li deposits penetrate the separator and reach the positive electrode body, causing a short circuit phenomenon. . In other words, the problem is that the charge/discharge cycle life is short. The second problem is based on the fact that the positive electrode body contains a metal chalcogen compound as a main component. That is, in general, as the depth of discharge during charging and discharging of a battery becomes deeper, the metal chalcogen compound becomes inactivated more rapidly. As a result, the battery capacity decreases significantly after several charge/discharge cycles, making it unusable for practical use. In order to solve this second problem, it has been proposed to use a solid solution of V 2 O 5 and P 2 O 5 as the active material of the positive electrode body (see JP-A-59-134561). However, the battery proposed here cannot be said to have completely solved all of the above-mentioned problems, and furthermore, the negative electrode body is Li foil or an alkali metal foil mainly composed of Li, so it cannot be recharged. The problem of short discharge cycle life remains unsolved. The present invention aims to solve the above-mentioned problems and provide a nonaqueous electrolyte secondary battery that has a long charge/discharge cycle life and also has excellent overdischarge resistance. (Means for Solving the Problems) The nonaqueous electrolyte secondary battery of the present invention includes a positive electrode body, a separator placed on the positive electrode body, a nonaqueous electrolyte held in the separator, and a nonaqueous electrolyte secondary battery of the present invention. A non-contact device with a built-in power generation element consisting of a negative electrode body placed on a separator, and an active material included in the positive electrode body and/or the negative electrode body and moving between the positive and negative electrode bodies in response to charge/discharge reactions. In an aqueous electrolyte secondary battery, (a) the positive electrode body is made by melting and rapidly cooling a mixture of V 2 O 5 and P 2 O 5 in an amount equivalent to 30 mol% or less with respect to the V 2 O 5 ; (b) the negative electrode body has a hydrogen/carbon atomic ratio of 0.04 or more;
less than 0.10, the interplanar spacing (d 002 ) of the (002) plane by X-ray wide-angle diffraction method is 3.41 Å or more and 3.70 Å or less, and the crystallite size in the c-axis direction (Lc) is 10 Å or more and 70 Å
Below, and the crystallite size in the a-axis direction (La)
(c) The active material is lithium or an alkali metal mainly composed of lithium. The battery of the present invention is characterized by having the above-mentioned (a), (b), and (c), especially (a) and (b), and other elements are illustrated in FIG. It may be the same as a battery. In the battery of the present invention, the active material is Li or an alkali metal mainly composed of Li;
It moves back and forth between the positive electrode body and the negative electrode body in response to charging and discharging of the battery. First, the positive electrode body is a powder compact of an amorphous material, which will be described later. This amorphous substance consists of V 2 O 5 and P 2 O 5 , and their quantitative ratio is as follows with respect to the number of moles of V 2 O 5 .
The number of moles of P 2 O 5 is set to 30% or less. P 2 O 5
If the content is more than 30 mol%, it is not suitable because the capacity obtained when used in a battery will be very small. The amount of P 2 O 5 is 3 to V 2 O 5
Preferably, the amount corresponds to 15 mol%. In addition, the specific crystalline substance in the present invention refers to this
It refers to a state in which no diffraction peaks based on crystals such as V 2 O 5 or P 2 O 5 are observed when identified by a line diffraction method. Such an amorphous material can be prepared by applying a commonly used melt quenching method. That is, P 2 O 5 ,
V 2 O 5 powders are mixed in a predetermined ratio, the resulting mixture is melted, and the melt is brought into contact with, for example, a cooled copper plate or copper drum to be rapidly cooled.
It is preferable to set the cooling rate at this time to 10 4 to 10 8 ° C./sec., since a good quality amorphous material can be obtained. The positive electrode body according to the present invention is manufactured as follows. That is, first, the above-mentioned amorphous material is ground into powder having a predetermined particle size. Average particle size is 3-100μm
It is. When the average particle size is less than 3 μm, the surface area of the amorphous material is large, but the bulk density is small. Therefore, the filling amount in the positive electrode body decreases, which is undesirable because the capacity retention rate decreases and the charge/discharge cycle life decreases. In addition, the average particle size of the amorphous material is
If it exceeds 100 μm, the surface area of the amorphous material becomes small, the discharge utilization rate decreases, and the charge/discharge cycle life decreases, which is not preferable. Next, a predetermined amount of a binder is added to this powder and the two are sufficiently kneaded. Examples of the binder include polytetrafluoroethylene, polyethylene, chlorosulfonated polyethylene, and polystyrene. If the amount of binder added is too large, the electrical resistance of the resulting positive electrode body will increase, which is disadvantageous.
It is preferably in the range of 0 to 15% by weight based on the powder weight of the amorphous material. The obtained kneaded product is formed into a pallet or sheet of a predetermined thickness and attached to a metal wire mesh made of stainless steel, nickel, etc. or punched metal to form a relatively porous positive electrode body. Next, the negative electrode body will be explained. The negative electrode body is a powder compact of a carbonaceous material, which will be described later. This carbonaceous material has H/C of 0.04 or more and less than 0.10, d 002 of 3.41 Å or more and 3.70 Å or less, and Lc of 10 Å or more.
It is a carbonaceous material specified by the parameters of 70 Å or less and La of 18 Å or more and 70 Å or less. Further, the carbon material of this negative electrode body preferably has an H/C of less than 0.07, particularly preferably less than 0.05. Here, if H/C is 0.10 or more, d 002 is 3.41
If such a carbonaceous material is used as a negative electrode body, whether it is less than Å or Lc is greater than 70Å, the overvoltage during charging and discharging in the negative electrode body will increase, and as a result, the Gas may be generated and the safety of the battery is compromised. Furthermore, the charge/discharge cycle characteristics are also unsatisfactory. Further, it is preferable that the carbonaceous material of the negative electrode body of the present invention satisfies the following conditions in addition to the above conditions. In other words, the distance a 0 (=2d 100 ) is twice the interplanar spacing d 100 of the (110) plane found in X-ray wide-angle diffraction.
is preferably 2.38 Å or more, more preferably 2.39 Å
2.46 Å or less. Carbonaceous materials having such parameters can be produced by carbonizing one or more of the following organic polymer compounds, condensed polycyclic hydrocarbon compounds, and polycyclic heterocyclic compounds by firing and thermally decomposing them. It can be prepared. An important factor in this carbonization process is the heat treatment temperature; if this temperature is too low, carbonization will not proceed, and if it is too high, the carbonaceous state will be added to graphite. Although it varies depending on the starting source used, the heat treatment temperature is usually 800~800℃.
It is set in the range of 3000℃. Examples of starting sources of carbonaceous materials include cellulose resin; phenolic resin; polyacrylonitrile,
Acrylic resins such as poly(α-halogenated acrylonitrile); halogenated vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polychlorinated vinyl chloride; polyamideimide resins; polyamide resins; polyacetylene, poly(p-phenylene), etc. Any organic polymer compound such as conjugated resin; for example, naphthalene, phenanthrene, anthracene, triphenylene, pyrene, chrysene,
naphthacene, picene, perylene, pentaphene,
Condensed polycyclic hydrocarbon compounds formed by condensing two or more monocyclic hydrocarbon compounds with three or more members, such as pentacene; for example, indole, isoindole, quinoline, isoquinoline, quinoxaline, phthalazine, carbazole, acridine, phenazine , a fused heterocyclic compound formed by at least two heteromonocyclic compounds having 3 or more members, such as phenanthridine, bonded to each other or to one or more monocyclic hydrocarbon compounds having 3 or more members. can be given. The carbonaceous material thus prepared is pulverized to a predetermined particle size (e.g., average particle size of 5 to 10 μm) to form a powder, and the powder and binder are mixed in a predetermined ratio of amounts (e.g., 95 to 80 μm in weight ratio). :5 to 20), and the kneaded product is formed into pellets or sheets to obtain a relatively porous negative electrode body. The secondary battery of the present invention includes a positive electrode body as described above,
The negative electrode body can be assembled and manufactured with other elements in a conventional manner. At this time, before this negative electrode body is assembled into a battery, Li or an alkali metal mainly composed of Li, which is an active material, is supported on this negative electrode body. As a method of supporting, for example, the above-mentioned negative electrode body, which is a powder compact, is immersed in an electrolytic solution containing Li ions or alkali metal ions at a predetermined concentration, and lithium is used as a counter electrode, and this negative electrode body is used as an anode for electrolysis. An impregnating method can be applied. By doing so, Li ions or alkali metal ions are doped between the layers of the negative electrode body and supported therein. Note that such active material may be supported not only on the negative electrode body but also on the positive electrode body or both electrodes. Thus, in the secondary battery of the present invention, the following reaction proceeds. That is, during charging: In the positive electrode body, V 2 O 5 (Li)→V 2 O 5 +Li + +e In the negative electrode body, C+Li + +e→C・Li During discharging: In the positive electrode body, V 2 O 5 +Le + +e→ In the V 2 O 5 (Li) negative electrode body, the reaction is C.Li→C+Li + +e. That is, in the secondary battery of the present invention, for example, a doping phenomenon of Li ions occurs in the negative electrode body during charging, and a dedoping phenomenon of Li ions supported on the negative electrode body occurs during discharging, resulting in reversible electrochemical As the oxidation-reduction reaction progresses with charging and discharging, the formation of dendrite-shaped deposits that occur on the surface of the negative electrode when it is made of Li foil disappears. [Examples of the Invention] Examples, Comparative Examples 1 and 2 (1) Manufacture of positive electrode body 9 g of V 2 O 5 powder was mixed with 1.3 g of P 2 O 5 powder (8 mol % based on V 2 O 5 ), This mixture was melted at 800°C. The resulting melt was rapidly cooled by flowing down onto a copper plate cooled with dry ice, and then ground to an average particle size of 100 μm. The obtained powder was identified by X-ray diffraction and was found to be amorphous. 5 g of this amorphous powder and 0.5 g of powdered polytetrafluoroethylene were kneaded, and the resulting kneaded product was roll-formed to form a sheet with a thickness of 0.4 mm. One side of this sheet is a current collector with a wire diameter of 0.1 mm.
The positive electrode was crimped onto a 60 mesh stainless steel net. (2) Manufacture of negative electrode body Phenol resin powder is placed in nitrogen gas.
It was baked at 1700°C for 2 hours. The obtained carbonaceous material powder was pulverized to obtain a powder with an average particle size of 5 μm.
The structural parameters of this thing are H/C 0.04,
d 002 was 3.68 Å and Lc was 14 Å. Next, 9.5g of this powder and 0.5g of polyethylene powder
50 mg of this mixture was pressure-molded into pellets with a thickness of 0.5 mm. (3) Battery assembly The above-mentioned cathode body was placed in a stainless steel cathode can with the current collector facing down, a polypropylene nonwoven fabric was placed on top of it, and then LiClO 4
It was impregnated with a non-aqueous electrolytic solution prepared by dissolving the following in propylene carbonate at a concentration of 1 mol/mol. Then, the negative electrode body was placed thereon to form a power generation element. Note that, before being incorporated, the positive electrode body was immersed in a Li ion electrolyte solution having a concentration of 1 mol/min, and subjected to an electrolytic treatment using the positive electrode body as an anode and lithium as a cathode. Electrolysis conditions are bath temperature 20℃, current density
The electrolysis time was 0.5A/cm 2 and 15 hours. Through such treatment, Li with a capacity of 6.0 mAh was supported on the positive electrode body. In this way, a button-shaped secondary battery as shown in FIG. 3 was manufactured. For comparison, the negative electrode body was a Li foil itself, and the positive electrode body was a molded body of crystalline V 2 O 5 powder and polytetrafluoroethylene.
A battery similar to that of the example was manufactured, and this was used as Comparative Example 1.
It was used as a battery. In addition, a battery similar to that of the example was manufactured, except that the negative electrode body was made of Li foil itself, and this was used as a comparative example 2 battery. (4) Characteristics of each battery For these batteries, constant voltage charging and 20KΩ constant resistance discharging were repeated between 3 and 2V, and the capacity retention rate of the battery in each cycle (%: initial capacity is 100) ) was measured. The results are shown in Figure 1. In addition, deep discharge evaluation was performed by repeating constant voltage charging and 20 KΩ constant resistance discharging between 3 V and 0.9 V, and measuring the capacity retention rate of the battery in each cycle. The results are shown in Figure 2. As is clear from the figure, it was found that the battery of the present invention has a low capacity retention rate and a significantly long charge/discharge cycle life regardless of the depth of discharge. Comparative Examples 3 and 4 (1) Manufacture of negative electrode body Polyacrylonitrile powder was fired in nitrogen gas at a temperature of 1000°C (Comparative Example 3) or 2500°C (Comparative Example 4) for 2 hours. The obtained carbonaceous materials were each ground to obtain powders with an average particle size of 5 μm. The structural parameters of these powders are the first
It was as shown in the table. (2) Battery assembly The negative electrode body obtained as described above was combined with the positive electrode body used in the example to produce a button-shaped secondary battery according to the example. (3) Characteristics of each battery For these batteries, constant voltage charging and 20kΩ constant resistance discharging were repeated between 3 and 2V, and the battery capacity retention rate (%: initial capacity is 100) at 100 cycles and 200 cycles. ) was measured. The results are shown in Table 1 along with the measurement results for the batteries of Examples.

【表】 [発明の効果] 以上の説明で明らかなように、本発明の二次電
池は放電深度に影響されることなく充放電サイク
ル寿命が長く、そして耐過放電性も優れており、
信頼性の高い電池である。 なお、説明はボタン形構造の二次電池について
進めたが、本発明の技術思想はこの構造のものに
限定されるものではなく、例えば、円筒形、扁平
形、角形等の形状の非水溶媒二次電池に適用する
こともできる。
[Table] [Effects of the Invention] As is clear from the above explanation, the secondary battery of the present invention has a long charge/discharge cycle life without being affected by the depth of discharge, and has excellent overdischarge resistance.
It is a highly reliable battery. Although the explanation has been given regarding a secondary battery having a button-shaped structure, the technical idea of the present invention is not limited to this structure, and for example, non-aqueous solvents having a cylindrical, flat, or square shape may be used. It can also be applied to secondary batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はいずれも、電池の充放電サイ
クルー容量維持率との関係を表わす図であり、第
3図はボタン形構造の非水溶媒電池の縦断面図で
ある。 1……正極体、2……セパレータ(非水電解
液)、3……負極体、4……正極缶、5……負極
缶、6……絶縁パツキング、7……集電体。
Both FIG. 1 and FIG. 2 are diagrams showing the relationship between battery charge/discharge cycles and capacity retention rate, and FIG. 3 is a longitudinal cross-sectional view of a nonaqueous solvent battery having a button-shaped structure. 1... Positive electrode body, 2... Separator (non-aqueous electrolyte), 3... Negative electrode body, 4... Positive electrode can, 5... Negative electrode can, 6... Insulating packing, 7... Current collector.

Claims (1)

【特許請求の範囲】 1 正極体と、該正極体に載置されたセパレータ
と、該セパレータに保持された非水電解液と、該
セパレータに載置された負極体と、該正極体及
び/又は該負極体に包含され充放電反応に対応し
て該正・負極体間を移動する活物質とから成る発
電要素が内蔵された非水電解液二次電池におい
て、 (a) 該正極体が、五酸化バナジウムと、該五酸化
バナジウムに対し30モル%以下に相当する量の
五酸化リンとの混合物を溶融急冷法で調製して
成る非晶質物の、平均粒径が3〜100μmの粉
末の成形体であり、 (b) 該負極体が、水素/炭素の原子比が0.04以上
0.10未満、X線広角回折法による(002)面の
面間隔(d002)が3.41Å以上3.70Å以上、c軸
方向の結晶子の大きさ(Lc)が10Å以上70Å
以下、及びa軸方向の結晶子の大きさ(La)
が18Å以上70Å以下の炭素質物の粉末の成形体
であり、 (c) 該活物質が、リチウム又はリチウムを主体と
するアルカリ金属である ことを特徴とする非水電解液二次電池。 2 該炭素質物が、有機分子化合物、縮合多環炭
化水素化合物、多環複素環系化合物の群から選ば
れる少なくとも1種を炭素化したものである特許
請求の範囲第1項記載の非水電解液二次電池。
[Claims] 1. A positive electrode body, a separator placed on the positive electrode body, a nonaqueous electrolyte held in the separator, a negative electrode body placed on the separator, and the positive electrode body and/or the separator. Or, in a non-aqueous electrolyte secondary battery with a built-in power generation element comprising an active material that is included in the negative electrode body and moves between the positive and negative electrode bodies in response to charging and discharging reactions, (a) the positive electrode body is , an amorphous powder with an average particle size of 3 to 100 μm prepared by melting and quenching a mixture of vanadium pentoxide and phosphorus pentoxide in an amount equivalent to 30 mol% or less of the vanadium pentoxide. (b) the negative electrode body has a hydrogen/carbon atomic ratio of 0.04 or more;
less than 0.10, the interplanar spacing (d 002 ) of the (002) plane by X-ray wide-angle diffraction method is 3.41 Å or more and 3.70 Å or more, and the crystallite size in the c-axis direction (Lc) is 10 Å or more and 70 Å
Below, and the crystallite size in the a-axis direction (La)
18 Å or more and 70 Å or less, and (c) the active material is lithium or an alkali metal mainly composed of lithium. 2. The non-aqueous electrolysis according to claim 1, wherein the carbonaceous material is carbonized at least one selected from the group of organic molecular compounds, fused polycyclic hydrocarbon compounds, and polycyclic heterocyclic compounds. Liquid secondary battery.
JP61212691A 1986-09-11 1986-09-11 Nonaqueous electrolyte secondary battery Granted JPS6369154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212691A JPS6369154A (en) 1986-09-11 1986-09-11 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212691A JPS6369154A (en) 1986-09-11 1986-09-11 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS6369154A JPS6369154A (en) 1988-03-29
JPH0580791B2 true JPH0580791B2 (en) 1993-11-10

Family

ID=16626828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212691A Granted JPS6369154A (en) 1986-09-11 1986-09-11 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6369154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056791A1 (en) 2006-11-10 2008-05-15 Fuji Jukogyo Kabushiki Kaisha Lithium-ion secondary battery
EP2270916A2 (en) 2009-07-02 2011-01-05 Fuji Jukogyo Kabushiki Kaisha Electrode material and lithium ion secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664710B2 (en) * 1988-03-28 1997-10-22 日本電信電話株式会社 Non-aqueous solvent battery
JP2506572Y2 (en) * 1989-05-25 1996-08-14 ソニー株式会社 Lithium ion secondary battery
JP2003077541A (en) * 2001-08-31 2003-03-14 Mitsubishi Heavy Ind Ltd Battery device and its electrode
KR101244734B1 (en) 2010-11-03 2013-03-18 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
WO2017085900A1 (en) * 2015-11-18 2017-05-26 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134561A (en) * 1983-01-24 1984-08-02 Nippon Telegr & Teleph Corp <Ntt> Lithium cell
JPS6054181A (en) * 1983-09-02 1985-03-28 Toray Ind Inc Rechargeable battery
JPS61116758A (en) * 1984-11-12 1986-06-04 Nippon Telegr & Teleph Corp <Ntt> Lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134561A (en) * 1983-01-24 1984-08-02 Nippon Telegr & Teleph Corp <Ntt> Lithium cell
JPS6054181A (en) * 1983-09-02 1985-03-28 Toray Ind Inc Rechargeable battery
JPS61116758A (en) * 1984-11-12 1986-06-04 Nippon Telegr & Teleph Corp <Ntt> Lithium battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056791A1 (en) 2006-11-10 2008-05-15 Fuji Jukogyo Kabushiki Kaisha Lithium-ion secondary battery
EP2270916A2 (en) 2009-07-02 2011-01-05 Fuji Jukogyo Kabushiki Kaisha Electrode material and lithium ion secondary battery

Also Published As

Publication number Publication date
JPS6369154A (en) 1988-03-29

Similar Documents

Publication Publication Date Title
US7229713B2 (en) Electrode and battery using the same
EP0249331B1 (en) Method of manufacturing a secondary battery
JP3956384B2 (en) Secondary battery
JP3154719B2 (en) Non-aqueous electrolyte secondary battery
KR20030079734A (en) Battery
JPH0580791B2 (en)
JPH0544143B2 (en)
JP2001085016A (en) Non-aqueous electrolyte battery
JPH0364989B2 (en)
JPH0546670B2 (en)
WO2002073731A1 (en) Battery
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JPS63193463A (en) Nonaqueous solvent secondary battery
JPS63114056A (en) Nonaqueous solvent secondary battery
JP3403856B2 (en) Organic electrolyte battery
JP3056519B2 (en) Non-aqueous solvent secondary battery
JP2003151627A (en) Battery
JP2003045487A (en) Battery
JP2003187864A (en) Battery
JPH053110B2 (en)
JPH03147276A (en) Nonaqueous electrolyte secondary battery
JPS63298963A (en) Nonaqueous solvent secondary battery
JPH04296471A (en) Non-aqueous electrolyte secondary battery
JPH01274360A (en) Secondary battery
JPH0233868A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees