JPH04206168A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH04206168A
JPH04206168A JP2325791A JP32579190A JPH04206168A JP H04206168 A JPH04206168 A JP H04206168A JP 2325791 A JP2325791 A JP 2325791A JP 32579190 A JP32579190 A JP 32579190A JP H04206168 A JPH04206168 A JP H04206168A
Authority
JP
Japan
Prior art keywords
electrode body
negative electrode
carbonaceous material
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2325791A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Nose
博義 能勢
Yuji Mochizuki
裕二 望月
Kenji Tsuchiya
土屋 謙二
Hitoshi Tsuchiyama
土山 等
Kuniaki Inada
稲田 圀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2325791A priority Critical patent/JPH04206168A/en
Publication of JPH04206168A publication Critical patent/JPH04206168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase reliability during charge/discharge in a secondary battery, in which an active material is Li or alkaline metal composed mainly of Li, by constituting a negative electrode body especially of a carbonaceous material having specific H/C atomic ratio and crystal structure and an inorganic silicon compound. CONSTITUTION:Li or alkaline metal composed mainly of Li is used as an active material. The chief ingredient of a positive electrode body 6 is transition metal oxide such as MnO2 or V2O5, transition metals such, as LiCoO2 and a compound oxide of alkaline metal. A negative electrode body 4 has a specific structure, and H/C atomic ratio is less than 0.15, and spacing (d002) of (002) plane by means of an X-ray wide angle rotation method is 3.37Angstrom or more, and size Lc of crystallite in the C axial direction is 150Angstrom or less. A layer of a carbonaceous material containing Si or SiO2 and/or the like by 0.05-1.2weight% is coated over the surface of the carbonaceous material. According to this constitution, a battery capacity is not reduced so significantly, so that a secondary battery having high reliability during charge/discharge can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二次電池に関し、更に詳しくは、充放電サイ
クル寿命が長く、安定な高容量を有する二次電池に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a secondary battery, and more particularly to a secondary battery having a long charge/discharge cycle life and a stable high capacity.

[従来の技術] 正極体の主成分がM n 02、■205、MoC2の
ような遷移金属酸化物又はL i、c o 02、Li
MnaOs、L IM n 204のような遷移金属と
アルカリ金属の複合酸化物であり、負極体がリチウム又
はリチウムを主体とするアルカリ金属である二次電池は
、高エネルギー密度を有するので商品化の努力が払われ
ている。
[Prior art] The main component of the positive electrode body is a transition metal oxide such as M n 02, ■205, MoC2, or Li, co 02, Li
Secondary batteries, which are composite oxides of transition metals and alkali metals such as MnaOs and LIM n 204, and whose negative electrode body is lithium or an alkali metal mainly composed of lithium, have a high energy density, so efforts are being made to commercialize them. is being paid.

二次電池の一例を第3図に示す6図は単2形サイズの円
筒形二次電池の縦断面図である。
An example of a secondary battery is shown in FIG. 3, and FIG. 6 is a longitudinal cross-sectional view of a cylindrical secondary battery of AA size.

図中の(1)は、底部に絶縁板(2)が配置された負極
端子を兼ねる有底円筒形の金属製の容器である。この容
器(1)内には、円筒形の発電要素(3)が収納されて
いる。この発電要素(3)は、金属リチウムからなる負
極体(4)と多孔性ポリプロピレン薄膜に1モルのLi
Cl204を溶解したプロピレンカーボネートを含浸し
たセパレータ(5)と、正極体(6)とをこの順序で積
層して帯状物とし、この帯状物を渦巻き状に巻回するこ
とにより構成されている。
In the figure, (1) is a bottomed cylindrical metal container that also serves as a negative electrode terminal and has an insulating plate (2) arranged at the bottom. A cylindrical power generation element (3) is housed within this container (1). This power generation element (3) includes a negative electrode body (4) made of metallic lithium and a porous polypropylene thin film containing 1 mol of Li.
A separator (5) impregnated with propylene carbonate in which Cl204 is dissolved and a positive electrode body (6) are laminated in this order to form a strip, and this strip is spirally wound.

また正極体(6)はリード端子(7)が接続された集電
体(8)の両面上の導電性樹脂層(9)を介して正極合
剤(10)を被覆した構造になっている。
In addition, the positive electrode body (6) has a structure in which a positive electrode mixture (10) is coated through conductive resin layers (9) on both sides of a current collector (8) to which lead terminals (7) are connected. .

前記容器(1)の開口部付近には、絶縁性封口板(11
)の内側封口板(13)に前記リード端子(7)がスポ
ット溶接により接続されている。
An insulating sealing plate (11) is placed near the opening of the container (1).
) The lead terminal (7) is connected to the inner sealing plate (13) by spot welding.

なお、前記負極体(4)にはニッケル箔のリード端子(
14)が着設され、かつ該リード端子(14)は前記容
器(1)の内側面にスポット溶接により接続されている
Note that the negative electrode body (4) has a nickel foil lead terminal (
14), and the lead terminal (14) is connected to the inner surface of the container (1) by spot welding.

[発明が解決しようとする課題] しかしながら、かかる二次電池においては、負極体がリ
チウム箔のようなアルカリ金属の箔そのものであること
に基づく問題が生している。
[Problems to be Solved by the Invention] However, in such a secondary battery, a problem arises because the negative electrode body is itself an alkali metal foil such as a lithium foil.

すなわち、電池の放電時には負極体からリチウムがL1
イオンとなって電解液中に移動し、正極体中にドープさ
れ、このドープされたし1イオンが充電時には金属リチ
ウムとなって再び負極体に電析するが、この充放電サイ
クルを反復させると、それに伴って金属リチウムがデン
ドライト状となることである。これは、正極の集電体で
あるステンレス鋼、ニッケル等の金属が、リチウムとの
間で局部電池を形成し、集電体金属の部分的な溶解が起
こり、その結果、集電が非溶解部に集中するために、電
析する金属リチウムがデンドライト状となるからである
In other words, when the battery is discharged, lithium is transferred from the negative electrode body to L1.
It becomes an ion and moves into the electrolyte and is doped into the positive electrode body. During charging, this doped ion becomes metallic lithium and is deposited on the negative electrode body again, but if this charge-discharge cycle is repeated, As a result, metallic lithium becomes dendrite-like. This is because the metal such as stainless steel or nickel that is the current collector of the positive electrode forms a local battery with lithium, causing partial dissolution of the current collector metal, and as a result, the current collector is not dissolved. This is because the metal lithium to be electrodeposited becomes dendrite-like because it is concentrated in a certain area.

このデンドライト状リチウムは極めて活性な物質である
ため、電解液を分解し、その結果、電池の充放電サイク
ル特性が劣化するという不都合が生ずる。さらにこれが
成長していくと、最後には、このデンドライト状の金属
リチウム電析物がセパレータを貫通して正極体に達し、
短絡現象を起こすという問題が生ずる。換言すれば、充
放電サイクル寿命が短いという問題がある。
Since this dendrite-like lithium is an extremely active substance, it decomposes the electrolyte, resulting in a disadvantage that the charge/discharge cycle characteristics of the battery deteriorate. As this grows further, eventually this dendrite-like metallic lithium deposit penetrates the separator and reaches the positive electrode body.
A problem arises in that a short circuit phenomenon occurs. In other words, there is a problem that the charge/discharge cycle life is short.

第2の問題は、正極体が遷移金属酸化物、又はこれと活
物質との複合化合物を主要成分とすることに基づく問題
である。すなわち、電池の充放電における上記電池系の
電圧は3〜4vとなるため、金属リチウム極はその不活
性化が急速に進行するとともに、負極体上では電解液の
分解も急速に進行する。その結果、深い放電を伴う場合
は、数回の充放電サイクルの反復で電池容量は大幅に低
下してしまい、実用に耐え得な(なる。
The second problem is based on the fact that the main component of the positive electrode body is a transition metal oxide or a composite compound of this and an active material. That is, since the voltage of the battery system during charging and discharging of the battery is 3 to 4 V, the metal lithium electrode is rapidly inactivated, and the electrolyte on the negative electrode body is rapidly decomposed. As a result, when deep discharge is involved, the battery capacity decreases significantly after several charge/discharge cycles, making it unusable.

本発明は、かかる背景の下に、電池容量を損なうことな
く、充放電サイクル中における信頼性が高い二次電池の
提供を目的とするものである。
Against this background, the present invention aims to provide a secondary battery that is highly reliable during charging and discharging cycles without impairing battery capacity.

[課題を解決するための手段] 本発明者らは、上記の問題を解決すべく鋭意研究を重ね
た結果、遷移金属酸化物又はこれと活物質との複合酸化
物を主要成分とする正極体に、後述する特徴を有する炭
素質物を集電体金属に被着せしめた活物質担持体を負極
体に用い、かつその中に無機ケイ素化合物を含有させる
と、上述の目的達成のためにきわめて有効であるとの事
実を見出し、本発明に至った。
[Means for Solving the Problems] As a result of extensive research to solve the above problems, the present inventors have developed a positive electrode body whose main component is a transition metal oxide or a composite oxide of this and an active material. In addition, using an active material carrier in which a carbonaceous material having the characteristics described below is coated on a current collector metal as a negative electrode body, and containing an inorganic silicon compound therein, is extremely effective for achieving the above-mentioned purpose. We have discovered the fact that this is the case, and have arrived at the present invention.

すなわち、本発明の二次電池は、正極体と、該正極体に
載置されたセパレータと、該セパレータに保持された電
解質と、該セパレータに載置された負極体と、該正極体
及び/又は該負極体に包含された充放電反応に対応して
証正・負極体間を移動する活物質とから成る発電要素が
内蔵されており、 (a)該活物質がリチウム又はリチウムを主体とするア
ルカリ金属であり: (b)該正極体が遷移金属酸化物又は遷移金属と前記活
物質との複合酸化物を主要成分とし。
That is, the secondary battery of the present invention includes a positive electrode body, a separator placed on the positive electrode body, an electrolyte held in the separator, a negative electrode body placed on the separator, and the positive electrode body and/or the separator. or a power generating element consisting of an active material that moves between the positive and negative electrode bodies in response to charge/discharge reactions included in the negative electrode body; (a) the active material is lithium or mainly composed of lithium; (b) The positive electrode body has a transition metal oxide or a composite oxide of a transition metal and the active material as a main component.

(c)該負極体が少なくとも (イ)水素/炭素の原子比が015未満てあリ、かつ (ロ)X線広角回折法による(002)面の面間隔(d
、、2)が337Å以上、及びC軸方向の結晶子の大き
さ(Lc)が150Å以下である結晶構造を含有する炭
素質物に005〜1.2重量%の無機ケイ素化合物を有
する炭素質物層を、集電体金属表面に被着形成せしめて
なるものである: ことを特徴とする。
(c) The negative electrode body has at least (a) a hydrogen/carbon atomic ratio of less than 015, and (b) an interplanar spacing (d) of the (002) plane measured by X-ray wide-angle diffraction.
,,2) A carbonaceous material layer containing 0.05 to 1.2% by weight of an inorganic silicon compound in a carbonaceous material containing a crystal structure in which the crystallite size (Lc) in the C-axis direction is 337 Å or more and the crystallite size (Lc) in the C-axis direction is 150 Å or less. is formed by adhering to the metal surface of the current collector.

本発明の電池は、負極体が上記のように、特定の水素/
炭素原子比及び結晶構造を有する炭素質物と無機ケイ素
化合物とからなるところに特徴があり、他の要素は従来
の二次電池と同じであってもよい。
In the battery of the present invention, the negative electrode body has a specific hydrogen/hydrogen content as described above.
It is characterized by being composed of a carbonaceous material having a carbon atomic ratio and crystal structure and an inorganic silicon compound, and other elements may be the same as conventional secondary batteries.

本発明の電池において、活物質はリチウム又はリチウム
を主体とするアルカリ金属であり、この活物質は、電池
の充放電に対応して正・負極体を出入する。
In the battery of the present invention, the active material is lithium or an alkali metal mainly composed of lithium, and this active material moves in and out of the positive and negative electrode bodies as the battery is charged and discharged.

正極体としては、遷移金属酸化物、又は遷移金属と前記
活物質であるリチウム又はリチウムを主体とするアルカ
リ金属との複合酸化物が用いられる。遷移金属酸化物と
してはM n Oz、■205、M o Osなど、ま
た遷移金属とアルカリ金属との複合酸化物としてはL 
i Coo□、L IM n z Os、L IM n
 20 aなどが例示される。
As the positive electrode body, a transition metal oxide or a composite oxide of a transition metal and the active material lithium or an alkali metal mainly composed of lithium is used. Transition metal oxides include MnOz, ■205, MoOs, etc., and composite oxides of transition metals and alkali metals include L
i Coo□, L IM n z Os, L IM n
20a etc. are exemplified.

正極体として遷移金属酸化物を用いる場合、M n O
zを例にとると、電解M n Oxを300〜460℃
の温度範囲で4〜10時間焼成してM n Ox中の結
合水を脱離したものを、またv208、M o Oxの
場合には市販の試薬特級のものを100〜120°Cの
温度範囲で5〜10時間乾燥して用いればよい。
When using a transition metal oxide as a positive electrode body, M n O
Taking z as an example, electrolytic M n Ox is heated at 300 to 460°C
In the case of v208 and Mo Ox, commercially available special grade reagents are calcined for 4 to 10 hours at a temperature range of 100 to 120°C. It may be used after drying for 5 to 10 hours.

遷移金属とアルカリ金属の複合酸化物の場合、正極体は
次のようにして製造できる。
In the case of a composite oxide of a transition metal and an alkali metal, the positive electrode body can be manufactured as follows.

L i Coo *を例にとると、Li*COs粉末と
塩基性炭酸コバルトとを、L i / Coのモル比が
11になる所定量を混合し、空気中、900℃で例えば
6時間加熱し、得られた複合酸化物を蒸留水により洗浄
、乾燥して用いる。
Taking Li Coo * as an example, Li*COs powder and basic cobalt carbonate are mixed in a predetermined amount with a Li/Co molar ratio of 11, and heated in air at 900°C for 6 hours, for example. The obtained composite oxide is washed with distilled water and dried before use.

これらの遷移金属酸化物又は前記の複合酸化物を所定の
粒径に粉砕し、ついで所定量の結着剤を添加して、両者
を十分に混練する。結着剤はポリテトラフルオロエチレ
ン、ポリエチレン、ポリプロピレン、エチレン・プロピ
レン・ジエン化合物の共重合体等のオレフィン系樹脂又
はポリスチレンのようなものを用いることができ、パウ
ダー状、有機溶媒等に分散したディスバージョン状又は
溶液として用いられる。結着剤の好ましい添加量は、遷
移金属酸化物又は遷移金属とアルカリ金属の複合酸化物
に対して1〜10重量%である。結着剤の添加量が多す
ぎると得られた正極体の電気抵抗が高くなって不都合で
あり、また、少なすぎると結着効果が発現しない。
These transition metal oxides or the above composite oxides are pulverized to a predetermined particle size, and then a predetermined amount of a binder is added and the two are thoroughly kneaded. As the binder, olefin resins such as polytetrafluoroethylene, polyethylene, polypropylene, copolymers of ethylene-propylene-diene compounds, etc., or polystyrene can be used, and binders can be used in the form of powders or in dispersion in organic solvents. Used in version form or as a solution. The preferred amount of the binder added is 1 to 10% by weight based on the transition metal oxide or composite oxide of transition metal and alkali metal. If the amount of the binder added is too large, the electrical resistance of the obtained positive electrode body will become high, which is disadvantageous, and if the amount is too small, the binding effect will not be exhibited.

このとき、グラファイト、カーボンブラック等の導電材
料の粉末を、上記の遷移金属酸化物又は遷移金属とアル
カリ金属の複合酸化物に対して50重量%未満添加する
こともできる。添加量は好ましくは30重量%未満、さ
らに好ましくは15重量%未満である。
At this time, less than 50% by weight of a powder of a conductive material such as graphite or carbon black can be added to the above-mentioned transition metal oxide or composite oxide of a transition metal and an alkali metal. The amount added is preferably less than 30% by weight, more preferably less than 15% by weight.

得られた混線物を所定の厚みに成形してから正極集電体
に加圧して一体化させるか、又は集電体に塗布・乾燥し
て一体化させる。
The obtained crosstalk material is molded to a predetermined thickness and then pressurized to integrate it with the positive electrode current collector, or it is applied and dried on the current collector and integrated.

なお集電体は、集電体を構成する金属、例えばステンレ
ス鋼やニッケル等の金属の金網やパンチトメタルを、そ
のまま又はニッケル、チタン等の粉末よりなる集電層を
被着形成することにより作製してもよい。
The current collector can be made of the metal that constitutes the current collector, such as wire mesh or punched metal such as stainless steel or nickel, either as it is or by depositing a current collecting layer made of powder of nickel, titanium, etc. You may also create one.

なお、上記の導電性樹脂層は、例えばポリオレフィン系
樹脂などの溶液に金属粉やカーボンブラック等の導電剤
を分散させ、この分散溶液を金属芯体に塗布、乾燥する
ことにより形成される。
The conductive resin layer described above is formed by dispersing a conductive agent such as metal powder or carbon black in a solution such as a polyolefin resin, applying the dispersed solution to a metal core, and drying it.

ここに用いるポリオレフィン系樹脂としては、例えばポ
リエチレン、ポリプロピレン等を挙げることができ、そ
の他、ポリアクリル酸を用いることができる。前記の導
電性樹脂層中の導電剤としては、例えばアセチレンブラ
ック、カーボンブラック、炭化チタン、ニッケル、コバ
ルト等の粉末を挙げることができる。
Examples of the polyolefin resin used here include polyethylene and polypropylene, and in addition, polyacrylic acid can be used. Examples of the conductive agent in the conductive resin layer include powders of acetylene black, carbon black, titanium carbide, nickel, cobalt, and the like.

また負極体には、以下の特徴を持つ炭素質物を用いる。Furthermore, a carbonaceous material having the following characteristics is used for the negative electrode body.

この炭素質物は、H/C(原子比)が0.15未満、d
 oaaが3.37Å以上、Lcが150Å以下のパラ
メータで特定される。さらに、この負極体の炭素質物は
、H/Cが好ましくは0.10未満、さらに好ましくは
0.07未満、とくに好ましくは0.05未満である。
This carbonaceous material has a H/C (atomic ratio) of less than 0.15, d
It is specified by the parameters of oaa of 3.37 Å or more and Lc of 150 Å or less. Furthermore, the carbonaceous material of this negative electrode body preferably has an H/C of less than 0.10, more preferably less than 0.07, and particularly preferably less than 0.05.

また、do。2が好ましくは3.39〜3.75人、さ
らに好ましくは3.41〜3.70人である。さらにL
cは好ましくは8〜100人、さらに好ましくは10〜
70人である。
Also, do. 2 is preferably 3.39 to 3.75 people, more preferably 3.41 to 3.70 people. Further L
c is preferably 8 to 100 people, more preferably 10 to
There are 70 people.

H/Cが0.15以上、do。2が3.37人未満、ま
たはLcが150人より大きいのいずれかであるような
炭素質物を負極体として用いると、負極体における充放
電時の過電圧f)5大きくなり、その結果、負極体から
ガスが発生して電池の安全性が著しく損なわれ、充放電
サイクル特性も不満足となる。
H/C is 0.15 or more, do. If a carbonaceous material in which 2 is less than 3.37 or Lc is greater than 150 is used as a negative electrode body, the overvoltage f)5 during charging and discharging in the negative electrode body becomes large, and as a result, the negative electrode body Gas is generated from the battery, significantly impairing the safety of the battery and making the charge/discharge cycle characteristics unsatisfactory.

さらに、本発明にかかる負極体に用いる炭素質物にあっ
ては、次に述べる特性を有することが好ましい。
Furthermore, the carbonaceous material used in the negative electrode body according to the present invention preferably has the following characteristics.

すなわち、波長5145人のアルゴンイオンレーザ光を
用いたラマンスペクトル分析において、下記式・ で定義されるG値が2,5未満であることが好ましく、
さらに好ましくは20未満であり、特に好ましくは0.
2以上1.2未満、最も好ましくは0.3以上1.0未
満である。
That is, in Raman spectrum analysis using argon ion laser light with a wavelength of 5145, it is preferable that the G value defined by the following formula is less than 2.5,
More preferably it is less than 20, particularly preferably 0.
It is 2 or more and less than 1.2, most preferably 0.3 or more and less than 1.0.

ここで、G値とは、上述の炭素質物に対し、波長514
5人のアルゴンイオンレーザ光を用いてラマンスペクト
ル分析を行った際に、チャートに記録されているスペク
トル強度曲線において、波数1580±100cm−’
の範囲内のスペクトル強度の積分値(面積強度)を波数
1360±100cm−’の範囲内の面積強度で除した
値を指し、その炭素質物の黒鉛化度の尺度に相当するも
のである。
Here, the G value refers to the wavelength 514
When five people performed Raman spectrum analysis using argon ion laser light, in the spectrum intensity curve recorded on the chart, the wave number was 1580 ± 100 cm-'
It refers to the value obtained by dividing the integral value of the spectral intensity (area intensity) within the range of 1360±100 cm-' by the area intensity within the wave number range of 1360±100 cm-', and corresponds to a measure of the degree of graphitization of the carbonaceous material.

すなわち、この炭素質物は結晶質部分と非晶質部分を有
していて、G値はこの炭素質組織における結晶質部分の
割合を示すパラメータである。この値が前述の範囲を逸
脱する場合には、その充放電サイクル数と絶対容量は低
下する6 さらに、本発明にかかる負極体に用いる炭素質物は、下
記のような条件を満たすことが好ましい。
That is, this carbonaceous material has a crystalline portion and an amorphous portion, and the G value is a parameter indicating the ratio of the crystalline portion in this carbonaceous structure. If this value deviates from the above-mentioned range, the number of charge/discharge cycles and absolute capacity will decrease.6 Furthermore, it is preferable that the carbonaceous material used in the negative electrode body according to the present invention satisfy the following conditions.

すなわち、X線広角回折分析において求められるa軸方
向の結晶子の大きさ(La)が好ましくは10Å以上、
さらに好ましくは15〜150人、特に好ましくは18
〜70人である。
That is, the crystallite size (La) in the a-axis direction determined by X-ray wide-angle diffraction analysis is preferably 10 Å or more,
More preferably 15 to 150 people, particularly preferably 18 people
~70 people.

また、同じX線広角回折において求められる(110)
面の面間隔dzoの2倍の距離ao  (=2d+1゜
)が好ましくは2.38Å以上、さらに好ましくは2,
39〜2,46人である。
Also, (110) obtained in the same X-ray wide-angle diffraction
The distance ao (=2d+1°), which is twice the distance between the surfaces dzo, is preferably 2.38 Å or more, more preferably 2,
There are 39 to 2,46 people.

上述の炭素質物は、有機化合物を通常不活性ガス流下に
、300〜3000℃の温度で加熱・分解し、炭素化さ
せて得ることができる。
The above-mentioned carbonaceous material can be obtained by heating and decomposing an organic compound at a temperature of 300 to 3000° C. under a flow of an inert gas to carbonize it.

出発源となる有機化合物としては、具体的には、例えば
セルロース:フェノール樹脂:ポリアクリロニトリル、
ポリ(α−ハロゲン化アクリロニトリル)などのアクリ
ル系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
塩素化塩化ビニルなどのハロゲン化ビニル樹脂、ポリア
ミドイミド樹脂:ボリアミド樹脂:ポリアセチレン、ポ
リ(p−)ユニレン)などの共役系樹脂のような任意の
有機高分子化合物:例えば、ナフタレン、フェナントレ
ン、アントラセン、トリフェニレン、ピレン、クリセン
、ナックセン、ビセン、ペリレン、ペンタフェン、ペン
タセンのような3員環以上の単環炭化水素化合物が互い
に2個以上縮合してなる縮合環式炭化水素化合物;また
は、上記化合物のカルボン酸、カルボン酸無水物、カル
ボン酸イミドのような誘導体:上記化合物の混合物を主
成分とする各種のピッチ:インドール、イソインドール
、キノリン、インキノリン、キノキサリン、フタラジン
、カルバゾール、アクリジン、フェナジン、フェナント
レンのような3員環以上の複素単環化合物が互いに少な
くとも2個以上結合するか、または1個以上の3員環以
上の単環炭化水素と結合してなる縮合複素環化合物、上
記各化合物のカルボン酸、カルボン酸無水物、カルボン
酸イミドのような誘導体:さらにベンゼンおよびそのカ
ルボン酸、カルボン酸無水物、カルボン酸イミドのよう
な誘導体、すなわち、1.2.4.5−テトラカルボン
酸、その二無水物またはそのジイミドなど:などを挙げ
ることができる。
Examples of starting organic compounds include cellulose, phenolic resin, polyacrylonitrile,
Acrylic resins such as poly(α-halogenated acrylonitrile); halogenated vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polychlorinated vinyl chloride, polyamideimide resins: polyamide resins: polyacetylene, poly(p-) unilene) Any organic polymer compound such as a conjugated resin such as: For example, a monocyclic hydrocarbon with three or more members such as naphthalene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naccene, bicene, perylene, pentaphene, and pentacene. Fused cyclic hydrocarbon compounds formed by condensing two or more compounds with each other; or derivatives of the above compounds such as carboxylic acids, carboxylic acid anhydrides, and carboxylic acid imides; various pitches containing mixtures of the above compounds as main components; : At least two heteromonocyclic compounds having three or more members such as indole, isoindole, quinoline, inquinoline, quinoxaline, phthalazine, carbazole, acridine, phenazine, and phenanthrene are bonded to each other, or one or more three Condensed heterocyclic compounds formed by bonding with monocyclic hydrocarbons having more than one member ring, derivatives such as carboxylic acids, carboxylic acid anhydrides, and carboxylic acid imides of each of the above compounds; further benzene and its carboxylic acids, carboxylic acid anhydrides, Derivatives such as carboxylic acid imides, ie 1.2.4.5-tetracarboxylic acid, its dianhydride or its diimide, etc. can be mentioned.

また、出発源としてカーボンブラック等の炭素質物を用
い、これをさらに加熱して炭素化を適当に進めて、本発
明にかかる負極体を構成する炭素質物としてもよい。
Alternatively, a carbonaceous material such as carbon black may be used as a starting source and further heated to appropriately advance carbonization to form the carbonaceous material constituting the negative electrode body according to the present invention.

このような結晶構造を有する炭素質物は、この内部に0
.05〜1.2重量%のケイ素又は二酸化ケイ素等のケ
イ素化合物をあらかじめ含有することにより、電池の充
放電の繰返しによって生じるLiイオンの移動効率の低
下を防止できる。この傾向は長期にわたる充放電、ある
いは電池を長期保管した後の充放電において顕著になる
A carbonaceous material with such a crystal structure has 0 inside it.
.. By previously containing 05 to 1.2% by weight of silicon or a silicon compound such as silicon dioxide, it is possible to prevent a decrease in the transfer efficiency of Li ions caused by repeated charging and discharging of the battery. This tendency becomes noticeable during long-term charging and discharging, or when charging and discharging the battery after long-term storage.

その理由は、ケイ素又はケイ素化合物が炭素質物の構成
の安定に寄与していることによる。ケイ素化合物として
は、SiC2,5iO1SiS2゜SiC,SiF4.
5iFs、ムライト質セラミックス(An含有量の少な
いもの)、石英ガラス及び結晶化ガラス(例えばL12
0・AR20,,5i02)+71粉末が例示され、5
102及びムライト質セラミックスが好ましい。なお、
無機ケイ素化合物の添加量は、炭素質物に対して0.0
5〜1.2重量%であり、その結果から、好ましくは0
.05〜0.50重量%の範囲である。12重量%を超
えると、炭素質物負極の導電性を損うために内部抵抗が
大きくなって、サイクル特性を低下させる。また、00
5%未満では負極体の強度向上効果が不充分で、負極体
の膨潤を生じ、内部抵抗が上昇する。
The reason for this is that silicon or a silicon compound contributes to stabilizing the structure of the carbonaceous material. Examples of silicon compounds include SiC2,5iO1SiS2°SiC, SiF4.
5iFs, mullite ceramics (low An content), quartz glass and crystallized glass (e.g. L12
0・AR20,,5i02)+71 powder is exemplified, and 5
102 and mullite ceramics are preferred. In addition,
The amount of inorganic silicon compound added is 0.0 to the carbonaceous material.
5 to 1.2% by weight, and from the results, preferably 0
.. The range is 0.05 to 0.50% by weight. If it exceeds 12% by weight, the conductivity of the carbonaceous material negative electrode will be impaired, resulting in an increase in internal resistance and a decrease in cycle characteristics. Also, 00
If it is less than 5%, the effect of improving the strength of the negative electrode body is insufficient, causing swelling of the negative electrode body and increasing internal resistance.

無機ケイ素化合物の体積平均粒径は、好ましくは05〜
30−1とくに好ましくは1.0〜2.0戸である。
The volume average particle size of the inorganic silicon compound is preferably 05 to
30-1, particularly preferably 1.0 to 2.0 units.

炭素質物への混入方法は、後述の実施例のようにスラリ
ーを混練する際に添加するのが好ましいが、炭素質物の
メノウ製容器のボールミル内で、炭素質物の粉砕と同時
に無機ケイ素化合物の粉末を加えて混ぜることもできる
It is preferable to add it to the carbonaceous material when kneading the slurry as in the example below, but the inorganic silicon compound is powdered at the same time as the carbonaceous material is ground in a ball mill in an agate container. You can also add and mix.

本発明にかかる負極体は、次のようにして製造すること
ができる。すなわち、上述の炭素質物を所定の粒径(例
えば体積平均粒径5〜40P)に粉砕して粉末とし、こ
の粉末、無機ケイ素化合物の粉末及び結着剤を所定量比
(例えば、重量比で、95〜80:0.08〜0.96
:5〜20)で混練し、この混線物をそのままシート状
に成形し、例えば集電体に用いる金網、エキスバンドメ
タル、パンチトメタル、金属箔等の形状にしたニッケル
、鉄、ニッケルメッキを施した鉄、ステンレス鋼などの
金属等に着設して一体化させるか、この混練物をスラリ
ー状にして集電体に塗着、乾燥する。
The negative electrode body according to the present invention can be manufactured as follows. That is, the above-mentioned carbonaceous material is ground into powder to a predetermined particle size (e.g., volume average particle size of 5 to 40P), and this powder, inorganic silicon compound powder, and binder are mixed in a predetermined ratio (e.g., weight ratio). , 95-80: 0.08-0.96
: 5 to 20), and the mixed wire is formed into a sheet as it is, and is plated with nickel, iron, or nickel in the shape of a wire mesh, expanded metal, punched metal, metal foil, etc. used as a current collector. Either the mixture is attached to a metal such as iron or stainless steel and integrated, or the mixture is made into a slurry, applied to a current collector, and dried.

用いる結着剤としては、正極体の結着剤として例示され
たのと同様の重合体が、同様の形態にして用いられる。
As the binder to be used, the same polymer as exemplified as the binder for the positive electrode body is used in the same form.

結着剤の好ましい添加量は、炭素質物に対して1〜10
重量%である。結着剤の添加量が多すぎると得られた負
極炭素質物の電気抵抗が高(なって不都合であり、また
、少なすぎると結着効果が発現しない。
The preferable amount of the binder added is 1 to 10% based on the carbonaceous material.
Weight%. If the amount of the binder added is too large, the electrical resistance of the obtained negative electrode carbonaceous material will be high (which is disadvantageous), and if the amount is too small, the binding effect will not be exhibited.

この場合、集電体表面にはグラファイト、カーボンブラ
ック、ニッケル等の導電材料の粉末の導電体を形成させ
ることもできる。その厚さは、好ましくは5〜50p+
eである。
In this case, a conductor made of powder of a conductive material such as graphite, carbon black, or nickel may be formed on the surface of the current collector. Its thickness is preferably 5-50p+
It is e.

[発明の実施例〕 以下、本発明を実施例及び比較例によって説明する。な
お、本発明はこの実施例に限定されるものではない。
[Examples of the Invention] The present invention will be described below with reference to Examples and Comparative Examples. Note that the present invention is not limited to this example.

本発明において、元素分析及びxI!広角回折の各測定
は下記方法により実施した。
In the present invention, elemental analysis and xI! Each measurement of wide-angle diffraction was carried out by the following method.

「元素分析」 サンプルを120℃で約15時間減圧乾燥し、その後ド
ライボックス内のホットプレート上で100℃において
1時間乾燥した。ついで、アルゴン雰囲気中でアルミニ
ウムカップにサンプリングし、燃焼により発生するCO
□ガスの重量から炭素含有量を、また、発生するH2O
の重量から水素含有量を求めた。なお、後述する本発明
の実施例では、パーキンエルマー240C型元素分析計
を使用して測定した。
"Elemental Analysis" Samples were dried under reduced pressure at 120° C. for about 15 hours, then dried at 100° C. for 1 hour on a hot plate in a dry box. The CO generated by combustion was then sampled in an aluminum cup in an argon atmosphere.
□ Calculate the carbon content from the weight of the gas, and also calculate the generated H2O
The hydrogen content was determined from the weight. In the Examples of the present invention described later, measurements were made using a PerkinElmer 240C elemental analyzer.

「X線広角回折」 (1)(002)面の面間隔(dooz)及び(110
)面の面間隔(d、、。) 炭素質材料が粉末の場合はそのまま、微小片状の場合に
はメノウ乳鉢で粉末化し、試料に対して約15重量%の
X線標準用高純度シリコン粉末を内部標準物質として加
えて混合し、試料セルに詰め、グラファイトモノクロメ
ータ−で単色化したCuKa線を線源とし、反射式デイ
フラクトメーター法によって広角X線回折曲線を測定し
た0曲線の補正には、いわゆるローレンツ、偏光因子、
吸収因子、原子散乱因子等に関する補正は行なわず、次
の簡便法を用いた。即ち(002)及び(110)回折
に相当する曲線のベースラインを引き、ベースラインか
らの実質強度をプロットし直して(002)面及び(1
10)面の補正曲線を得た。この曲線のピーク高さの3
分の2の高さに引いた角度軸に平行な線が回折曲線と交
わる線分の中点を求め、中点の角度を内部標準で補正し
、これを回折角の2倍とし、CuKa線の波長λとから
次式のブラッグ式によってd 002及びd z。を求
めた6 え:1.5418人 θ、θ′:d0゜3. dlloに相当する回折角(2
)C軸及びa軸方向に結晶子の大きさ。
"X-ray wide-angle diffraction" (1) Interplanar spacing (dooz) of (002) plane and (110
) Surface spacing (d,,.) If the carbonaceous material is a powder, it is used as is, or if it is in the form of minute pieces, it is powdered in an agate mortar, and high-purity silicon for X-ray standards is added at a concentration of approximately 15% by weight based on the sample. Powder was added as an internal standard substance, mixed, packed into a sample cell, and using a graphite monochromator as a monochromatic CuKa ray as a radiation source, and a wide-angle X-ray diffraction curve was measured using a reflection diffractometer method. Correction of the 0 curve. The so-called Lorentzian polarization factor,
Corrections regarding absorption factors, atomic scattering factors, etc. were not performed, and the following simple method was used. That is, by drawing the baseline of the curve corresponding to the (002) and (110) diffraction, and replotting the real intensity from the baseline, the (002) and (110) planes are
10) A correction curve for the surface was obtained. 3 of the peak height of this curve
Find the midpoint of the line segment where a line parallel to the angular axis drawn at half the height intersects the diffraction curve, correct the angle of the midpoint using an internal standard, make this twice the diffraction angle, and use the CuKa line d 002 and d z by the following Bragg equation from the wavelength λ. 6 E: 1.5418 people θ, θ': d0゜3. Diffraction angle (2
) Size of crystallites in C-axis and a-axis directions.

Lc ; La 前項で得た補正回折曲線において、ピーク高さの半分の
位置における半値幅βを用いてC軸及びa軸方向の結晶
子の大きさを次式より求めた。
Lc; La In the corrected diffraction curve obtained in the previous section, the size of the crystallite in the C-axis and a-axis directions was determined from the following equation using the half-width β at a position half the peak height.

β°CO8θ 形状因子Kについては種々議論もあるが、K=0.90
を用いた。ん、θ及びθ′については前項と同じ意味で
ある。
β°CO8θ There are various discussions about the shape factor K, but K=0.90
was used. However, θ and θ' have the same meaning as in the previous section.

実施例1 [1]正極体(6)の製造 炭酸リチウム粉末34gと塩基性炭酸コバルト粉末10
0g(Li/Coモル比=1:1)を混合し、この混合
物を800℃で4時間加熱してL i Co O*を合
成した。得られたL i Co Oz中のLi量はCo
o□に対して分子比で約1であった。
Example 1 [1] Production of positive electrode body (6) 34 g of lithium carbonate powder and 10 g of basic cobalt carbonate powder
0 g (Li/Co molar ratio = 1:1) were mixed and the mixture was heated at 800° C. for 4 hours to synthesize Li Co O*. The amount of Li in the obtained Li Co Oz is Co
The molar ratio to o□ was approximately 1.

このL i Co O*の粉末22g、粉末状ポリテト
ラフルオロエチレン1.5g及び導電剤としてのアセチ
レンブラック0.5gを混練し、得られた混線物をロー
ル成形して厚み0.4mn+のシート(10)とした。
22 g of this Li Co O* powder, 1.5 g of powdered polytetrafluoroethylene, and 0.5 g of acetylene black as a conductive agent were kneaded, and the resulting mixed wire was roll-formed to form a sheet with a thickness of 0.4 mm ( 10).

アセチレンブラック6g、ポリアクリル酸を25重量%
含有する水溶液8gとメタノール160−を混合して、
導電性樹脂のスラリーを調製した。これを、線径081
mm、60メツシユのステンレス鋼製ネットからなる集
電体(8)に塗布して乾燥することにより、導電性樹脂
層(9)を得た。
6g of acetylene black, 25% by weight of polyacrylic acid
Mix 8 g of the aqueous solution containing 160 g of methanol,
A conductive resin slurry was prepared. This is wire diameter 081
A conductive resin layer (9) was obtained by applying the mixture to a current collector (8) made of a stainless steel net having a mesh size of 60 mm and drying it.

前述のシー)−(10)の片面をこの集電体(8)に圧
着して帯状の正極体(6)とし、その長平方向に沿う一
側端に、スポット溶接によりチタン箔のリード端子(7
)を設けた。
One side of the above-mentioned sheet)-(10) is crimped onto this current collector (8) to form a strip-shaped positive electrode body (6), and a titanium foil lead terminal ( 7
) was established.

[2]負極体(4)の製造 オルトクレゾール108g、パラホルムアルデヒド32
g及びエチレンゲルコールモノエチルエーテル240g
を硫酸10gとともに反応器に仕込み、撹拌しながら1
15℃で4時間反応させた0反応終了後、N a HC
Os 17 gと水30gとを加えて中和し、20分間
粉砕、混合した。
[2] Production of negative electrode body (4) 108 g of orthocresol, 32 g of paraformaldehyde
g and 240 g of ethylene gelcol monoethyl ether
was charged into a reactor with 10 g of sulfuric acid, and while stirring, 1
After the completion of the 0 reaction at 15°C for 4 hours, N a HC
17 g of Os and 30 g of water were added to neutralize, and the mixture was ground and mixed for 20 minutes.

かくして得られたノボラック樹脂にヘキサミンを混合し
て得られた粉末を、N2ガス中、250℃で3時間加熱
処理を行った。さらに、この加熱処理物を電気加熱炉に
セットし、加熱処理物1kg当たり20Off/時の速
度でN2ガスを流しながら、200℃/時の昇温速度で
950℃まで昇温し、その温度にさらに15時間保持し
て焼成した後、自然放冷した。
The powder obtained by mixing hexamine with the thus obtained novolac resin was heat-treated at 250° C. for 3 hours in N2 gas. Furthermore, this heat-treated product was set in an electric heating furnace, and the temperature was raised to 950°C at a temperature increase rate of 200°C/hour while flowing N2 gas at a rate of 20Off/hour per 1 kg of the heat-treated product. After being held and fired for an additional 15 hours, it was allowed to cool naturally.

次に、焼成後の材料を別な電気炉にセットし、25°C
/分の昇温速度で2000°Cまで昇温し、その温度で
さらに15時間保持し、炭素化を実施した。
Next, set the fired material in a separate electric furnace and heat it to 25°C.
The temperature was raised to 2000°C at a heating rate of /min, and maintained at that temperature for an additional 15 hours to carry out carbonization.

このようにして得られた炭素質物を体積平均粒径15F
の粒度になるように粉砕した。ついで、ポリアクリル酸
25gを溶解させたメタノール溶液490−に、上記の
炭素質物18gと純度999%、体積平均粒径IPの二
酸化ケイ素粉末0.019gを分散させたスラリーを、
厚さ30Fのステンレス鋼板(15)の表面に塗布し、
乾燥させて、炭素質物の層を5iO−を炭素質物に対し
て01重量%含有する、両面にそれぞれ厚さ20F+有
する負極体(4)を得た。
The carbonaceous material obtained in this way was
It was ground to a particle size of . Next, a slurry was prepared by dispersing 18 g of the above carbonaceous material and 0.019 g of silicon dioxide powder with a purity of 999% and a volume average particle size IP in 490 g of a methanol solution in which 25 g of polyacrylic acid was dissolved.
Apply it on the surface of a 30F thick stainless steel plate (15),
By drying, a negative electrode body (4) having a carbonaceous material layer containing 01% by weight of 5iO- based on the carbonaceous material and having a thickness of 20F+ on each side was obtained.

得られた炭素質物は、元素分析、X線広角回折等の分析
及び粒度分布、比表面積等の測定の結果、以下の特性を
有していた。
The obtained carbonaceous material had the following characteristics as a result of elemental analysis, analysis such as X-ray wide-angle diffraction, and measurement of particle size distribution, specific surface area, etc.

水素/炭素(原子比)=0.04 do。2=3.59人+ Lc=14人a o (2d
zo ) =2.41人La=25人:体積平均粒径=
38P 比表面積(BET)=8.2rn”7g〔3]電池の組
立 このようにして形成された、正、負極体(4)、(6)
をポリプロピレン薄膜よりなるセパレータ(5)を介し
て順次積層して帯状物とし、この帯状物を渦巻き状に巻
回して発電要素(3)とした。以下、常法によって単2
形サイズの電池を構成した。
Hydrogen/carbon (atomic ratio) = 0.04 do. 2 = 3.59 people + Lc = 14 people a o (2d
zo ) = 2.41 people La = 25 people: Volume average particle size =
38P Specific surface area (BET) = 8.2rn”7g [3] Battery assembly Positive and negative electrode bodies (4) and (6) formed in this way
were sequentially laminated with a separator (5) made of a thin polypropylene film interposed therebetween to form a strip, and this strip was spirally wound to form a power generation element (3). Hereinafter, by the usual method,
A battery of the same size was constructed.

実施例2 〔1]正極体(6)の製造 市販の電解二酸化マンガンを、温度460℃の加熱炉で
5時間焼成して、二酸化マンガン中の結晶水を除いて放
冷しなもの22gを採取した。これに粉末状ポリテトラ
フルオロエチレン2.2g、導電剤のアセチレンブラッ
ク2.2gを混合し、ロール成形により肉厚4mmの正
極ルートとした。これを実施例1に用いたのと同様の導
電性樹脂層(9)を有する集電体(8)に圧着して、実
施例1と同様にリード端子(7)を取付けた。
Example 2 [1] Production of positive electrode body (6) Commercially available electrolytic manganese dioxide was fired in a heating furnace at a temperature of 460°C for 5 hours, crystal water in the manganese dioxide was removed, and 22 g was collected. did. 2.2 g of powdered polytetrafluoroethylene and 2.2 g of acetylene black as a conductive agent were mixed with this, and a positive electrode route having a wall thickness of 4 mm was formed by roll molding. This was crimped onto a current collector (8) having a conductive resin layer (9) similar to that used in Example 1, and lead terminals (7) were attached in the same manner as in Example 1.

この正極体(6)を、リチウム金属板を対極として、プ
ロピレンカーボネートの有機溶媒にL i Coo 、
の電解質を1モル/12溶解した電解液に浸漬し、20
″Cで250mAの電流を10時間通電して、250O
mAh相当量のリチウムを正極体(6)にドーピングし
た。
This positive electrode body (6) was mixed with Li Coo in an organic solvent of propylene carbonate using a lithium metal plate as a counter electrode.
of electrolyte dissolved in 1 mol/12,
Apply a current of 250 mA for 10 hours at
The positive electrode body (6) was doped with lithium in an amount equivalent to mAh.

[2]負極体(4)の製造 精製バルブを鉱酸により加水分解した後、濾過して残渣
を水洗17、常法により粉砕、精製、乾燥して得た結晶
セルロース粉末(体積平均粒径40戸)を、カルボキシ
メチルセルロースを添加した水溶液中に分散させた後、
噴霧乾燥により、体積平均粒径1ml11の顆粒を得た
。これを電気炉中で、N2ガス流下250℃/時間の昇
温湿度で1000℃まで昇温し、さらに1000℃で1
時間保持した後、冷却した。さらにこの加熱処理物を別
の電気炉に入れて、N2ガスを流しながら1000℃/
時間の昇温速度で1700℃まで昇温し・その温度でさ
らに1時間保持して焼成した。得られた炭素質物をメノ
ウ製容器のボールミルで3分間粉砕した。
[2] Manufacture of negative electrode body (4) After hydrolyzing the purified valve with mineral acid, it was filtered and the residue was washed with water. After dispersing the cellulose in an aqueous solution containing carboxymethyl cellulose,
By spray drying, granules with a volume average particle size of 1 ml11 were obtained. This was heated to 1000°C in an electric furnace under a flow of N2 gas at a temperature and humidity of 250°C/hour, and further heated to 1000°C for 1 hour.
After holding for a period of time, it was cooled. Furthermore, this heat-treated product was placed in another electric furnace and heated to 1000°C/100°C while flowing N2 gas.
The temperature was raised to 1700° C. at a rate of 1 hour, and the temperature was maintained for an additional 1 hour for firing. The obtained carbonaceous material was pulverized for 3 minutes using a ball mill in an agate container.

この炭素質物は下記の特性を有していた。This carbonaceous material had the following characteristics.

水素/炭素(原子比)=0..04 doox =3.60人: Lc==21人a O(2
dllo ) =2.41人La=24人;体積平均粒
径=36.7FJa比表面積(BET)=7.8rrI
″/gこのようにして得られた炭素質物18gを、ポリ
アクリル酸25gを溶解したメタノール溶液490−に
分散し、さらに市販の試薬特級、純度99%、体積平均
粒径IPの二酸化ケイ素を0.095g加えて混合し、
スラリーとした。これを厚さ30Fのステンレス鋼板に
多数の穴をあけたバンチトメタルからなる集電体(15
)に塗布し、乾燥して、両面にそれぞれ厚さ20戸の炭
素質物層を有する負極体(4)とした、この負極体(4
)の炭素質物に対して、S i Oz配合量は0.50
重量%である。
Hydrogen/carbon (atomic ratio) = 0. .. 04 doox =3.60 people: Lc==21 people a O(2
dllo ) = 2.41 people La = 24 people; volume average particle size = 36.7FJa specific surface area (BET) = 7.8rrI
''/g 18 g of the carbonaceous material thus obtained was dispersed in a methanol solution of 490 mm containing 25 g of polyacrylic acid, and further added with commercially available reagent grade silicon dioxide with a purity of 99% and a volume average particle size IP of 0. Add .095g and mix.
It was made into a slurry. This is used as a current collector (15cm
) and dried to obtain a negative electrode body (4) having a carbonaceous material layer with a thickness of 20 layers on both sides.
), the S i Oz content is 0.50
Weight%.

[3]電池の組立 実施例1と同様にして、単2形サイズの電池を組立てた
[3] Battery assembly A AA-sized battery was assembled in the same manner as in Example 1.

実施例3 [1]正極体(6)の製造 市販の特級試薬の酸化バナジウム(V 、 Ofi )
を120℃で5時間乾燥後、放冷したものを、実施例2
とそれぞれ同じ重量で粉末状ポリテトラフルオロエチレ
ン及び導電剤と混合し、実施例2と同様にして、同じ構
造の正極体(6)を得た。
Example 3 [1] Production of positive electrode body (6) Commercially available special grade reagent vanadium oxide (V, Ofi)
Example 2
and powdered polytetrafluoroethylene and a conductive agent in the same weight, respectively, and carried out in the same manner as in Example 2 to obtain a positive electrode body (6) having the same structure.

この正極体(6)にリチウムをドーピングするため、実
施例2と同様のリチウム対極及び電解液を用い、250
0mAh相当のリチウムを正極体(6)にドーピングし
た。
In order to dope this positive electrode body (6) with lithium, using the same lithium counter electrode and electrolyte as in Example 2,
The positive electrode body (6) was doped with lithium equivalent to 0 mAh.

[2]負極体(4) メゾフェースピッチをN2ガス流下、2600℃まで昇
温し、2500℃で1時間保持して得た炭素質物を、実
施例2に用いたのと同様のメノウ容器のボールミルによ
り3分間粉砕した。
[2] Negative electrode body (4) A carbonaceous material obtained by heating mesoface pitch to 2600°C under a N2 gas flow and holding it at 2500°C for 1 hour was placed in an agate container similar to that used in Example 2. It was ground for 3 minutes using a ball mill.

この炭素質物は下記の特性を有していた。This carbonaceous material had the following characteristics.

水素/炭素(原子比)=Q、Q3 do。2=3.40人: Lc=87人a o (2d
zo ) =241人 La=81人1体積平均粒径=27.3P比表面積(B
ET)=10.1ゴ/g このようにして得られた炭素質物18gと純度99.9
重量%、体積平均粒径1.5Pの二酸化ケイ素0.19
gを用い、炭素質物に対する5102配合量を1.1重
量%とじたほかは、実施例2と同様にして、負極体(4
)を得た。
Hydrogen/carbon (atomic ratio) = Q, Q3 do. 2 = 3.40 people: Lc = 87 people a o (2d
zo ) = 241 people La = 81 people 1 volume average particle diameter = 27.3P specific surface area (B
ET) = 10.1g/g 18g of carbonaceous material thus obtained and purity 99.9
% by weight, silicon dioxide 0.19 with volume average particle size 1.5P
The negative electrode body (4
) was obtained.

[3]電池の組立 実施例1と同様にして、単2サイズの電池を組立てた。[3] Battery assembly A AA size battery was assembled in the same manner as in Example 1.

実施例4 [1]正極体(6)の製造 実施例1と同様にして、L i Co 02の正極体を
得た。
Example 4 [1] Production of positive electrode body (6) In the same manner as in Example 1, a positive electrode body of Li Co 02 was obtained.

[2]負極体(4)の製造 ノボラック樹脂から実施例1と同様にして得られ、同様
の特性値を有する炭素質物18gを用い、これに無機ケ
イ素化合物として、体積平均粒径2Pのムライト質セラ
ミックス(A220s  ・SiO□1重量比37 :
 63)0.15gを加えたほかは実施例1と同様にし
て、炭素質物に対して0.5重量%のSiO□を含有す
る負極体を得た。
[2] Manufacture of negative electrode body (4) Using 18 g of carbonaceous material obtained from novolac resin in the same manner as in Example 1 and having the same characteristic values, mullite with a volume average particle size of 2P was added as an inorganic silicon compound. Ceramics (A220s ・SiO□1 weight ratio 37:
63) A negative electrode body containing 0.5% by weight of SiO□ based on the carbonaceous material was obtained in the same manner as in Example 1 except that 0.15g was added.

[3]電池の組立 上記の正極体(6)及び負極体(4)を用い、実施例1
と同様にして、単2サイズの電池を組立てた。
[3] Assembly of battery Using the above positive electrode body (6) and negative electrode body (4), Example 1
I assembled a AA size battery in the same way.

比較例1 実施例1と同様の正極体を用いた。負極体は、炭素質物
に対する5iO−の配合量を003重量%とした以外は
実施例1と同様に調製した。以下、実施例1と同様にし
て、単2サイズの電池を組立てた6 比較例2 実施例1と同様の正極体を用いた。負極体は、炭素質物
に対する5102の配合量を1.5重量%とじた以外は
実施例1と同様に調製した。以下、実施例1と同様にし
て、単2サイズの電池を組立てた。
Comparative Example 1 The same positive electrode body as in Example 1 was used. The negative electrode body was prepared in the same manner as in Example 1, except that the amount of 5iO- added to the carbonaceous material was 0.003% by weight. Hereinafter, a AA size battery was assembled in the same manner as in Example 1.Comparative Example 2 The same positive electrode body as in Example 1 was used. The negative electrode body was prepared in the same manner as in Example 1 except that the amount of 5102 added to the carbonaceous material was 1.5% by weight. Thereafter, AA size batteries were assembled in the same manner as in Example 1.

比較例3 正極体は実施例1と同様のものを用いた。炭素質物のか
わりに金属リチウムを負極体として用しまた以外は実施
例1と同様にして、単2サイズの電池を組立てた。
Comparative Example 3 The same positive electrode body as in Example 1 was used. A AA size battery was assembled in the same manner as in Example 1 except that metallic lithium was used as the negative electrode body instead of the carbonaceous material.

このようにして得られた本発明の実施例1〜4ならびに
比較例1〜3の非水溶媒二次電池について、20℃の室
温で900mAの電流により7時間充電を行い、その後
2,8■の放電電圧を示すまで放電を行う工程を1サイ
クルとして電池容量の測定を行い、放電容量維持率のサ
イクル数による変化を追った。その結果、第2図に示す
特性図を得た。なお、図中のAは実施例1、Bは実施例
2、Cは実施例3、Dは実施例4の非水溶媒二次電池の
特性線を、Eは比較例1、Fは比較例2、Gは比較例3
の非水溶媒二次電池の放電容量維持率曲線を示す、この
第2図から明らかなように、本発明による各実施例の二
次電池は、サイクル数の増加に伴う放電容量維持率の低
下が穏やかで、優れた放電特性を有する。これに対し、
比較例1〜3の二次電池においては、サイクル数の増加
に伴う放電容量維持率の低下が著しい。特にサイクル数
が300回付近になると放電容量維持率は極端に低下す
る。
The nonaqueous solvent secondary batteries of Examples 1 to 4 of the present invention and Comparative Examples 1 to 3 thus obtained were charged with a current of 900 mA at room temperature of 20°C for 7 hours, and then charged for 2.8 hours. The battery capacity was measured, with the process of discharging until the discharge voltage reached . As a result, a characteristic diagram shown in FIG. 2 was obtained. In addition, in the figure, A is the characteristic line of the non-aqueous solvent secondary battery of Example 1, B is Example 2, C is Example 3, D is the characteristic line of the non-aqueous solvent secondary battery of Example 4, E is Comparative Example 1, and F is Comparative Example. 2. G is comparative example 3
As is clear from FIG. 2, which shows the discharge capacity retention curve of the non-aqueous solvent secondary battery, the discharge capacity retention rate of the secondary batteries of each example according to the present invention decreases as the number of cycles increases. It is gentle and has excellent discharge characteristics. On the other hand,
In the secondary batteries of Comparative Examples 1 to 3, the discharge capacity retention rate decreased significantly as the number of cycles increased. In particular, when the number of cycles approaches 300, the discharge capacity retention rate decreases extremely.

さらに、本発明の実施例及び比較例1.2の非水溶媒二
次電池各々100個について、前述の放電容量維持率の
特性評価試験を200サイクル行った時点での放電容量
維持率の分布について調べた6その結果を第1表に示す
。なお、第1表中の又は各実施例及び比較例の非水溶媒
二次電池各々100個の電池容量の平均値であり、δは
前記各容量値から得られた標準偏差を示す。
Furthermore, regarding the distribution of the discharge capacity retention rate at the time when the above-mentioned discharge capacity retention rate characteristic evaluation test was conducted for 200 cycles for 100 pieces each of the non-aqueous solvent secondary batteries of Examples of the present invention and Comparative Example 1.2. The results of the investigation are shown in Table 1. In addition, it is the average value of the battery capacity of 100 non-aqueous solvent secondary batteries in Table 1 or each Example and Comparative Example, and δ represents the standard deviation obtained from each of the above-mentioned capacity values.

第1表 ×100%) 第1表から明らかなように、本実施例の二次電池は比較
例の二次電池に比べて放電容量維持率のバラツキが少な
く、個々の電池の性能が向上し、かつ均一化されており
、本発明によって電池性能が安定化されていることがわ
かる。
Table 1 x 100%) As is clear from Table 1, the secondary battery of this example had less variation in discharge capacity retention rate than the secondary battery of the comparative example, and the performance of each battery improved. , and are uniform, indicating that the battery performance is stabilized by the present invention.

[発明の効果] 本発明の二次電池は、活物質であるリチウム又はリチウ
ムを主体とするアルカリ金属を担持して得られる活物質
の層を、前述の結晶構造を有する炭素質物を担持体とし
て用いることにより、負極体がリチウムシートそのもの
である場合にその表面で生じろデンドライト形状の電析
物の形成はな(なる。
[Effects of the Invention] The secondary battery of the present invention has an active material layer obtained by supporting lithium as an active material or an alkali metal mainly composed of lithium, using a carbonaceous material having the above-mentioned crystal structure as a support. When the negative electrode body is a lithium sheet itself, the formation of dendrite-shaped deposits on the surface of the negative electrode body is avoided.

さらに、本発明の特徴として、炭素質物に無機ケイ素化
合物を加えることにより、負極体への充放電によるリチ
ウムのドーピングの際の膨潤を抑制し、また充放電に際
しては円滑に活物質の担持放出を繰り返すことを可能に
するため、本発明の電池は従来にない高容量で優れた充
放電特性を発揮し得る。
Furthermore, as a feature of the present invention, by adding an inorganic silicon compound to the carbonaceous material, swelling during doping of lithium to the negative electrode body due to charging and discharging is suppressed, and active material is smoothly loaded and released during charging and discharging. Since the battery of the present invention can be used repeatedly, it can exhibit an unprecedented high capacity and excellent charge/discharge characteristics.

なお、これまでの説明は円筒形構造の二次電池について
行ったが、本発明の技術思想はこの構造のものに限定さ
れるものではなく、例えば、コイン形、扁平形、角形等
の形状の二次電池に適用することができる。
Although the explanation so far has been made regarding a secondary battery having a cylindrical structure, the technical concept of the present invention is not limited to this structure, and may be applied to a secondary battery having a coin shape, a flat shape, a square shape, etc. It can be applied to secondary batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である円筒形構造の二次電池
の縦断面図で、第2図は本発明の各実施例及び各比較例
における電池の充放電サイクル−容量維持率関係を示す
図である。第3図は従来の二次電池の縦断面図である。 1・・・・金属容器   9 ・・・導電性樹脂層2・
・・底部絶縁板  1o・・正極合剤3 ・・・発電要
素   11  ・金属封口板4・・・・負極体   
 12・・・・絶縁バッキング5・・・・セパレータ 
 13・・・内側対口板6°゛°゛正極体    14
・・・・リード端子7 ・・・リード端子  15・・
・ステンレス鋼板8・・・・集電体 A−D・・・・本発明による実施例1〜4の電池の放電
容量維持率曲線 E−G・・・・比較例1〜3の電池の放電容量維持率曲
線 第3図
FIG. 1 is a longitudinal cross-sectional view of a secondary battery with a cylindrical structure that is an example of the present invention, and FIG. 2 is a relationship between charging and discharging cycles and capacity retention rates of batteries in each example and each comparative example of the present invention. FIG. FIG. 3 is a longitudinal sectional view of a conventional secondary battery. 1... Metal container 9... Conductive resin layer 2...
...Bottom insulating plate 1o...Positive electrode mixture 3...Power generation element 11 -Metal sealing plate 4...Negative electrode body
12...Insulating backing 5...Separator
13... Inner facing plate 6°゛°゛ Positive electrode body 14
...Lead terminal 7 ...Lead terminal 15...
- Stainless steel plate 8...Current collector A-D...Discharge capacity maintenance rate curve E-G of the batteries of Examples 1 to 4 according to the present invention...Discharge of the batteries of Comparative Examples 1 to 3 Capacity maintenance rate curve Figure 3

Claims (1)

【特許請求の範囲】  正極体と、該正極体に載置されたセパレータと、該セ
パレータに保持された電解質と、該セパレータに載置さ
れた負極体と、該正極体及び/又は該負極体に包含され
充放電反応して該正・負極体間を移動する活物質とから
なる発電要素が内蔵された二次電池において、 (a)該活物質がリチウム又はリチウムを主体とするア
ルカリ金属であり; (b)該正極体が遷移金属酸化物又は遷移金属と前記活
物質との複合酸化物を主要成分とし; (c)該負極体が少なくとも、 (イ)水素/炭素の原子比が0.15未満であり; (ロ)X線広角回折法による(002)面の面間隔(d
_0_0_2)が3.37Å以上、及びc軸方向の結晶
子の大きさ(Lc)が150Å以下である結晶構造を含
有する炭素質物に、0.05〜1.2重量%の無機ケイ
素化合物を含有する炭素質物層を集電体金属表面に被着
形成させてなるものである; ことを特徴とする二次電池。
[Claims] A positive electrode body, a separator placed on the positive electrode body, an electrolyte held in the separator, a negative electrode body placed on the separator, and the positive electrode body and/or the negative electrode body. (a) The active material is lithium or an alkali metal mainly composed of lithium. Yes; (b) the positive electrode body has a transition metal oxide or a composite oxide of a transition metal and the active material as a main component; (c) the negative electrode body has at least (a) a hydrogen/carbon atomic ratio of 0; (b) The interplanar spacing (d
0.05 to 1.2% by weight of an inorganic silicon compound is contained in a carbonaceous material containing a crystal structure in which _0_0_2) is 3.37 Å or more and the crystallite size (Lc) in the c-axis direction is 150 Å or less. 1. A secondary battery comprising: a carbonaceous material layer deposited on a metal surface of a current collector;
JP2325791A 1990-11-29 1990-11-29 Secondary battery Pending JPH04206168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325791A JPH04206168A (en) 1990-11-29 1990-11-29 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325791A JPH04206168A (en) 1990-11-29 1990-11-29 Secondary battery

Publications (1)

Publication Number Publication Date
JPH04206168A true JPH04206168A (en) 1992-07-28

Family

ID=18180644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325791A Pending JPH04206168A (en) 1990-11-29 1990-11-29 Secondary battery

Country Status (1)

Country Link
JP (1) JPH04206168A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001870A1 (en) * 1995-06-28 1997-01-16 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
WO1998022986A2 (en) * 1996-11-13 1998-05-28 Mitsubishi Chemical Corporation Lithium ion electrolytic cell and method for fabricating same
EP0865092A2 (en) * 1997-03-13 1998-09-16 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2004214182A (en) * 2002-12-17 2004-07-29 Mitsubishi Chemicals Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001870A1 (en) * 1995-06-28 1997-01-16 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US7105251B2 (en) 1995-06-28 2006-09-12 Ube Industries, Ltd. Nonaqueous secondary battery
US6365299B1 (en) 1995-06-28 2002-04-02 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
WO1998022986A2 (en) * 1996-11-13 1998-05-28 Mitsubishi Chemical Corporation Lithium ion electrolytic cell and method for fabricating same
WO1998022986A3 (en) * 1996-11-13 1998-10-08 Mitsubishi Chem Corp Lithium ion electrolytic cell and method for fabricating same
EP1148563A3 (en) * 1997-03-13 2001-11-07 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
EP1148563A2 (en) * 1997-03-13 2001-10-24 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
EP0865092A3 (en) * 1997-03-13 1998-09-23 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
US6905796B2 (en) 1997-03-13 2005-06-14 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
EP0865092A2 (en) * 1997-03-13 1998-09-16 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2004214182A (en) * 2002-12-17 2004-07-29 Mitsubishi Chemicals Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4686974B2 (en) * 2002-12-17 2011-05-25 三菱化学株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Similar Documents

Publication Publication Date Title
JPS62122066A (en) Nonaqueous solvent battery
JP3430614B2 (en) Non-aqueous electrolyte secondary battery
JPH05286763A (en) Electrode material
JPH08315817A (en) Manufacture of carbon negative electrode material and nonaqueous electrolyte secondary battery
JPH04206168A (en) Secondary battery
JPH0544143B2 (en)
JP2726285B2 (en) Rechargeable battery
JPS63193463A (en) Nonaqueous solvent secondary battery
JP3053844B2 (en) Secondary battery electrode
JP3154714B2 (en) Electrodes for secondary batteries
JPS63114056A (en) Nonaqueous solvent secondary battery
JP3140443B2 (en) Rechargeable battery
JPH01161677A (en) Secondary battery
JP2704841B2 (en) Rechargeable battery
JPH04196069A (en) Secondary battery
JPH01274360A (en) Secondary battery
JPH0268859A (en) Secondary battery
JP2727301B2 (en) Manufacturing method of secondary battery electrode
JPH07320785A (en) Nonaqueous electrolytic secondary battery
JPH08180873A (en) Manufacture of negative electrode material and nonaqueous electrolytic secondary battery
JP2691555B2 (en) Rechargeable battery
JP2957202B2 (en) Rechargeable battery
JPH05290888A (en) Nonaqueous solvent secondary battery
JPH02230660A (en) Secondary battery
JPH0233868A (en) Nonaqueous electrolyte secondary battery