JPH04296471A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH04296471A
JPH04296471A JP3132383A JP13238391A JPH04296471A JP H04296471 A JPH04296471 A JP H04296471A JP 3132383 A JP3132383 A JP 3132383A JP 13238391 A JP13238391 A JP 13238391A JP H04296471 A JPH04296471 A JP H04296471A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
compound
aqueous
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3132383A
Other languages
Japanese (ja)
Inventor
Nobuaki Chiba
千葉 信昭
Norihito Kurisu
栗栖 憲仁
Yukio Sasaki
幸夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP3132383A priority Critical patent/JPH04296471A/en
Publication of JPH04296471A publication Critical patent/JPH04296471A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a non-aqueous electrolyte secondary battery having a long charging-discharging cycle lie and high capacity by using a carbonaceous material for an anode and a sydnone compound as an organic solvent of the non- aqueous electrolyte. CONSTITUTION:A carbonaceous material is used as a carrier of an anode 5 and novolak resin is fired to be used as the material. A cathode 7 is prepared by applying and drying LiCoO2 as a cathode active mass to which acetylene black and a binder are added. An electrolyte is prepared by dissolving LiPF6 in a sydnone compound having a formula I or a non-aqueous solvent mixture containing the sydnone compound. The mixing amount of 3-propylsydnone (a sydnone compound) is preferably no less than 10 volume%. Since the diameter of the complex obtained by solvating the sydnone compound-containing non- aqueous solvent and the Li ion is small and easy to enter into the interlayers of the carbonaceous material and occludes a large amount of Li. Consequently, the discharging capacity is improved and the charging-discharging cycle properties are remarkably improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は負極担持体として炭素質
材料を用いる非水電解液二次電池における電解液の改良
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of an electrolyte in a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode carrier.

【0002】0002

【従来の技術】近年、電子機器の発達に伴い、小型で軽
量、かつ、エネルギー密度が高く、さらに繰り返し充放
電可能な二次電池の開発が要望されている。この種の二
次電池としては、負極活物質としてリチウム又はリチウ
ム合金を用い、正極活物質としてモリブデン、バナジウ
ム、チタン、ニオブなどの酸化物、硫化物、セレン化物
などを用いたものが知られている。
BACKGROUND OF THE INVENTION In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged. This type of secondary battery is known to use lithium or lithium alloy as the negative electrode active material and oxides, sulfides, selenides, etc. of molybdenum, vanadium, titanium, niobium, etc. as the positive electrode active material. There is.

【0003】また最近では、高エネルギー密度を有する
マンガン酸化物のサイクル特性を改良・向上させたスピ
ネル型LiMn2O4や、他のリチウムマンガン複合酸
化物についての検討が活発になされている。
Recently, spinel-type LiMn2O4 and other lithium-manganese composite oxides, which have improved cycle characteristics of manganese oxides having high energy density, have been actively studied.

【0004】これらのリチウムマンガン酸化物を正極活
物質とし、リチウムを負極活物質とする電池系において
は、サイクルを繰り返すことによって負極活物質である
リチウムの溶解・析出反応が繰り返され、やがてリチウ
ム基板上に針状のリチウムデンドライト析出物を形成す
るという問題が生じる。
[0004] In these battery systems that use lithium manganese oxide as a positive electrode active material and lithium as a negative electrode active material, by repeating the cycle, the dissolution and precipitation reactions of lithium, which is the negative electrode active material, are repeated, and eventually the lithium substrate A problem arises with the formation of acicular lithium dendrite precipitates on top.

【0005】そのため、この電池系においては、正極活
物質中で徐々に進行する結晶構造の崩れとともに、負極
側におけるデンドライトの生成と溶媒の分解反応によっ
て電池寿命は規制され、500サイクル以上の寿命と長
期間にわたる信頼性を有する電池の製造は非常に困難で
あった。
Therefore, in this battery system, the battery life is limited by the gradual collapse of the crystal structure in the positive electrode active material, the formation of dendrites on the negative electrode side, and the decomposition reaction of the solvent, and the battery life is limited to more than 500 cycles. Manufacturing batteries with long-term reliability has been extremely difficult.

【0006】上述したリチウムの劣化は、電解質と非水
溶媒との組み合わせからも大きな影響を受けるため、そ
の最適な組合わせが検討されている。例えば、非水溶媒
として種々の混合溶媒が検討されている中で、エチレン
カーボネートと2−メチルテトラヒドロフランの混合溶
媒は、リチウムに対して安定な溶媒であることが知られ
ている。このような混合溶媒の場合では、電解質として
のLiAsF6を1.5モル/l溶解した非水電解液で
高いリチウムの充放電効率が得られることが報告されて
いる(Electro−chem,Acta,30,1
715(1985))。しかしながら、LiAsF6は
毒性の点で問題がある。
[0006] The above-mentioned deterioration of lithium is greatly affected by the combination of electrolyte and non-aqueous solvent, so the optimum combination thereof is being studied. For example, among various mixed solvents being considered as non-aqueous solvents, a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran is known to be a stable solvent for lithium. In the case of such a mixed solvent, it has been reported that high lithium charging and discharging efficiency can be obtained with a nonaqueous electrolyte in which 1.5 mol/l of LiAsF6 is dissolved as an electrolyte (Electro-chem, Acta, 30 ,1
715 (1985)). However, LiAsF6 has problems in terms of toxicity.

【0007】このため、LiAsF6と同程度にモル電
導率が高い六フッ化リン酸リチウム(LiPF6)、硼
フッ化リチウム(LiBF4)を用いることが検討され
ている。しかしながら、LiPF6やLiBF4は化学
的安定性が劣る等の問題があるため、これらの電解質を
溶解した非水電解液では十分なリチウムの充放電効率が
得難く、かつ貯蔵性も劣るという問題があった。
For this reason, the use of lithium hexafluorophosphate (LiPF6) and lithium borofluoride (LiBF4), which have a molar conductivity as high as that of LiAsF6, is being considered. However, LiPF6 and LiBF4 have problems such as poor chemical stability, so it is difficult to obtain sufficient lithium charging and discharging efficiency with non-aqueous electrolytes in which these electrolytes are dissolved, and there are problems in that storage properties are also poor. Ta.

【0008】一方層状化合物のインターカレーション又
はドーピング現象を利用した電極活物質が注目を集めて
いる。これらの電極活物質は、充電、放電反応時におい
て複雑な化学反応を起こさないことから、極めて優れた
充放電サイクルを有する事が期待される。中でも炭素質
材料を担持体とするものは注目を集めている。この炭素
質材料を負極担持体とし、正極活物質として、例えばL
iCoO2/LiNiO2系が提案されている。
On the other hand, electrode active materials utilizing the intercalation or doping phenomenon of layered compounds are attracting attention. Since these electrode active materials do not cause complicated chemical reactions during charge and discharge reactions, they are expected to have extremely excellent charge and discharge cycles. Among these, those using carbonaceous materials as a carrier are attracting attention. This carbonaceous material is used as a negative electrode carrier, and as a positive electrode active material, for example, L
The iCoO2/LiNiO2 system has been proposed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、リチウ
ムイオンの吸蔵、放出量がいまだ小さいため、負極比容
量(mAh/g)が小さい問題を有している。したがっ
て、炭素質物を負極として用いても十分な電池容量とサ
イクル寿命を同時に得ることが困難であった。
[Problems to be Solved by the Invention] However, since the amount of intercalation and desorption of lithium ions is still small, there is a problem in that the negative electrode specific capacity (mAh/g) is small. Therefore, even if a carbonaceous material is used as a negative electrode, it is difficult to obtain sufficient battery capacity and cycle life at the same time.

【0010】本発明は、上記従来の課題を解決するため
になされたもので、充放電サイクル寿命に優れた非水電
解液二次電池を提供しようとするものである。特に、負
極体に、有機化合物の焼成体である炭素物質と、該炭素
質物に担持されたリチウム又はリチウムを主体とするア
ルカリ金属を用いた時に、充放電サイクル特性に優れか
つ高容量の非水電解液二次電池を提供することを目的と
している。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a non-aqueous electrolyte secondary battery with excellent charge/discharge cycle life. In particular, when a carbon material, which is a fired body of an organic compound, and lithium or an alkali metal mainly composed of lithium supported on the carbonaceous material are used in the negative electrode body, a non-aqueous material with excellent charge/discharge cycle characteristics and high capacity can be used. The purpose is to provide an electrolyte secondary battery.

【0011】[0011]

【課題を解決するための手段】すなわち本発明は、一般
式(I):
[Means for Solving the Problems] That is, the present invention provides general formula (I):

【0012】0012

【化2】[Case 2]

【0013】(式中、R1はアルキル基、アルアルキル
基又はアリール基を表し、R2は水素原子、アルキル基
、アルアルキル基又はアリール基を表し、点線は共鳴混
成体構造を表す)すなわち、
(In the formula, R1 represents an alkyl group, an aralkyl group, or an aryl group, R2 represents a hydrogen atom, an alkyl group, an aralkyl group, or an aryl group, and the dotted line represents a resonance hybrid structure.)

【0014】[0014]

【化3】[Chemical formula 3]

【0015】で示されるシドノン化合物(メソイオン化
合物の一種)に電解質を溶解してなる電池用非水電解液
に関し、炭素質材料を構成物とする負極と、正極と、有
機溶媒に電解質を溶解してなる非水電解液とを備えた非
水電解液二次電池において、有機溶媒として、前述の一
般式(I)で示されるシドノン化合物を用いることを特
徴とする非水電解液二次電池である。
Regarding the non-aqueous electrolyte for batteries, which is formed by dissolving an electrolyte in a sydone compound (a type of mesoionic compound) represented by In a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, the non-aqueous electrolyte secondary battery is characterized in that a sydone compound represented by the aforementioned general formula (I) is used as an organic solvent. be.

【0016】本発明の電池用非水電解液は、電解質をシ
ドノン化合物(I)に溶解したものである。本発明にお
いて有機溶媒として用いられるシドノン化合物は、最も
特徴的なものであり、前述の一般式(I)で示される。 R1としては、メチル、エチル、プロピル、イソプロピ
ル、ブチル、ヘキシル、ヘプチル、オクチル、ノニル、
デシル、ドデシルなどの直鎖状もしくは分岐状のアルキ
ル基、ベンジル、フェニルエチル、フェニルプロピルな
どのアルアルキル基、フェニル、トリルなどのアリール
基が例示され、炭素数の増加にしたがって、粘度および
融点が上昇するので、電池の低温特性が悪くなることか
ら、炭素数1〜6のアルキル基が好ましく、炭素数1〜
3のアルキル基がとくに好ましい。
The non-aqueous electrolyte for batteries of the present invention is one in which an electrolyte is dissolved in sydone compound (I). The sydone compound used as an organic solvent in the present invention is the most characteristic one and is represented by the above-mentioned general formula (I). R1 is methyl, ethyl, propyl, isopropyl, butyl, hexyl, heptyl, octyl, nonyl,
Examples include linear or branched alkyl groups such as decyl and dodecyl, aralkyl groups such as benzyl, phenylethyl and phenylpropyl, and aryl groups such as phenyl and tolyl, and the viscosity and melting point increase as the number of carbon atoms increases. As a result, the low-temperature characteristics of the battery deteriorate. Therefore, an alkyl group having 1 to 6 carbon atoms is preferable;
The alkyl group of No. 3 is particularly preferred.

【0017】R2としては水素原子のほか、R1と同じ
範囲のものが例示され、R1と同一でも異なっていても
よい。R2としては水素原子、炭素数1〜3のアルキル
基が好ましい。
In addition to a hydrogen atom, R2 is exemplified by those within the same range as R1, and may be the same or different from R1. R2 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.

【0018】本発明の非水電解液において、溶媒として
シドノン(I)を他の非水溶媒と併用して混合溶媒を形
成しても差支えない。シドノンと併用できる電解液とし
てはDME、THF、2Me−THF、アセトニトリル
(AN)、ジオキソラン(DOL)、PC、エチレンカ
ーボネート(EC)などが例示される。該混合溶媒中の
シドノンの量は5体積%以上が好ましく、10体積%以
上がさらに好ましい。
In the non-aqueous electrolyte of the present invention, sydone (I) may be used as a solvent in combination with other non-aqueous solvents to form a mixed solvent. Examples of electrolytes that can be used in combination with Sidonone include DME, THF, 2Me-THF, acetonitrile (AN), dioxolane (DOL), PC, and ethylene carbonate (EC). The amount of sydone in the mixed solvent is preferably 5% by volume or more, more preferably 10% by volume or more.

【0019】本発明に用いられる電解質としては、例え
ばLiBF4、LiPF6、LiClO4、LiAsF
6、LiCF3SO3、LiAlCl4から選ばれる1
種又は2種以上のリチウム塩を用いることができる。こ
のようなリチウム塩は、溶媒中に、0.2〜1.5モル
/l溶解することが望ましい。この理由は、前記範囲を
逸脱すると、導電率の低下と、リチウムの充放電効率の
低下を招く恐れがあるからである。非水電解液中の電解
質の量は、0.5〜1.5モル/lが好ましく、0.5
〜1.2モル/lがとくに好ましい。
[0019] Examples of the electrolyte used in the present invention include LiBF4, LiPF6, LiClO4, LiAsF
6, 1 selected from LiCF3SO3, LiAlCl4
A species or more than one lithium salt can be used. It is desirable that such a lithium salt be dissolved in the solvent in an amount of 0.2 to 1.5 mol/l. The reason for this is that deviating from the above range may lead to a decrease in electrical conductivity and a decrease in lithium charging/discharging efficiency. The amount of electrolyte in the nonaqueous electrolyte is preferably 0.5 to 1.5 mol/l, and 0.5 to 1.5 mol/l.
-1.2 mol/l is particularly preferred.

【0020】非水電解液は、電池容器内に収容する前に
あらかじめ水分および不純物を除去する目的で不溶性吸
着材に吸着させて処理するか、又は通電処理するか、あ
るいはこれらの両方の処理を施すことが望ましい。
[0020] Before storing the non-aqueous electrolyte in the battery container, the non-aqueous electrolyte is treated by being adsorbed onto an insoluble adsorbent, or treated with electricity, or both of these treatments in order to remove moisture and impurities. It is desirable to apply

【0021】上記の不溶性吸着剤による処理は、例えば
前記の電解液中に、活性アルミナ、モレキュラーシーブ
など電解液と反応しない不溶性吸着剤を加えて攪拌した
後、不溶性吸着剤を▲ろ▼過などにより分離する方法、
又は不溶性吸着剤を充填したカラムに電解液を流通させ
る方法を採用することができる。
The above treatment with an insoluble adsorbent can be carried out by, for example, adding an insoluble adsorbent that does not react with the electrolytic solution, such as activated alumina or molecular sieve, to the electrolytic solution and stirring, and then filtering the insoluble adsorbent. A method of separation by,
Alternatively, a method can be adopted in which the electrolyte is passed through a column filled with an insoluble adsorbent.

【0022】上記の通電処理は、たとえば電解液中にリ
チウムからなる電極を陽極として浸漬し、かつリチウム
又はリチウム以外の金属からなる電極を陰極として浸漬
した後、これら陽極及び陰極の間に定電流または定電圧
で連続波もしくはパルスを印加して、陰極上にリチウム
を析出するか、析出と溶解を繰り返す方法を採用するこ
とができる。
[0022] The above-mentioned energization treatment is carried out, for example, by immersing an electrode made of lithium as an anode in an electrolytic solution and immersing an electrode made of lithium or a metal other than lithium as a cathode, and then applying a constant current between the anode and the cathode. Alternatively, lithium can be deposited on the cathode by applying continuous waves or pulses at a constant voltage, or a method of repeating deposition and dissolution can be adopted.

【0023】本発明の非水電解液二次電池において、負
極を構成する炭素質物の原料となる有機化合物としては
、通常使用されているものであれば特に限定されるもの
ではなく、例えば、エポキシ樹脂;フェノール樹脂;ポ
リアクリロニトリル、ポリ(α−ハロゲン化アクリロニ
トリル)などのアクリル樹脂;ポリ塩化ビニル、ポリ塩
化ビニリデン、ポリ塩素化塩化ビニルなどのハロゲン化
ビニル樹脂;ポアミドイミド樹脂;ポリアミド樹脂;ポ
リアセチレン、ポリ(p−フェニレン)などの共役系樹
脂のような任意の有機高分子化合物;例えば、ナフタレ
ン、フェナントレン、アントラセン、トリフェニレン、
ピレン、クリセン、ナフタセン、ピセン、ペリレン、ペ
ンタフェン、ペンタセンのような3員環以上の単環炭化
水素化合物が互いに2個以上縮合してなる縮合多環炭化
水素化合物、または、上記化合物のカルボン酸、カルボ
ン酸無水物、カルボン酸イミドのような誘導体、上記各
化合物の混合物を主成分とする各種のピッチ;例えば、
インドール、イソインドール、キノリン、イソキノリン
、キノキサリン、フタラジン、カルバゾール、アクリジ
ン、フェナジン、フェナトリジンのような3員環以上の
複素環化合物が互いに少なくとも2個以上結合するか、
又は1個以上の3員環以上の単環炭化合物と結合してな
る縮合複素環化合物、上記各化合物のカルボン酸、カル
ボン酸無水物、カルボン酸イミドのような誘導体、更に
ベンゼンの1,2,4,5−テトラカルボン酸、その二
無水物またはそのジイミドなどをあげることができる。 また、コークスなども炭素質物の原料として使用できる
[0023] In the non-aqueous electrolyte secondary battery of the present invention, the organic compound serving as the raw material for the carbonaceous material constituting the negative electrode is not particularly limited as long as it is commonly used. For example, epoxy Resin; Phenolic resin; Acrylic resin such as polyacrylonitrile, poly(α-halogenated acrylonitrile); Halogenated vinyl resin such as polyvinyl chloride, polyvinylidene chloride, polychlorinated vinyl chloride; Poamide-imide resin; Polyamide resin; Polyacetylene, poly Any organic polymer compound such as a conjugated resin such as (p-phenylene); For example, naphthalene, phenanthrene, anthracene, triphenylene,
A condensed polycyclic hydrocarbon compound formed by condensing two or more monocyclic hydrocarbon compounds with three or more members, such as pyrene, chrysene, naphthacene, picene, perylene, pentaphene, and pentacene, or a carboxylic acid of the above compound, Various pitches whose main components are derivatives such as carboxylic acid anhydrides, carboxylic acid imides, and mixtures of the above compounds; for example,
At least two or more 3-membered or more-membered heterocyclic compounds such as indole, isoindole, quinoline, isoquinoline, quinoxaline, phthalazine, carbazole, acridine, phenazine, and phenathridine are bonded to each other,
or a fused heterocyclic compound bonded to one or more 3-membered or more monocyclic carbon compounds, derivatives of the above compounds such as carboxylic acids, carboxylic acid anhydrides, and carboxylic acid imides, and further benzene 1 and 2 , 4,5-tetracarboxylic acid, its dianhydride, or its diimide. Furthermore, coke and the like can also be used as raw materials for carbonaceous materials.

【0024】この炭素質物は、上記した化合物の一種又
は2種以上を非酸化性雰囲気中、温度1000〜300
0℃、時間2〜3時間で焼成・熱分解し炭素化すること
によって調製することができる。
[0024] This carbonaceous material is produced by heating one or more of the above-mentioned compounds in a non-oxidizing atmosphere at a temperature of 1000 to 300.
It can be prepared by calcination, thermal decomposition, and carbonization at 0° C. for 2 to 3 hours.

【0025】また本発明の非水電解液二次電池において
、正極としては、たとえば非晶質五酸化バナジウム、二
酸化マンガンやリチウムマンガン複合酸化物などのマン
ガン酸化物、二硫化チタン、二硫化モリブデン、セレン
化モリブデン、リチウムコバルト複合酸化物、リチウム
コバルトニッケル複合酸化物などが挙げられる。
In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode may be, for example, amorphous vanadium pentoxide, manganese oxide such as manganese dioxide or lithium manganese composite oxide, titanium disulfide, molybdenum disulfide, Examples include molybdenum selenide, lithium cobalt composite oxide, lithium cobalt nickel composite oxide, and the like.

【0026】[0026]

【作用】本発明によれば、炭素質材料を負極に用い、非
水電解液の有機溶媒として、シドノン化合物(I)を用
いることによって、充放電サイクル寿命に優れ、かつ高
容量の非水電解液二次電池を得ることができる。
[Operation] According to the present invention, by using a carbonaceous material for the negative electrode and using the sydone compound (I) as the organic solvent of the non-aqueous electrolyte, the non-aqueous electrolyte has an excellent charge/discharge cycle life and a high capacity. A liquid secondary battery can be obtained.

【0027】本発明の効果が得られるメカニズムは、シ
ドノン化合物を含有する非水溶媒とLiイオンとの溶媒
和した溶媒和錯体の径が比較的小さく、有機物の焼成体
である炭素質物の層間に挿入されやすいなどの理由によ
り、Liの負極炭素系材料の層間への拡散がしやすく、
Liをより多く吸蔵することができ、また本発明の溶媒
が、化学的並びに電気化学的に安定で負極炭素系材料と
の反応がなく負極炭素系材料の構造の崩壊がないためで
あると考えられる。
The mechanism by which the effects of the present invention are obtained is that the diameter of the solvated complex of the non-aqueous solvent containing the sydone compound and the Li ion is relatively small, and that the solvated complex is formed between the layers of the carbonaceous material, which is the fired product of the organic material. Due to the ease of insertion, Li easily diffuses between the layers of the negative electrode carbon-based material.
This is believed to be because the solvent of the present invention is able to absorb more Li, and is chemically and electrochemically stable, does not react with the negative electrode carbon-based material, and does not cause collapse of the structure of the negative electrode carbon-based material. It will be done.

【0028】又、電解質として用いられるたとえばLi
PF6、LiBF4は、水分や熱に不安定であるため、
分解してPF5やBF3などのルイス酸を生成する。こ
のようなルイス酸は溶媒と反応しやすく、溶媒を劣化さ
せる不純物を生成する。
[0028] Also, for example, Li, which is used as an electrolyte,
PF6 and LiBF4 are unstable to moisture and heat, so
It decomposes to produce Lewis acids such as PF5 and BF3. Such Lewis acids tend to react with solvents, producing impurities that degrade the solvent.

【0029】さらに本発明によると、ルイス酸による酸
化反応によって強いシドノン化合物(I)を用いること
によって、溶媒とルイス酸との反応を抑制でき、その結
果負極炭素質を劣化させる不純物の生成を減少できる。 このことからも、充放電サイクル寿命の優れた非水電解
液二次電池を得ることができる。
Furthermore, according to the present invention, by using the sydone compound (I) which is strong due to the oxidation reaction with Lewis acid, the reaction between the solvent and the Lewis acid can be suppressed, and as a result, the formation of impurities that deteriorate the negative electrode carbonaceous material can be reduced. can. This also makes it possible to obtain a non-aqueous electrolyte secondary battery with an excellent charge/discharge cycle life.

【0030】又、上記のシドノン化合物の誘電率εは、
例えば、3−メチルシドノンが144.0(40℃)、
3−プロピルシドノンが95.0(25℃)、3−イソ
プロピルシドノンが66.0(60℃)、3−ブチルシ
ドノンが52.8(25℃)であり、PCが64.4(
25℃)、DMEが7.20(25℃)、γ−BLが3
9.1(25℃)、THFが7.58(25℃)などの
他の有機溶媒に比較して高い。さらに、たとえば3−プ
ロピルシドノンは、図3に示すように、低温(0℃付近
)において非常に高い誘電率を示す。このことから、シ
ドノン化合物を非水電解液の有機溶媒に用いると、その
高い誘電率により、低温時においても電解質であるリチ
ウム塩をイオン解離しやすく、このことから、他の有機
溶媒を用いた時よりも低温作動特性に優れた非水電解液
二次電池を得る事ができる。
Further, the dielectric constant ε of the above sydone compound is:
For example, 3-methylsydone is 144.0 (40°C),
3-propylcydonone is 95.0 (25℃), 3-isopropylcydonone is 66.0 (60℃), 3-butylcydonone is 52.8 (25℃), and PC is 64.4 (
25℃), DME is 7.20 (25℃), γ-BL is 3
9.1 (25°C), THF is higher than other organic solvents such as 7.58 (25°C). Furthermore, for example, 3-propylsidone exhibits a very high dielectric constant at low temperatures (around 0° C.), as shown in FIG. From this, when a sydone compound is used as an organic solvent for a nonaqueous electrolyte, its high dielectric constant easily causes ion dissociation of lithium salt, which is an electrolyte, even at low temperatures. It is possible to obtain a non-aqueous electrolyte secondary battery with superior low-temperature operation characteristics compared to conventional batteries.

【0031】なお、前記組成の非水電解液を電池容器内
に収容する前にあらかじめ不溶性吸着剤に接触させる処
理、及び/又は通電処理を施すことによって、負極炭素
質と前記非水電解液との反応による該炭素質の劣化を顕
著に抑制でき、充放電サイクル寿命、貯蔵性が極めて良
好な非水電解液二次電池を得ることができる。これは前
記の処理により電解液中の不純物が除去され、高純度の
非水電解液が得られることによるものと考えられる。
[0031] Before placing the non-aqueous electrolyte having the above composition into the battery container, the negative electrode carbonaceous material and the non-aqueous electrolyte can be brought into contact with an insoluble adsorbent and/or subjected to an electric current treatment. The deterioration of the carbonaceous material due to the reaction can be significantly suppressed, and a non-aqueous electrolyte secondary battery having extremely good charge/discharge cycle life and storage property can be obtained. This is considered to be because impurities in the electrolyte are removed by the above treatment, resulting in a highly pure non-aqueous electrolyte.

【0032】[0032]

【実施例】以下、本発明を円筒形非水電解液二次電池に
適用した例について、図1を参考にして詳細に説明する
。なお、実施例では円筒形構造の二次電池を用いたが、
本発明の技術はこの構造のものに限定されるものでなく
、たとえば、コイン形、扁平形、角形等の形状の非水電
解液二次電池に適用することもできる。
EXAMPLE Hereinafter, an example in which the present invention is applied to a cylindrical non-aqueous electrolyte secondary battery will be described in detail with reference to FIG. In addition, although a secondary battery with a cylindrical structure was used in the example,
The technology of the present invention is not limited to this structure, and can also be applied to non-aqueous electrolyte secondary batteries having shapes such as coin shape, flat shape, and square shape.

【0033】実施例1 正極としてLiCoO290重量%、導電材としてアセ
チレンブラック7重量%及び結着材としてエチレン−プ
ロピレン−環状ジエンの三元共重合体3重量%をヘキサ
ン中で混練してスラリー状の正極合剤を調整し、この正
極合剤を厚さ15μmのチタン基板上に塗布・風乾した
後、加圧して一定厚にし、つづいて、200℃、10時
間の条件で加熱乾燥して、0.26mm厚の正極合剤層
を有する板状の正極を製造した。
Example 1 90% by weight of LiCoO as a positive electrode, 7% by weight of acetylene black as a conductive material, and 3% by weight of an ethylene-propylene-cyclic diene terpolymer as a binder were kneaded in hexane to form a slurry. A positive electrode mixture was prepared, and this positive electrode mixture was applied onto a titanium substrate with a thickness of 15 μm, air-dried, and then pressurized to a constant thickness. A plate-shaped positive electrode having a positive electrode mixture layer with a thickness of .26 mm was manufactured.

【0034】一方、負極担持体である炭素質材料は、ノ
ボラック樹脂を窒素雰囲気下で950℃で焼成した後、
さらに2,000℃に加熱して炭素化することによって
製造し、粉砕して平均粒径10μmの粉末とした。
On the other hand, the carbonaceous material that is the negative electrode carrier is prepared by baking a novolak resin at 950°C in a nitrogen atmosphere.
It was further produced by heating to 2,000°C to carbonize it, and pulverizing it into a powder with an average particle size of 10 μm.

【0035】結着剤のエチレン−プロピレン−環状ジエ
ンの三元共重合体をヘキサンに溶解し、炭素質材料:接
着剤=97:3となるように分散させ、スラリー状の負
極合剤を調製した。このスラリーを厚さ10μmのステ
ンレス基板上に塗布・乾燥して厚さ0.2mmの負極合
剤を形成した。
A ternary copolymer of ethylene-propylene-cyclic diene as a binder was dissolved in hexane and dispersed in a ratio of carbonaceous material:adhesive=97:3 to prepare a slurry-like negative electrode mixture. did. This slurry was applied onto a stainless steel substrate with a thickness of 10 μm and dried to form a negative electrode mixture with a thickness of 0.2 mm.

【0036】このようにして得られた正・負極を用いて
、図1に示すような単三(AA)サイズの非水溶媒二次
電池を組立てた。すなわち、非水溶媒二次電池1は底部
に絶縁体2が配置され、負極端子を兼ねる有底円筒状の
ステンレス容器3を有する。この容器3には、電極群4
が収納されている。この電極群4は、負極5、セパレー
タ6及び正極7をこの順序で積層した帯状物を、負極5
が外側に位置するように渦巻状に巻返した構造になって
いる。前記のセパレータ6は、電解液を含浸したポリプ
ロピレン性多孔質フィルムから形成されている。
Using the positive and negative electrodes thus obtained, a non-aqueous solvent secondary battery of AA size as shown in FIG. 1 was assembled. That is, the non-aqueous solvent secondary battery 1 has a bottomed cylindrical stainless steel container 3 with an insulator 2 disposed at the bottom and also serving as a negative electrode terminal. This container 3 includes an electrode group 4
is stored. This electrode group 4 consists of a strip of a negative electrode 5, a separator 6, and a positive electrode 7 laminated in this order.
It has a structure in which it is wound in a spiral shape so that it is located on the outside. The separator 6 is formed from a polypropylene porous film impregnated with an electrolytic solution.

【0037】該電解液は、0.8モル濃度の六フッ化リ
ン酸リチウム(LiPF6)を、3−プロピルシドノン
:式(II)に溶解したものを用いた。
The electrolytic solution used was one in which 0.8 molar concentration of lithium hexafluorophosphate (LiPF6) was dissolved in 3-propylcydonone (formula (II)).

【0038】[0038]

【化4】[C4]

【0039】電池容器3内で前記の電極群4の上方には
、中心を開口した絶縁板8が配置されている。前記の容
器3の上部開口部には、絶縁封口体9が、該容器3に気
密にかしめ固定されている。この絶縁封口板8の中央開
口部には、正極端子10が嵌合されている。この正極端
子10は、前記の正極7に正極リード11を介して接続
されている。なお、前記の負極5は、図示しない負極リ
ードを介して負極端子である前記の容器3に接続されて
いる。
An insulating plate 8 with an open center is arranged above the electrode group 4 in the battery container 3. An insulating sealing body 9 is hermetically caulked and fixed to the upper opening of the container 3. A positive electrode terminal 10 is fitted into the central opening of the insulating sealing plate 8 . This positive electrode terminal 10 is connected to the above-mentioned positive electrode 7 via a positive electrode lead 11. Note that the negative electrode 5 is connected to the container 3, which is a negative electrode terminal, via a negative electrode lead (not shown).

【0040】実施例2 非水電解液として、0.8モル濃度に六フッ化リン酸リ
チウム(LiPF6)を3−プロピルシドノン:式(I
I)とDMEの混合溶媒(混合体積比率50:50)に
溶解した組成のものを用いた以外は、実施例1と同じ構
成の非水電解液二次電池を組み立てた。
Example 2 As a non-aqueous electrolyte, lithium hexafluorophosphate (LiPF6) was mixed with 3-propylsidenon: formula (I
A nonaqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled, except that a battery having a composition dissolved in a mixed solvent of I) and DME (mixed volume ratio 50:50) was used.

【0041】比較例1 非水電解液として、0.8モル濃度の六フッ化リン酸リ
チウム(LiPF6)をPCに溶解した電解液を用いた
以外は、実施例1と同じ構成の非水電解液二次電池を組
立てた。
Comparative Example 1 A non-aqueous electrolyte having the same structure as in Example 1 except that an electrolyte in which 0.8 molar concentration of lithium hexafluorophosphate (LiPF6) was dissolved in PC was used as the non-aqueous electrolyte. I assembled a liquid secondary battery.

【0042】比較例2 非水電解液として、0.8モル濃度の六フッ化リン酸リ
チウム(LiPF6)をPCと1.2−ジメトキシエタ
ン(DME)の混合溶媒(混合体積比率50:50)に
溶解した組成のものを用いた以外は、実施例1と同じ構
成の非水電解液二次電池を組立てた。
Comparative Example 2 As a non-aqueous electrolyte, 0.8 molar concentration of lithium hexafluorophosphate (LiPF6) was used in a mixed solvent of PC and 1,2-dimethoxyethane (DME) (mixed volume ratio 50:50). A non-aqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled, except that a battery having a composition dissolved in .

【0043】本発明の実施例1、2及び比較例1、2の
非水電解液二次電池について、充電電流100mA、放
電電流100mAで充放電を繰返し行い、各電池の放電
容量とサイクル寿命を測定した。その結果を図2に示す
The nonaqueous electrolyte secondary batteries of Examples 1 and 2 of the present invention and Comparative Examples 1 and 2 were repeatedly charged and discharged at a charging current of 100 mA and a discharging current of 100 mA, and the discharge capacity and cycle life of each battery were determined. It was measured. The results are shown in FIG.

【0044】[0044]

【発明の効果】図2から明らかなように、本実施例1、
2の非水電解液二次電池では、比較例1、2の電池に比
べて、初期の放電容量がほぼ同様な値であるが、サイク
ル数が増えても放電容量の低下が少なく、サイクル寿命
が格段に長くなっていることがわかる。
[Effect of the invention] As is clear from FIG. 2, this embodiment 1,
The non-aqueous electrolyte secondary battery of No. 2 has almost the same initial discharge capacity as the batteries of Comparative Examples 1 and 2, but the decrease in discharge capacity is small even when the number of cycles increases, and the cycle life is shortened. It can be seen that it has become significantly longer.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例1における円筒形非水電解液二
次電池を示す断面図である。
FIG. 1 is a sectional view showing a cylindrical non-aqueous electrolyte secondary battery in Example 1 of the present invention.

【図2】実施例1、2及び比較例1、2の円筒形非水電
解液二次電池の放電容量と充放電サイクル数との関係を
示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the discharge capacity and the number of charge/discharge cycles of cylindrical nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2.

【図3】3−プロピルシドノンの温度(℃)と誘電率(
ε)との関係を示す特性図である。
[Figure 3] Temperature (°C) and dielectric constant (
ε) is a characteristic diagram showing the relationship with ε).

【符号の説明】[Explanation of symbols]

1電池 4電極群 5負極 6セパレータ 7正極 9封口体 A実施例1 B実施例2 C比較例1 D比較例2 1 battery 4 electrode group 5 negative electrode 6 separator 7 positive electrode 9 sealing body A Example 1 B Example 2 C Comparative example 1 D Comparative example 2

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】負極担持体として炭素材料を用い、正極と
、非水溶媒に電解質を溶解してなる電解液とを備えた非
水電解液二次電池において、一般式(I):【化1】 (式中、R1はアルキル基、アルアルキル基又はアリー
ル基を表し、R2は水素原子、アルキル基、アルアルキ
ル基又はアリール基を表し、点線は共鳴混成体構造を表
す)で示されるシドノン化合物又は該シドノン化合物を
含有する非水混合溶媒を用いることを特徴とする非水電
解液二次電池。
Claim 1: A non-aqueous electrolyte secondary battery using a carbon material as a negative electrode carrier, comprising a positive electrode, and an electrolyte solution formed by dissolving an electrolyte in a non-aqueous solvent, which has the general formula (I): 1] (In the formula, R1 represents an alkyl group, an aralkyl group, or an aryl group, R2 represents a hydrogen atom, an alkyl group, an aralkyl group, or an aryl group, and the dotted line represents a resonance hybrid structure) A non-aqueous electrolyte secondary battery characterized in that a non-aqueous mixed solvent containing the compound or the sydone compound is used.
JP3132383A 1991-03-26 1991-03-26 Non-aqueous electrolyte secondary battery Pending JPH04296471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3132383A JPH04296471A (en) 1991-03-26 1991-03-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3132383A JPH04296471A (en) 1991-03-26 1991-03-26 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH04296471A true JPH04296471A (en) 1992-10-20

Family

ID=15080106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3132383A Pending JPH04296471A (en) 1991-03-26 1991-03-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH04296471A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094278A (en) * 2010-10-25 2012-05-17 Nagoya Institute Of Technology Electrolyte for lithium secondary battery and lithium secondary battery containing the same
JPWO2013031776A1 (en) * 2011-08-30 2015-03-23 国立大学法人 名古屋工業大学 Battery electrolyte, method for producing the same, and battery including the electrolyte
US9231278B2 (en) 2013-02-28 2016-01-05 National University Corporation Nagoya Institute Of Technology Electrolyte solution for magnesium battery and magnesium battery containing this electrolyte solution
CN110911747A (en) * 2019-11-29 2020-03-24 桑德新能源技术开发有限公司 Electrolyte additive, electrolyte and lithium ion battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094278A (en) * 2010-10-25 2012-05-17 Nagoya Institute Of Technology Electrolyte for lithium secondary battery and lithium secondary battery containing the same
JPWO2013031776A1 (en) * 2011-08-30 2015-03-23 国立大学法人 名古屋工業大学 Battery electrolyte, method for producing the same, and battery including the electrolyte
US9722288B2 (en) 2011-08-30 2017-08-01 Nagoya Institute Of Technology Liquid electrolyte for batteries, method for producing the same, and battery comprising the same
US9231278B2 (en) 2013-02-28 2016-01-05 National University Corporation Nagoya Institute Of Technology Electrolyte solution for magnesium battery and magnesium battery containing this electrolyte solution
CN110911747A (en) * 2019-11-29 2020-03-24 桑德新能源技术开发有限公司 Electrolyte additive, electrolyte and lithium ion battery
CN110911747B (en) * 2019-11-29 2021-06-08 桑德新能源技术开发有限公司 Electrolyte additive, electrolyte and lithium ion battery

Similar Documents

Publication Publication Date Title
CN101355146A (en) Anode, battery, and methods of manufacturing them
JPH04342966A (en) Secondary battery with non-aqueous solvent
JP3965567B2 (en) battery
JPH06333594A (en) Nonaqueous electrolyte secondary battery
JP2018026497A (en) Manufacturing method of power storage device and pre-doping method of power storage device
JP3154719B2 (en) Non-aqueous electrolyte secondary battery
US6342319B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode
JP4150202B2 (en) battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2002270159A (en) Battery
JP2002280080A (en) Method of charging secondary battery
JP2002270231A (en) Cell
JP4784718B2 (en) Electrolyte and battery
JP2002279995A (en) Battery
JPH04296471A (en) Non-aqueous electrolyte secondary battery
JP2003151627A (en) Battery
JP3720959B2 (en) Secondary battery electrode material
JP2003045487A (en) Battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JPH07320785A (en) Nonaqueous electrolytic secondary battery
JPH09320593A (en) Nonaqueous electrolyte secondary battery
JPH04280082A (en) Nonaqueous electrolyte secondary battery
JPH02215043A (en) Nonaqueous solvent secondary battery
US11201330B2 (en) Power storage device electrode, power storage device, and method of producing power storage device electrode
JP2002280082A (en) Charging method for secondary battery