JP2960834B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2960834B2
JP2960834B2 JP5136099A JP13609993A JP2960834B2 JP 2960834 B2 JP2960834 B2 JP 2960834B2 JP 5136099 A JP5136099 A JP 5136099A JP 13609993 A JP13609993 A JP 13609993A JP 2960834 B2 JP2960834 B2 JP 2960834B2
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
copper
electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5136099A
Other languages
Japanese (ja)
Other versions
JPH06349482A (en
Inventor
武仁 見立
宏志 岡本
哲正 梅本
直人 西村
和夫 山田
哲也 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP5136099A priority Critical patent/JP2960834B2/en
Priority to DE69404901T priority patent/DE69404901T2/en
Priority to EP94303451A priority patent/EP0627776B1/en
Priority to US08/242,106 priority patent/US5432029A/en
Publication of JPH06349482A publication Critical patent/JPH06349482A/en
Priority to US08/427,226 priority patent/US5478364A/en
Application granted granted Critical
Publication of JP2960834B2 publication Critical patent/JP2960834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウムのインターカレ
ーション・デインターカレーション可能な黒鉛の全部あ
るいは一部分の表面上に酸化銅が付着している複合体と
結着材とを混合した負極を用いたリチウム二次電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode obtained by mixing a composite in which copper oxide is adhered on the surface of all or a part of graphite capable of intercalating and deintercalating lithium and a binder. The present invention relates to a used lithium secondary battery.

【0002】[0002]

【従来の技術】電子機器等の小型、省電力化に伴って、
リチウム等アルカリ金属を利用した二次電池が注目され
ている。負極にリチウムなどアルカリ金属を単体で用い
た場合、充放電の繰り返し、つまりアルカリ金属の溶解
−析出過程により、金属の溶解−析出面上にデンドライ
ト,(樹枝状結晶)が生成し、成長することによりセパレ
−タを貫通し、正極と接することにより電池内部の短絡
を誘発する問題があった。アルカリ金属のかわりにアル
カリ金属合金を,二次電池用の負極に用いると、単体の
時に比べ、デンドライトの発生が抑制され、充放電サイ
クル特性が向上することが判明した。しかし、合金を使
用しても、完全にデンドライトが生成しなくなるわけで
はなく、電池内部の短絡が起こることもある。近年にな
って、負極に、アルカリ金属やその合金のような金属の
溶解−析出過程或いは溶解−析出−固体内拡散過程を利
用する変わりに、アルカリ金属イオンの吸収−放出過程
を利用した炭素や導電性高分子等の有機材料が開発され
た。これにより、アルカリ金属やその合金を用いた場合
に発生したデンドライトの生成が原理上起こらなくな
り、電池内部の短絡の問題が激減するにいたった。
2. Description of the Related Art With the miniaturization and power saving of electronic devices,
A secondary battery using an alkali metal such as lithium has attracted attention. When an alkali metal such as lithium is used alone for the negative electrode, repetition of charge and discharge, that is, dendrite and (dendritic crystals) are generated and grown on the surface where the metal is dissolved and deposited by the process of dissolving and depositing the alkali metal. Therefore, there is a problem that a short circuit inside the battery is induced by penetrating through the separator and coming into contact with the positive electrode. It was found that when an alkali metal alloy was used in place of the alkali metal for the negative electrode of the secondary battery, the generation of dendrites was suppressed and the charge / discharge cycle characteristics were improved as compared with the case of a single battery. However, the use of the alloy does not completely prevent the generation of dendrite, and may cause a short circuit inside the battery. In recent years, instead of using a dissolution-precipitation process or a dissolution-precipitation-solid diffusion process of a metal such as an alkali metal or an alloy thereof, carbon using an absorption-release process of an alkali metal ion has been used. Organic materials such as conductive polymers have been developed. As a result, the generation of dendrite generated when an alkali metal or an alloy thereof is used does not occur in principle, and the problem of a short circuit inside the battery has been drastically reduced.

【0003】炭素は化学的に安定であり、電子供与性物
質、電子受容性物質のいずれもド−プする事が可能であ
るため、電極として、特に電池用電極として有望な材料
である。
[0003] Since carbon is chemically stable and can be doped with both an electron donating substance and an electron accepting substance, it is a promising material as an electrode, particularly as an electrode for a battery.

【0004】炭素を負極活物質に用いた場合、炭素の層
間に挿入されるリチウムの量は、炭素6原子に対してリ
チウム1原子、つまりC6Liが上限であり、そのときの炭
素の単位重量当たりの容量は372mAh/gとなる。
炭素は無定形炭素といわれるものから黒鉛まで幅広い構
造をもち、また炭素の六角網面の大きさ、並びかたも出
発原料、製造法等により様々である。従来負極活物質と
して用いられてきた炭素材料としては、例えば、特開昭
62−90863号公報、特開昭62−122066号
公報、特開昭63−213267号公報、特開平1−2
04361号公報、特開平2−82466号公報、特開
平3−252053号公報、特開平3−285273号
公報、特開平3−289068号公報などに開示されて
いるものなどがある。
When carbon is used as a negative electrode active material, the amount of lithium inserted between carbon layers is 1 atom of lithium to 6 atoms of carbon, that is, C6Li, and the amount of lithium per unit weight of carbon at that time is limited. Is 372 mAh / g.
Carbon has a wide range of structures from what is called amorphous carbon to graphite, and the size and arrangement of carbon hexagonal planes vary depending on starting materials, production methods and the like. Examples of carbon materials conventionally used as negative electrode active materials include, for example, JP-A Nos. 62-90863, 62-122066, 63-213267, and 1-2.
JP-A-04361, JP-A-2-82466, JP-A-3-252053, JP-A-3-285273, JP-A-3-289068 and the like.

【0005】これらの炭素類では、上述の理論容量に達
するものはなく、ある程度の大きい容量をもっているも
のであってもリチウムのデインターカレーション時の電
位が直線的に増加し、実際に電池系を構成した場合に使
用できる電位範囲において充分な容量を示さないものが
あり、電池を作製するにあたっての負極容量として満足
いく負極を作製することができない。また、電極を作製
する場合、炭素材料の真密度も必要であるが、単位体積
あたりの密度を考えた場合には、嵩密度が重要な因子と
なる。嵩密度を支配するのは炭素粒子の形状、大きさで
あり、特開昭62−90863の実施例中、特開平2−
82466、特開平3−285273、特開平3−28
9068に示されるような繊維状炭素では単位体積あた
りの容量密度を上げることは困難であり、これらの繊維
状炭素でも、上述の理論容量に達するものはなく、電池
を作製するにあたって満足いく負極容量をもった負極を
作製することができない。また、特開昭63−2455
5に示されるような気相法による熱分解炭素は高い充放
電安定性を示すが、この製法では厚膜の電極を作製する
事が難しく、高容量の電極を得ることは困難である。
[0005] None of these carbons reach the above-mentioned theoretical capacity, and even if they have a certain large capacity, the potential at the time of deintercalation of lithium increases linearly, and the battery system actually increases. In some cases, the battery does not show a sufficient capacity in the potential range that can be used, and a negative electrode having a satisfactory negative electrode capacity for manufacturing a battery cannot be manufactured. Further, when producing an electrode, the true density of the carbon material is also required, but when considering the density per unit volume, the bulk density is an important factor. The bulk density is governed by the shape and size of the carbon particles, and in the examples of JP-A-62-90863,
82466, JP-A-3-285273, JP-A-3-28
It is difficult to increase the capacity density per unit volume with fibrous carbon as shown in No. 9068, and none of these fibrous carbons reach the above-mentioned theoretical capacity. It is not possible to produce a negative electrode having Also, JP-A-63-2455
Although pyrolytic carbon produced by a gas phase method as shown in FIG. 5 exhibits high charge / discharge stability, it is difficult to produce a thick-film electrode by this method, and it is difficult to obtain a high-capacity electrode.

【0006】これに対して、R.Fong, U.Sacken, and J.
R.Dahn, J. Electrochem. Soc., 137, 2009(1990)に記
載されているがごとく、黒鉛を負極活物質として用いた
場合、理論容量 の放電容量がでるものの小さい電流の
測定であるので実用を考える上で満足できるものではな
い。また、黒鉛材料を負極活物質に用いたものとして特
開平4−112455、特開平4−115457、特開
平4−115458、特開平4−237971、特開平
5−28996等に示されているが、上述の理論容量に
達しておらず、電池を作製するにあたっての負極容量と
して満足いく負極を作製することができない。
On the other hand, R. Fong, U. Sacken, and J.
As described in R. Dahn, J. Electrochem. Soc., 137, 2009 (1990), when graphite is used as the negative electrode active material, although the theoretical discharge capacity is obtained, it is a small current measurement. It is not satisfactory for practical use. Further, as disclosed in JP-A-4-112455, JP-A-4-115457, JP-A-4-115458, JP-A-4-237971, JP-A-5-28996, etc. as those using a graphite material as a negative electrode active material, Since the above-mentioned theoretical capacity has not been reached, a negative electrode which is satisfactory as a negative electrode capacity in manufacturing a battery cannot be manufactured.

【0007】特開平5−21065のごとく、リチウム
イオンを挿入・脱離する反応が平均電圧2V(Li/Li+)以
下であるカルコゲン化合物とリチウムイオンを挿入・脱
離することが可能な炭素質物との混合した負極を用いて
いるが、充放電電圧が低くエネルギー密度が低下する問
題がある。
As disclosed in Japanese Patent Application Laid-Open No. 5-21065, a chalcogen compound having a reaction of inserting and removing lithium ions at an average voltage of 2 V (Li / Li + ) or less and a carbonaceous material capable of inserting and removing lithium ions. However, there is a problem that the charge / discharge voltage is low and the energy density is reduced.

【0008】特開平4−184863のごとく、炭素材
に金属(ニッケル、銅)被膜を形成したり、特開平4−
259764のごとく、炭素と金属(少なくとも1種類
以上のリチウムと合金化しない金属)との混合負極を用
いることにより、サイクル特性の向上、高温放置後の高
率放電の改善を行うことができるが、根本的な、負極容
量の向上は期待できない。
As disclosed in Japanese Patent Application Laid-Open No. Hei 4-184863, a metal (nickel, copper) film is formed on a carbon material.
By using a mixed anode of carbon and a metal (a metal not alloyed with at least one kind of lithium) as in 259768, the cycle characteristics can be improved, and the high-rate discharge after leaving at high temperature can be improved. No fundamental improvement in anode capacity can be expected.

【0009】特開平3−216960のごとく、炭素体
表面に、孔部を塞がないように、リチウムを形成するこ
とにより、大電流の取り出し可能であり、サイクル寿命
および安全性を向上した二次電池を得ることができ、特
開平4−39864のごとく、炭素質物に活物質と合金
を形成し得る合金を含浸させた負極を用いることによっ
て電極容量が大きく、充放電サイクル特性が優れ、自己
放電特性の改良された二次電池を得ることができるが、
電極製造における工程が増すという問題がある。
As described in Japanese Patent Application Laid-Open No. 3-216960, by forming lithium on the surface of the carbon body so as not to block the hole, a large current can be taken out, and the secondary battery has improved cycle life and safety. A battery can be obtained, and the use of a negative electrode in which a carbonaceous material is impregnated with an alloy capable of forming an alloy with an active material as described in JP-A-4-39864 has a large electrode capacity, excellent charge / discharge cycle characteristics, and self-discharge. A secondary battery with improved characteristics can be obtained,
There is a problem that the number of steps in manufacturing the electrode increases.

【0010】特開平4−179049のごとく、導電性
高分子と金属および/あるいは炭素系材料との複合負極
を用いることにより、フレキシブルでサイクル寿命の長
い電池用負極を提供できるものの、充放電容量に問題が
ある。
As disclosed in Japanese Patent Application Laid-Open No. 4-179049, the use of a composite negative electrode of a conductive polymer and a metal and / or a carbon-based material can provide a flexible negative electrode for a battery having a long cycle life. There's a problem.

【0011】[0011]

【発明が解決しようとする課題】上記に記載のごとく、
種々の炭素材料、黒鉛材料を負極活物質に用いることに
よっても、理論容量(372mAh/g)に達しておら
ず、電池を作製するにあたっての負極容量として満足い
く負極を作製することができない。しかし、黒鉛材料に
おいては、基本的に、理論容量を充放電することが可能
であるものの、その時に用いる充放電電流値は実用上使
用できる電流値ではないなどの問題点がある。また、リ
チウムイオンを挿入・脱離する反応が平均電圧2V(Li/Li
+)以下であるカルコゲン化合物とリチウムイオンを挿入
・脱離することが可能な炭素質物との混合した負極を用
いているが、充放電電圧が低くエネルギー密度が低下す
る問題、炭素とリチウムと合金を作らない金属との複合
負極においては、根本的な負極容量の向上をもたらすこ
とはできなく、炭素にリチウムあるいはリチウムと合金
を作る金属を被覆させた複合負極においては電極製造に
おける工程の増加という問題、導電性高分子と金属およ
び/あるいは炭素系材料との複合負極においては充放電
容量に問題がある。さらに、特願平5−112835の
ごとく、黒鉛と酸化銅を混合した電極を用いると混合し
た酸化銅には反応に関与していない部分があるという問
題がある。
SUMMARY OF THE INVENTION As described above,
Even if various carbon materials and graphite materials are used for the negative electrode active material, the theoretical capacity (372 mAh / g) is not reached, and a negative electrode having a satisfactory negative electrode capacity for manufacturing a battery cannot be manufactured. However, although the graphite material can basically charge and discharge the theoretical capacity, there is a problem that the charge and discharge current value used at that time is not a practically usable current value. In addition, the reaction of inserting and removing lithium ions has an average voltage of 2 V (Li / Li
+) A negative electrode mixed with a chalcogen compound and a carbonaceous material capable of inserting and removing lithium ions is used, but the charge / discharge voltage is low and the energy density is low. In the case of a composite anode with a metal that does not form an anode, it is not possible to bring about a fundamental improvement in the anode capacity, and in a composite anode in which carbon is coated with lithium or a metal that forms an alloy with lithium, the number of steps in electrode production increases. There is a problem in the charge / discharge capacity of a composite negative electrode of a conductive polymer and a metal and / or a carbon-based material. Furthermore, as described in Japanese Patent Application No. 5-112835, when an electrode in which graphite and copper oxide are mixed is used, there is a problem that the mixed copper oxide has a portion not involved in the reaction.

【0012】そこで本発明は、前述の実情をふまえ、リ
チウムのインターカレーション・デインターカレーショ
ン可能な黒鉛に酸化銅と結着材とを混合した電極を提供
することにより、高容量の、電極製造における工程を少
なくできる黒鉛混合負極、さらには高容量の、電圧の高
いリチウム二次電池を提供することを目的とする。
In view of the above-mentioned circumstances, the present invention provides a high-capacity, high-capacity electrode by providing an electrode obtained by mixing copper oxide and a binder with graphite capable of intercalating / deintercalating lithium. It is an object of the present invention to provide a graphite-mixed negative electrode capable of reducing the number of steps in production, and a lithium secondary battery having a high capacity and a high voltage.

【0013】[0013]

【課題を解決するための手段】本発明によれば、正極、
負極及び非水系のイオン伝導体からなる電池において、
前記負極が負極活物質の主成分としてリチウムイオンの
インターカレーション・デインターカレーション可能な
黒鉛より成り、この黒鉛粒子全部あるいは一部分の表面
上に酸化銅が付着している複合体と結着材が混合された
電極であるリチウム二次電池が提供される。
According to the present invention, a positive electrode,
In a battery comprising a negative electrode and a non-aqueous ion conductor,
The composite in which the negative electrode is made of graphite capable of intercalating / deintercalating lithium ions as a main component of the negative electrode active material, and a composite in which copper oxide is adhered on the surface of all or part of the graphite particles and a binder And a lithium secondary battery that is an electrode in which is mixed.

【0014】本発明の負極は、負極活物質としてのリチ
ウムイオンのインターカレーション・デインターカレー
ション可能な黒鉛粒子の全部あるいは一部分の表面上に
銅を被覆した後、酸化処理を施すことにより酸化銅を生
成させる製造方法により製造した複合体を使用し、これ
と結着材を混合することにより作製される。この時、負
極集電体を用いて、負極と負極集電体と一体となったも
のを作製することもできる。
The negative electrode of the present invention can be oxidized by coating copper on the surface of all or a part of graphite particles capable of intercalating / deintercalating lithium ions as a negative electrode active material and then subjecting the particles to an oxidation treatment. It is produced by using a composite produced by a production method for producing copper and mixing this with a binder. At this time, the negative electrode and the negative electrode current collector can be integrally formed using the negative electrode current collector.

【0015】本発明で使用される負極活物質の主成分と
しての黒鉛は、X線広角回折法による(002)面の平
均面間隔(d002)が0.335〜0.340nm、
(002)面方向の結晶子厚み(Lc)が10nm以
上、(110)面方向の結晶子厚み(La)が10nm
以上である材料であり、これを用いることにより高容量
の電極を得ることができる。容量および充放電電位に影
響をおよぼす要因として、炭素の層状構造に関わる物性
があげられる。炭素の層状構造に関わる物性には(00
2)面の面間隔(d002)、つまり層間距離と、結晶子
の大きさがある。結晶化度が高くなることによりリチウ
ムのデインターカレーション時の電位がリチウムの電位
に近くなるため、より高容量の炭素体電極を得ることが
期待できるわけである。したがって、リチウム二次電池
として組み上げた時、その使用できる電池容量を考えに
入れた場合、X線広角回折法による(002)面の平均
面間隔(d002)が0.335〜0.340nmである
ことが好ましい。(002)面方向の結晶子厚み(L
c)においては、10nm以下のときは結晶性が悪いた
め、リチウム二次電池として組み上げた時、その使用で
きる電池容量が小さくなり、実用的でない。(110)
面方向の結晶子厚み(La)においては、10nm以下
のときは結晶性が悪いため、リチウム二次電池として組
み上げた時、その使用できる電池容量が小さくなり、実
用的でない。
Graphite as a main component of the negative electrode active material used in the present invention has an average spacing (d 002 ) of (002) planes by a wide angle X-ray diffraction method of 0.335 to 0.340 nm,
The crystallite thickness (Lc) in the (002) plane direction is 10 nm or more, and the crystallite thickness (La) in the (110) plane direction is 10 nm.
The above materials are used, and a high-capacity electrode can be obtained by using these materials. Factors affecting the capacity and charge / discharge potential include physical properties related to the layered structure of carbon. Physical properties related to the layered structure of carbon include (00
2) The plane spacing (d 002 ) of the planes, that is, the interlayer distance, and the crystallite size are present. Since the potential at the time of deintercalation of lithium becomes closer to the potential of lithium by increasing the degree of crystallinity, it is possible to expect to obtain a higher capacity carbon body electrode. Therefore, when assuming the usable battery capacity when assembling as a lithium secondary battery, the average spacing (d 002 ) of the (002) plane by the X-ray wide-angle diffraction method is 0.335 to 0.340 nm. Preferably, there is. (002) Crystallite thickness in the plane direction (L
In c), when the thickness is 10 nm or less, the crystallinity is poor, so that when assembled as a lithium secondary battery, the usable battery capacity becomes small, which is not practical. (110)
When the crystallite thickness (La) in the in-plane direction is less than 10 nm, the crystallinity is poor. Therefore, when assembled as a lithium secondary battery, the usable battery capacity becomes small, which is not practical.

【0016】本発明で使用される負極活物質の主成分と
しての黒鉛において、アルゴンレーザーラマンによる1
580cm-1付近のピークに対する1360cm-1付近
のピークの強度比、つまりR値は、0.4以下が好まし
い。0.4より大きいと結晶化度が低くなり、リチウム
のデインターカレーション時の電位がリチウムの電位に
体してより高くなるため、リチウム二次電池として組み
上げた時、その使用できる電池容量が小さくなり、実用
的でない。
The graphite used as the main component of the negative electrode active material used in the present invention was prepared by using argon laser Raman.
580 cm -1 near the peak intensity ratio of around 1360 cm -1 to the peak of, i.e. R value is preferably 0.4 or less. If it is larger than 0.4, the crystallinity will be low and the potential at the time of deintercalation of lithium will be higher than the potential of lithium, so the battery capacity that can be used when assembled as a lithium secondary battery is Small and impractical.

【0017】また、用いることのできる黒鉛として、上
記の物性条件を満たす、例えば天然黒鉛、キッシュグラ
ファイト、石油コークスまたは石炭ピッチコークス等の
易黒鉛化性炭素から得られる人造黒鉛、あるいは、膨張
黒鉛などの黒鉛類、また形状としては、球状、鱗片状、
繊維状あるいはそれらの粉砕物のいずれであってもよい
が、球状、鱗片状あるいはそれらの粉砕物が好ましい。
Examples of the graphite which can be used include artificial graphite obtained from easily graphitizable carbon such as natural graphite, quiche graphite, petroleum coke or coal pitch coke, or expanded graphite, which satisfies the above physical property conditions. Graphites, and as shapes, spherical, flaky,
Any of fibrous or crushed products thereof may be used, but spherical, flaky or crushed products thereof are preferred.

【0018】黒鉛を負極として作製する際に、黒鉛の粒
径は80μm以下であることが好ましい。粒径は体積基
準による粒度分布測定により求められた粒度分布におい
て、ピークをもつ粒径として求められた値である。80
μmより大きい粒径の黒鉛を用いた場合、電解液との接
触面積が小さくなるため、粒子内のリチウムの拡散や、
反応サイトの減少等の問題が発生し、大きい電流での充
放電に問題が生じる。
When graphite is used as the negative electrode, the graphite preferably has a particle size of 80 μm or less. The particle size is a value obtained as a particle size having a peak in a particle size distribution obtained by a particle size distribution measurement on a volume basis. 80
When graphite having a particle size larger than μm is used, the contact area with the electrolytic solution becomes smaller, so that diffusion of lithium in the particles,
Problems such as a decrease in the number of reaction sites occur, and problems arise in charging and discharging with a large current.

【0019】黒鉛粒子の表面上に酸化銅が付着している
複合体を製造する方法として、黒鉛粒子表面上の一部に
銅を被覆した後、酸化処理を施すことにより酸化銅を生
成させる方法がある。このうち黒鉛粒子の表面上に銅を
被覆する方法としては、銅の無電解メッキ法、銅を高減
圧中に保って加熱蒸発を利用する蒸着法、加熱蒸発およ
びイオン衝撃を利用するスパッタリング法等が挙げられ
る。このうちコストおよび作業面から無電解メッキ法が
好ましい。銅の無電解メッキには、例えば、還元剤にホ
ルムアルデヒド、ヒドラジン等を用いたアルカリ浴があ
る。また、市販されている無電解銅メッキ浴を使用する
ことも可能である。
As a method for producing a composite in which copper oxide is adhered on the surface of graphite particles, a method of producing copper oxide by coating copper on a part of the surface of graphite particles and then performing an oxidation treatment. There is. Among these methods, methods for coating copper on the surface of graphite particles include electroless plating of copper, evaporation using heat evaporation while keeping copper under high vacuum, sputtering using heat evaporation and ion bombardment, etc. Is mentioned. Of these, the electroless plating method is preferred in terms of cost and work. The electroless plating of copper includes, for example, an alkali bath using formaldehyde, hydrazine, or the like as a reducing agent. It is also possible to use a commercially available electroless copper plating bath.

【0020】銅を被覆した後に酸化処理を施すが、その
酸化処理の方法として、気体の酸化剤、例えば空気、酸
素、オゾン等を用いて酸化する方法、液体の酸化剤、例
えば過酸化水素、溶存酸素を持つ水、オキソ酸(亜硝
酸、過マンガン酸、クロム酸、重クロム酸、塩素酸、次
亜塩素酸など)の塩類等を用いて酸化する方法等が挙げ
られるが、これらに限定されない。
After coating with copper, an oxidation treatment is performed. The oxidation treatment may be carried out by a method of oxidizing using a gaseous oxidizing agent, for example, air, oxygen, ozone, etc., or a liquid oxidizing agent, for example, hydrogen peroxide, Examples include, but are not limited to, methods of oxidizing with water having dissolved oxygen and salts of oxoacids (such as nitrous acid, permanganic acid, chromic acid, dichromic acid, chloric acid, and hypochlorous acid). Not done.

【0021】空気、酸素を用いた酸化処理では、黒鉛の
燃焼温度以下の温度で処理を行うべきである。黒鉛の燃
焼温度は、黒鉛の種類によって異なるが、おおよそ60
0℃以上である。したがって、600℃以下の温度で行
うことが好ましい。また、600で以下の空気、酸素を
用いた酸化処理でも黒鉛の種類、酸化時間、酸素分圧、
黒鉛と銅との比率等によって異なるが、黒鉛表面が酸化
されカルボキシル基、ラクトン、水酸基、カルボニル基
等の官能基が生成する。このことより400℃以下で酸
化処理を行うほうがより好ましい。
In the oxidation treatment using air and oxygen, the treatment should be performed at a temperature lower than the combustion temperature of graphite. The combustion temperature of graphite varies depending on the type of graphite, but is approximately 60%.
0 ° C. or higher. Therefore, it is preferable to carry out at a temperature of 600 ° C. or lower. Also, in the following oxidation treatment using air and oxygen at 600, the type of graphite, oxidation time, oxygen partial pressure,
The graphite surface is oxidized to produce functional groups such as carboxyl groups, lactones, hydroxyl groups, carbonyl groups, etc., depending on the ratio of graphite to copper and the like. For this reason, it is more preferable to perform the oxidation treatment at 400 ° C. or lower.

【0022】酸化銅付着黒鉛複合体の製造工程中にでき
る銅被覆黒鉛複合体において、銅被覆黒鉛複合体を構成
している黒鉛と銅との比率は、黒鉛の種類や粒径または
銅の被覆方法などによって異なるが、黒鉛と銅との重量
比について98.5:1.5〜62:38であることが
好ましい。98.5:1.5〜75:25であるとより
好ましい。98.5:1.5より小さいと付着した酸化
銅の効果が顕著に現れなく、62:38より大きいと黒
鉛の充放電時にリチウムイオンの反応サイトの減少等が
おこり、リチウム二次電池として組み上げた時、その使
用できる電池容量が小さくなり、実用的でない。
In the copper-coated graphite composite formed during the manufacturing process of the graphite composite with copper oxide, the ratio of graphite to copper constituting the copper-coated graphite composite depends on the type and particle size of the graphite or the copper coating. Although it depends on the method and the like, the weight ratio of graphite to copper is preferably 98.5: 1.5 to 62:38. The ratio is more preferably 98.5: 1.5 to 75:25. If it is smaller than 98.5: 1.5, the effect of the attached copper oxide does not appear remarkably, and if it is larger than 62:38, the number of reaction sites of lithium ions decreases at the time of charging and discharging graphite, and the battery is assembled as a lithium secondary battery. When this occurs, the usable battery capacity is reduced, which is not practical.

【0023】負極は上記に示された黒鉛粒子全部あるい
は一部分の表面上に酸化銅が付着している複合体と結着
材を混合して形成される。この結着材には、ポリテトラ
フルオロエチレン、ポリフッ化ビニリデン等のフッ素系
ポリマー、ポリエチレン、ポリプロピレン等のポリオレ
フィン系ポリマー、合成ゴム類等を用いることができる
がこれに限定されるものではない。この混合比は、黒鉛
粒子全部あるいは一部分の表面上に酸化銅が付着してい
る複合体と結着材との重量比は、99:1〜70:30
とすることができる。結着材が70:30より大きい
と、電極の抵抗あるいは分極等が大きくなり放電容量が
小さくなるため実用的なリチウム二次電池が作製できな
い。また、結着材が90:1より小さいと結着能力がな
くなってしまい、活物質の脱落や、機械的強度の低下に
より電池の作製上困難である。負極作製において、結着
性を上げるためにそれぞれの結着剤の融点前後の温度で
熱処理を行うことが好ましい。
The negative electrode is formed by mixing a composite having a copper oxide adhered on the surface of all or a part of the graphite particles and a binder. As the binder, a fluorine-based polymer such as polytetrafluoroethylene and polyvinylidene fluoride, a polyolefin-based polymer such as polyethylene and polypropylene, and synthetic rubbers can be used, but are not limited thereto. The mixing ratio is such that the weight ratio of the composite in which copper oxide is adhered on the surface of all or part of the graphite particles to the binder is 99: 1 to 70:30.
It can be. If the binder is larger than 70:30, a practical lithium secondary battery cannot be produced because the resistance or polarization of the electrode becomes large and the discharge capacity becomes small. On the other hand, if the binder is smaller than 90: 1, the binding ability is lost, and it is difficult to manufacture the battery due to the falling off of the active material and the decrease in mechanical strength. In the preparation of the negative electrode, it is preferable to perform a heat treatment at a temperature around the melting point of each binder in order to enhance the binding property.

【0024】負極から集電を取るために集電体が必要で
ある。集電体としては、金属箔や金属メッシュ、三次元
多孔体等がある。集電体に用いられる金属としては、サ
イクルを重ねた際の機械的強度の点から、リチウムと合
金のできにくい金属がよい。とくに、鉄、ニッケル、コ
バルト、銅、チタン、バナジウム、クロム、マンガンの
単独あるいは、それらの合金がよい。
A current collector is required to collect current from the negative electrode. Examples of the current collector include a metal foil, a metal mesh, and a three-dimensional porous body. As the metal used for the current collector, a metal which is unlikely to alloy with lithium is preferable in terms of mechanical strength when cycles are repeated. In particular, iron, nickel, cobalt, copper, titanium, vanadium, chromium, and manganese alone or alloys thereof are preferable.

【0025】イオン伝導体は、例えば有機電解液、高分
子固体電解質、無機固体電解質、溶融塩等を用いること
ができ、この中でも有機電解液を好適に用いることがで
きる。有機電解液の溶媒として、プロピレンカーボネー
ト、エチレンカーボネート、ブチレンカーボネート、ジ
エチルカーボネート、ジメチルカーボネート、メチルエ
チルカーボネート、γ−ブチロラクトン等のエステル類
や、テトラヒドロフラン、2ーメチルテトラヒドロフラ
ンなどの置換テトラヒドロフラン、ジオキソラン、ジエ
チルエーテル、ジメトキシエタン、ジエトキシエタン、
メトキシエトキシエタン等のエーテル類、ジメチルスル
ホキシド、スルホラン、メチルスルホラン、アセトニト
リル、ギ酸メチル、酢酸メチル等が挙げられ、これらの
1種あるいは2種以上の混合溶媒として使用される。また
電解質として、過塩素酸リチウム、ホウフッ化リチウ
ム、リンフッ化リチウム、6フッ化砒素リチウム、トリ
フルオロメタンスルホン酸リチウム、ハロゲン化リチウ
ム、塩化アルミン酸リチウム等のリチウム塩が挙げら
れ、これらの1種或いは2種以上を混合して使用され
る。前記で選ばれた溶媒に電解質を溶解することによっ
て電解液を調製する。電解液を調製する際に使用する溶
媒、電解質は、上記に掲げたものに限定されない。
As the ion conductor, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used, and among them, an organic electrolyte can be preferably used. As the solvent for the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, esters such as γ-butyrolactone, tetrahydrofuran, substituted tetrahydrofuran such as 2-methyltetrahydrofuran, dioxolane, diethyl ether , Dimethoxyethane, diethoxyethane,
Ethers such as methoxyethoxyethane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate and the like;
Used as one or more mixed solvents. Examples of the electrolyte include lithium salts such as lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium arsenide hexafluoride, lithium trifluoromethanesulfonate, lithium halide, lithium aluminate, and the like. A mixture of two or more types is used. An electrolyte is prepared by dissolving the electrolyte in the solvent selected above. The solvent and the electrolyte used when preparing the electrolytic solution are not limited to those listed above.

【0026】この発明のリチウム二次電池における正極
としては、LiCoO2、LiNiO2や、この系列のL
xyz2(ここでMはFe、Co、Niのいずれか
であり、Nは遷移金属、4B族、あるいは5B族の金属
を表す)、LiMn24およびLiMn2-xy4(こ
こでNは遷移金属、4B族、あるいは5B族の金属を表
す)等のリチウムを含有した酸化物を正極活物質とし
て、これに導電材、結着材及び場合によっては、固体電
解質等を混合して形成される。この混合比は、活物質1
00重量部に対して、導電材を5〜50重量部、結着材
を1〜30重量部とすることができる。この導電材に
は、カーボンブラック(アセチレンブラック、サーマル
ブラック、チャンネルブラック等)などの炭素類や、グ
ラファイト粉末、金属粉末等を用いることができるがこ
れに限定されるものではない。この結着材には、ポリテ
トラフルオロエチレン、ポリフッ化ビニリデン等のフッ
素系ポリマー、ポリエチレン、ポリプロピレン等のポリ
オレフィン系ポリマー、合成ゴム類などを用いることが
できるがこれに限定されるものではない。導電材が5重
量部より小さい、あるいは結着材が30重量部より大き
いと、電極の抵抗あるいは分極等が大きくなり放電容量
が小さくなるため実用的なリチウム二次電池が作製でき
ない。導電材が50重量部より多い(混合する導電材の
種類により重量部は変わる)と電極内に含まれる活物質
量が減るため正極としての放電容量が小さくなる。結着
材は、1重量部より小さいと結着能力がなくなってしま
い、30重量部より大きいと、導電材の場合と同様に、
電極内に含まれる活物質量が減り、さらに、上記に記載
のごとく、電極の抵抗あるいは分極等が大きくなり放電
容量が小さくなるため実用的ではない。正極作製におい
て、結着性を上げるためにそれぞれの結着剤の融点前後
の温度で熱処理を行うことが好ましい。
As the positive electrode in the lithium secondary battery of the present invention, LiCoO 2 , LiNiO 2 and L
i x M y N z O 2 ( and a where M is Fe, Co, either Ni, N represents a transition metal, 4B group or 5B group metal,), LiMn 2 O 4 and LiMn 2-x An oxide containing lithium such as N y O 4 (where N represents a transition metal, a 4B group, or a 5B group metal) is used as a positive electrode active material, and a conductive material, a binder, and, in some cases, It is formed by mixing a solid electrolyte and the like. This mixing ratio depends on the active material 1
The conductive material can be 5 to 50 parts by weight and the binder can be 1 to 30 parts by weight with respect to 00 parts by weight. As the conductive material, carbons such as carbon black (acetylene black, thermal black, channel black, etc.), graphite powder, metal powder, and the like can be used, but are not limited thereto. As the binder, a fluorine-based polymer such as polytetrafluoroethylene or polyvinylidene fluoride, a polyolefin-based polymer such as polyethylene or polypropylene, or a synthetic rubber can be used, but is not limited thereto. If the conductive material is less than 5 parts by weight or the binder is more than 30 parts by weight, the resistance or polarization of the electrode increases and the discharge capacity decreases, so that a practical lithium secondary battery cannot be manufactured. When the amount of the conductive material is more than 50 parts by weight (parts by weight vary depending on the type of the conductive material to be mixed), the amount of the active material contained in the electrode decreases, and the discharge capacity as the positive electrode decreases. When the binder is smaller than 1 part by weight, the binding ability is lost. When the binder is larger than 30 parts by weight, as in the case of the conductive material,
This is not practical because the amount of active material contained in the electrode decreases, and, as described above, the resistance or polarization of the electrode increases and the discharge capacity decreases. In producing the positive electrode, it is preferable to perform a heat treatment at a temperature around the melting point of each binder in order to improve the binding property.

【0027】[0027]

【作用】本発明による負極、つまりリチウムのインター
カレーション・デインターカレーション可能な黒鉛粒子
全部あるいは一部分の表面上に酸化銅が付着している複
合体と結着材とを混合した電極は、高容量である。これ
は、酸化銅が電気化学的に還元されたものに、可逆的に
進行するリチウムと銅の複合酸化物ができたためであ
る。また、炭素にリチウムあるいはリチウムと合金を作
る金属を被覆させた複合負極に比べ電極製造における工
程を少なくできる。さらには高容量な、かつリチウムイ
オンを挿入・脱離する反応が平均電圧2V(Li/Li+)以下で
あるカルコゲン化合物とリチウムイオンを挿入・脱離す
ることが可能な炭素質物との混合した負極を用いた電池
に比べ、負極のより低い電位を用いることができるた
め、電池電圧の高いリチウム二次電池を提供することが
できる。したがって、本発明による負極を使用したリチ
ウム二次電池は、前記の問題点を解決した優れたリチウ
ム二次電池を提供することができる。
The negative electrode according to the present invention, that is, an electrode obtained by mixing a binder and a composite in which copper oxide is adhered on the surface of all or part of graphite particles capable of intercalating / deintercalating lithium, High capacity. This is because a composite oxide of lithium and copper that progresses reversibly is formed in the electrochemically reduced copper oxide. Also, the number of steps in electrode production can be reduced as compared with a composite negative electrode in which carbon is coated with lithium or a metal forming an alloy with lithium. Furthermore, a mixture of a chalcogen compound having a high capacity and having an average voltage of 2 V (Li / Li + ) or less in the reaction of inserting and removing lithium ions and a carbonaceous material capable of inserting and removing lithium ions was mixed. Since a lower potential of the negative electrode can be used as compared to a battery using the negative electrode, a lithium secondary battery with a high battery voltage can be provided. Therefore, the lithium secondary battery using the negative electrode according to the present invention can provide an excellent lithium secondary battery that solves the above problems.

【0028】[0028]

【実施例】以下、この発明を実施例により、更に詳細に
説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples.

【0029】尚、X線広角回折法による結晶子の大きさ
(Lc、La)を測定する方法は、公知の方法、例え
ば”炭素材料実験技術 1 p55〜63 炭素材料学
会編(科学技術社)”や特開昭61−111907に記
載された方法によって行うことができる。また、結晶子
の大きさを求める形状因子Kは0.9を用いた。また、
粒径はレーザー回折式粒度分布計を用いて測定を行い、
粒度分布においてピークをもつ粒径として求めた。
Incidentally, a method for measuring the crystallite size (Lc, La) by the X-ray wide-angle diffraction method is a known method, for example, "Carbon Materials Experimental Techniques 1 p55-63, edited by The Society of Carbon Materials (Science and Technology Corporation). And the method described in JP-A-61-111907. Further, 0.9 was used as the shape factor K for obtaining the size of the crystallite. Also,
The particle size is measured using a laser diffraction type particle size distribution meter,
It was determined as a particle size having a peak in the particle size distribution.

【0030】実施例1 ・酸化銅付着黒鉛複合体の作製 負極活物質として用いる黒鉛粒子全部あるいは一部分の
表面上に酸化銅が付着している複合体の黒鉛粒子にマダ
ガスカル産の天然黒鉛(鱗片状、粒径11μm、d002
は0.337nm、Lcは27nm、Laは17nm、
R値は0、比表面積8m2/g)を用い、これに無電解
銅メッキを施した。無電解銅メッキは次の方法で行っ
た。まず、黒鉛粉末をエチルアルコールに浸漬し乾燥
後、感応化処理液(30g/lのSnCl2・2H2Oと
20ml/lの濃塩酸の混合液)に浸漬し、さらに活性
化処理液(0.4g/lのPbCl2・2H2Oと3ml
/lの濃塩酸の混合液)に浸漬することにより前処理を
行った。つぎに、前処理を終えた黒鉛粉末を、10g/
lのCuSO4・5H2O、50g/lの酒石酸ナトリウ
ムカリウム、10g/lの水酸化ナトリウム、10ml
/lの37%ホルマリンを溶解させた溶液を水酸化ナト
リウムでpH12.0に調製した無電解銅メッキ浴中に
加え、溶液をスターラーで撹拌しながら室温にて黒鉛粉
末に銅メッキを行った。これを60℃で乾燥した。でき
た銅被覆黒鉛粉末の黒鉛と銅との重量比は83:17で
あった。この銅被覆黒鉛粉末を空気中250℃にて5時
間酸化することによって酸化銅が付着した黒鉛複合体を
得た。この酸化銅付着黒鉛複合体の粉末X線広角回折測
定を行ったところ、黒鉛に由来する回折線と酸化第二銅
に由来する回折線が観察された。
Example 1 Preparation of Graphite Composite Attached to Copper Oxide The graphite particles of the composite having copper oxide adhered on the surface of all or a part of the graphite particles used as the negative electrode active material were added to natural graphite (flake-like) from Madagascar. , Particle size 11 μm, d 002
Is 0.337 nm, Lc is 27 nm, La is 17 nm,
The R value was 0 and the specific surface area was 8 m 2 / g), and this was subjected to electroless copper plating. Electroless copper plating was performed by the following method. First, the graphite powder was immersed in ethyl alcohol and dried, and then immersed in a sensitizing solution (a mixture of 30 g / l of SnCl 2 .2H 2 O and 20 ml / l of concentrated hydrochloric acid). 0.4 g / l PbCl 2 .2H 2 O and 3 ml
/ L of a mixed solution of concentrated hydrochloric acid). Next, 10 g /
1 CuSO 4 .5H 2 O, 50 g / l sodium potassium tartrate, 10 g / l sodium hydroxide, 10 ml
/ L of a solution in which 37% formalin was dissolved was added to an electroless copper plating bath adjusted to pH 12.0 with sodium hydroxide, and the graphite powder was copper-plated at room temperature while stirring the solution with a stirrer. This was dried at 60 ° C. The weight ratio of graphite to copper in the resulting copper-coated graphite powder was 83:17. This copper-coated graphite powder was oxidized in air at 250 ° C. for 5 hours to obtain a graphite composite to which copper oxide had adhered. When the powder X-ray wide-angle diffraction measurement of the graphite composite attached with copper oxide was performed, diffraction lines derived from graphite and diffraction lines derived from cupric oxide were observed.

【0031】・負極の作製 上述した方法で作製した酸化銅付着黒鉛複合体にノニオ
ン系の分散剤を添加し、ポリテトラフルオロエチレン
(乾燥後、酸化銅付着黒鉛複合体とポリテトラフルオロ
エチレンとの重量比は、87:13である。)のディス
パージョン液を加えてペースト状にしたものを、銅箔集
電体上、両面に塗布した。これを60℃で乾燥、240
℃で熱処理後、プレスし、さらに水分除去のために20
0℃で減圧乾燥したものを負極として用いた。この負極
は、表面積8cm2、電極の厚みが75μm(集電体の
厚みが50μm)である。
Preparation of Negative Electrode A nonionic dispersant is added to the copper oxide-deposited graphite composite prepared by the above-described method, and polytetrafluoroethylene (after drying, the copper oxide-deposited graphite composite and polytetrafluoroethylene are mixed together). A dispersion liquid (weight ratio: 87:13) was added to form a paste, which was applied to both surfaces of a copper foil current collector. This is dried at 60 ° C., 240
After heat treatment at ℃, press and further 20 to remove moisture
What was dried under reduced pressure at 0 ° C. was used as a negative electrode. This negative electrode has a surface area of 8 cm 2 and an electrode thickness of 75 μm (a current collector thickness of 50 μm).

【0032】・負極の評価 銅集電体からリード線で集電を取り、評価用の電極とし
た。評価は、3極法を用い、対極および参照極にリチウ
ムを用いた。電解液は、エチレンカーボネートとジエチ
ルカーボネートとの1:1混合溶媒に1mol/lの過
塩素酸リチウムを溶解したものである。充放電試験は、
0.1mA/cm2の電流密度で初めに0Vまで充電を
行い、続いて同じ電流で1.5Vまで放電を行った。2
回目以降も同じ電位の範囲、電流密度で充放電を繰り返
し、放電容量にて負極の評価を行った。
Evaluation of Negative Electrode Current was collected from the copper current collector with a lead wire, and used as an electrode for evaluation. For evaluation, a three-electrode method was used, and lithium was used as a counter electrode and a reference electrode. The electrolytic solution is obtained by dissolving 1 mol / l of lithium perchlorate in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate. The charge / discharge test is
The battery was initially charged to 0 V at a current density of 0.1 mA / cm 2 , and subsequently discharged to 1.5 V at the same current. 2
The charge and discharge were repeated in the same potential range and current density after the first time, and the negative electrode was evaluated by the discharge capacity.

【0033】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり458mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり421mAhであった。
As a result, the discharge capacity in the second cycle was 458 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 421 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0034】実施例2 黒鉛粒子として変性黒鉛(鱗片状、粒径8μm、d002
は0.337nm、Lcは17nm、Laは12nm、
R値は0.1、比表面積9m2/g)とし、0.06m
ol/lのCuSO4・5H2O、0.3mol/lのE
DTA、0.4mol/lのホルムアルデヒド、170
mg/lの7−ヨード−8−ヒドロキシキノリン−5−
スルホン酸とを溶解させた溶液を水酸化ナトリウムでp
H12.8に調製した無電解銅メッキ浴で75℃でメッ
キを行い、空気中400℃にて30分間酸化処理した以
外は実施例1に記載された方法で酸化銅付着黒鉛複合体
を作製した。このときできた銅被覆黒鉛粉末の黒鉛と銅
との重量比は85:15であった。また、作製した酸化
銅付着黒鉛複合体の粉末X線広角回折測定を行ったとこ
ろ、黒鉛および酸化第二銅であることがわかった。
Example 2 Modified graphite (flaky, particle size 8 μm, d 002) was used as graphite particles.
Is 0.337 nm, Lc is 17 nm, La is 12 nm,
R value is 0.1, specific surface area is 9 m 2 / g) and 0.06 m
ol / l CuSO 4 · 5H 2 O of, 0.3mol / l of E
DTA, 0.4 mol / l formaldehyde, 170
mg / l of 7-iodo-8-hydroxyquinoline-5
The solution in which sulfonic acid was dissolved was p-p with sodium hydroxide.
A copper oxide-adhered graphite composite was produced by the method described in Example 1 except that plating was performed at 75 ° C. in an electroless copper plating bath adjusted to H12.8 and oxidation treatment was performed at 400 ° C. in air for 30 minutes. . The weight ratio of graphite to copper in the copper-coated graphite powder obtained at this time was 85:15. Further, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite attached with copper oxide was performed, it was found to be graphite and cupric oxide.

【0035】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは71μm(集電体の厚みが5
0μm)である。
A negative electrode was prepared by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 71 μm (the current collector had a thickness of 5 μm).
0 μm).

【0036】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0037】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり462mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり435mAhであった。
As a result, the discharge capacity in the second cycle was 462 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 435 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0038】実施例3 黒鉛粒子として変性黒鉛(鱗片状、粒径17μm、d
002は0.337nm、Lcは22nm、Laは15n
m、R値は0.1、比表面積9m2/g)とし、15g
/lのCu(NO32・3H2O、10g/lの炭酸水
素ナトリウム、30g/lの酒石酸ナトリウムカリウ
ム、20g/lの水酸化ナトリウム、100ml/lの
37%ホルマリンとを溶解させた溶液を水酸化ナトリウ
ムでpH11.5に調製した無電解銅メッキ浴を用い、
酸素中200℃にて24時間酸化処理した以外は実施例
1に記載された方法で酸化銅付着黒鉛複合体を作製し
た。このときできた銅被覆黒鉛粉末の黒鉛と銅との重量
比は91:9であった。また、作製した酸化銅付着黒鉛
複合体の粉末X線広角回折測定を行ったところ、黒鉛お
よび酸化第二銅であることがわかった。
Example 3 Modified graphite (flaky, particle size 17 μm, d
002 is 0.337 nm, Lc is 22 nm, La is 15 n
m, R value: 0.1, specific surface area: 9 m 2 / g), 15 g
/ L Cu (NO 3 ) 2 .3H 2 O, 10 g / l sodium bicarbonate, 30 g / l sodium potassium tartrate, 20 g / l sodium hydroxide, 100 ml / l 37% formalin Using an electroless copper plating bath whose solution was adjusted to pH 11.5 with sodium hydroxide,
A graphite composite attached with copper oxide was produced by the method described in Example 1 except that oxidation treatment was performed at 200 ° C. for 24 hours in oxygen. The weight ratio of graphite to copper in the copper-coated graphite powder obtained at this time was 91: 9. Further, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite attached with copper oxide was performed, it was found to be graphite and cupric oxide.

【0039】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは88μm(集電体の厚みが5
0μm)である。
A negative electrode was prepared by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 88 μm (the thickness of the current collector was 5 μm).
0 μm).

【0040】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0041】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり439mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり415mAhであった。
As a result, the discharge capacity in the second cycle was 439 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 415 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0042】実施例4 黒鉛粒子として人造黒鉛(鱗片状、粒径35μm、d
002は0.336nm、Lcは22nm、Laは13n
m、R値は0、比表面積4m2/g)とし、60g/l
のCuSO4・5H2O、15g/lのNiSO4・7H2
O、45g/lの硫酸ヒドラジンとを溶解させた溶液
と、180g/lの酒石酸ナトリウムカリウム、45g
/lの水酸化ナトリウム、15g/lの炭酸ナトリウム
とを溶解させた溶液を使用直前に混合した無電解銅メッ
キ浴を用い、空気中350℃にて1時間酸化処理した以
外は実施例1に記載された方法で酸化銅付着黒鉛複合体
を作製した。このときできた銅被覆黒鉛粉末の黒鉛と銅
との重量比は89:11であった。また、作製した酸化
銅付着黒鉛複合体の粉末X線広角回折測定を行ったとこ
ろ、黒鉛および酸化第二銅であることがわかった。
Example 4 As graphite particles, artificial graphite (flaky, particle size 35 μm, d
002 is 0.336 nm, Lc is 22 nm, La is 13 n
m, R value is 0, specific surface area is 4 m 2 / g), and 60 g / l
Of CuSO 4 · 5H 2 O, NiSO of 15g / l 4 · 7H 2
O, a solution in which 45 g / l hydrazine sulfate was dissolved, and 180 g / l sodium potassium tartrate, 45 g
/ L sodium hydroxide and 15 g / l sodium carbonate were dissolved in Example 1 except that they were oxidized at 350 ° C for 1 hour in air using an electroless copper plating bath mixed immediately before use. A graphite composite attached with copper oxide was prepared by the method described. The weight ratio of graphite to copper in the resulting copper-coated graphite powder was 89:11. Further, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite attached with copper oxide was performed, it was found to be graphite and cupric oxide.

【0043】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは132μm(集電体の厚みが
50μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 132 μm (the thickness of the current collector was 50 μm).

【0044】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0045】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり402mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり388mAhであった。
As a result, the discharge capacity in the second cycle was 402 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 388 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0046】実施例5 黒鉛粒子として人造黒鉛(球状、粒径6μm、d002
0.339nm、Lcは25nm、Laは13nm、R
値は0.4、比表面積8m2/g)とし、前処理液とし
てMAC−100(奥野製薬工業株式会社製)およびM
AC−200(奥野製薬工業株式会社製)を用い、MA
C−500AとMAC−500Bの2液タイプの無電解
銅メッキ浴(奥野製薬工業株式会社製)を用い、溶存酸
素を含んだ水中70℃にて15時間酸化処理した以外は
実施例1に記載された方法で酸化銅付着黒鉛複合体を作
製した。このときできた銅被覆黒鉛粉末の黒鉛と銅との
重量比は96:4であった。また、作製した酸化銅付着
黒鉛複合体の粉末X線広角回折測定を行ったところ、黒
鉛および酸化第一銅、酸化第二銅であることがわかっ
た。
Example 5 Artificial graphite (spherical, particle diameter 6 μm, d 002 0.339 nm, Lc 25 nm, La 13 nm, R
The value was 0.4, the specific surface area was 8 m 2 / g), and MAC-100 (manufactured by Okuno Pharmaceutical Co., Ltd.) and M
Using AC-200 (manufactured by Okuno Pharmaceutical Co., Ltd.), MA
Described in Example 1 except that a 2-liquid type electroless copper plating bath (manufactured by Okuno Pharmaceutical Co., Ltd.) of C-500A and MAC-500B was used and oxidized at 70 ° C. for 15 hours in water containing dissolved oxygen. A graphite composite with a copper oxide was prepared by the method described above. The weight ratio of graphite to copper in the copper-coated graphite powder obtained at this time was 96: 4. In addition, when a powder X-ray wide-angle diffraction measurement of the produced graphite composite with copper oxide was performed, it was found to be graphite, cuprous oxide, and cupric oxide.

【0047】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは71μm(集電体の厚みが5
0μm)である。
A negative electrode was prepared by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 71 μm (the current collector had a thickness of 5 μm).
0 μm).

【0048】この負極を、電解液にエチレンカーボネー
トとプロピレンカーボネート、ジエチルカーボネートと
の2:1:2混合溶媒に1mol/lの過塩素酸リチウ
ムを溶解したものを用いた以外、実施例1に記載された
方法で評価した。
This negative electrode was described in Example 1 except that the electrolyte was prepared by dissolving 1 mol / l lithium perchlorate in a 2: 1: 2 mixed solvent of ethylene carbonate, propylene carbonate, and diethyl carbonate. Was evaluated in the manner described.

【0049】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり425mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり398mAhであった。
As a result, the discharge capacity in the second cycle was 425 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 398 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0050】比較例1 マダガスカル産の天然黒鉛のみを用いて実施例1に記載
された方法で負極を作製した。作製した負極の表面積が
8cm2、厚みは85μm(集電体の厚みが50μm)
である。
Comparative Example 1 A negative electrode was produced in the same manner as in Example 1 except that only natural graphite produced in Madagascar was used. The surface area of the produced negative electrode was 8 cm 2 and the thickness was 85 μm (the thickness of the current collector was 50 μm)
It is.

【0051】この負極を30mA/gの電流密度にした
以外は実施例1に記載された方法で評価した。
The negative electrode was evaluated by the method described in Example 1 except that the current density was 30 mA / g.

【0052】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり358mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり344mAhであった。
As a result, the discharge capacity in the second cycle was 358 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 344 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0053】比較例2 主要負極活物質としてマダガスカル産の天然黒鉛を用
い、これと市販の酸化第二銅(粒径27μm)とを重量
比80:20で乳鉢にて混合し、ノニオン系の分散剤を
添加し、ポリテトラフルオロエチレン(乾燥後、黒鉛と
酸化第二銅と合せたものと、ポリテトラフルオロエチレ
ンとの重量比は、87:13である。)のディスパージ
ョン液を加えてペースト状にしたものを、銅箔集電体
上、両面に塗布した。これを60℃で乾燥、240℃で
熱処理後、プレスし、さらに水分除去のために200℃
で減圧乾燥したものを負極として用いた。この負極は、
表面積8cm2、電極の厚みが138μm(集電体の厚
みが50μm)である。
Comparative Example 2 Natural graphite produced from Madagascar was used as a main negative electrode active material, and this was mixed with a commercially available cupric oxide (particle size: 27 μm) in a mortar at a weight ratio of 80:20 to disperse a nonionic dispersion. And a dispersion liquid of polytetrafluoroethylene (the weight ratio of the combination of graphite and cupric oxide to polytetrafluoroethylene after drying is 87:13) is added, and the paste is added. It was applied on both sides on a copper foil current collector. This is dried at 60 ° C., heat-treated at 240 ° C., and then pressed.
The dried under reduced pressure was used as a negative electrode. This negative electrode
The surface area is 8 cm 2 , and the thickness of the electrode is 138 μm (the thickness of the current collector is 50 μm).

【0054】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0055】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり371mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり335mAhであった。
As a result, the discharge capacity in the second cycle was 371 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 335 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0056】比較例3 炭素粒子として1000℃で炭化したメソカーボンマイ
クロビーズ(球状、粒径6μm、d002は0.349n
m、Lcは1.3nm、Laは計算不可能、R値は1.
3、比表面積1m2/g)とし、前処理液としてMAC
−100(奥野製薬工業株式会社製)およびMAC−2
00(奥野製薬工業株式会社製)を用い、MAC−50
0AとMAC−500Bの2液タイプの無電解銅メッキ
浴(奥野製薬工業株式会社製)を用いた以外は実施例1
に記載された方法で酸化銅付着炭素複合体を作製した。
このときできた銅被覆炭素粉末の炭素と銅との重量比は
81:19であった。また、作製した酸化銅付着炭素複
合体の粉末X線広角回折測定を行ったところ、炭素およ
び酸化第二銅であることがわかった。
Comparative Example 3 Mesocarbon microbeads carbonized at 1000 ° C. as carbon particles (spherical, particle diameter 6 μm, d 002 0.349 n)
m and Lc are 1.3 nm, La cannot be calculated, and R value is 1.
3, specific surface area 1 m 2 / g) and MAC as pretreatment liquid
-100 (manufactured by Okuno Pharmaceutical Co., Ltd.) and MAC-2
00 (manufactured by Okuno Pharmaceutical Co., Ltd.) and MAC-50
Example 1 except that a two-component type electroless copper plating bath of 0A and MAC-500B (manufactured by Okuno Pharmaceutical Co., Ltd.) was used.
, A copper oxide-adhered carbon composite was prepared.
The weight ratio of carbon to copper of the copper-coated carbon powder thus obtained was 81:19. Further, when the powdered X-ray wide-angle diffraction measurement of the produced copper oxide-adhered carbon composite was performed, it was found to be carbon and cupric oxide.

【0057】この酸化銅付着炭素複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは68μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using this copper oxide-adhered carbon composite. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 68 μm (the thickness of the current collector was 5
0 μm).

【0058】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0059】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり176mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり159mAhであった。
As a result, the discharge capacity in the second cycle was 176 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 159 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0060】実施例1〜5と比較例1〜3の結果を表1
に示す。これらから酸化銅付着黒鉛複合体を含む負極を
用いた場合、高容量の放電容量が得られることが判明し
た。
Table 1 shows the results of Examples 1 to 5 and Comparative Examples 1 to 3.
Shown in From these results, it was found that when a negative electrode containing a graphite composite with copper oxide was used, a high capacity discharge capacity was obtained.

【0061】[0061]

【表1】 [Table 1]

【0062】実施例6 黒鉛粒子として人造黒鉛(鱗片状、粒径77μm、d
002は0.337nm、Lcは26nm、Laは14n
m、R値は0.1、比表面積2m2/g)とし、前処理
液としてMAC−100(奥野製薬工業株式会社製)お
よびMAC−200(奥野製薬工業株式会社製)を用
い、MAC−500AとMAC−500Bの2液タイプ
の無電解銅メッキ浴(奥野製薬工業株式会社製)を用い
た以外は実施例1に記載された方法で酸化銅付着黒鉛複
合体を作製した。このときできた銅被覆黒鉛粉末の黒鉛
と銅との重量比は87:13であった。また、作製した
酸化銅付着黒鉛複合体の粉末X線広角回折測定を行った
ところ、黒鉛および酸化第二銅であることがわかった。
Example 6 As graphite particles, artificial graphite (flaky, particle size 77 μm, d
002 is 0.337 nm, Lc is 26 nm, La is 14 n
m, R values are 0.1, specific surface area is 2 m 2 / g), and MAC-100 (manufactured by Okuno Pharmaceutical Co., Ltd.) and MAC-200 (manufactured by Okuno Pharmaceutical Co., Ltd.) are used as pretreatment liquids. A copper oxide-adhered graphite composite was prepared by the method described in Example 1 except that a two-component electroless copper plating bath (manufactured by Okuno Pharmaceutical Co., Ltd.) of 500A and MAC-500B was used. The weight ratio of graphite to copper in the resulting copper-coated graphite powder was 87:13. Further, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite attached with copper oxide was performed, it was found to be graphite and cupric oxide.

【0063】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは227μm(集電体の厚みが
50μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 227 μm (the thickness of the current collector was 50 μm).

【0064】この負極を0.05mA/cm2の電流密
度にした以外は実施例1に記載された方法で評価した。
The negative electrode was evaluated by the method described in Example 1 except that the current density was 0.05 mA / cm 2 .

【0065】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり374mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり351mAhであった。
As a result, the discharge capacity in the second cycle was 374 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 351 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0066】比較例4 黒鉛粒子として人造黒鉛(鱗片状、粒径117μm、d
002は0.337nm、Lcは25nm、Laは17n
m、R値は0.1、比表面積1m2/g)を用いた以外
は実施例6に記載された方法で酸化銅付着黒鉛複合体を
作製した。このときできた銅被覆黒鉛粉末の黒鉛と銅と
の重量比は88:12であった。また、作製した酸化銅
付着黒鉛複合体の粉末X線広角回折測定を行ったとこ
ろ、黒鉛および酸化第二銅であることがわかった。
Comparative Example 4 As graphite particles, artificial graphite (flaky, particle size 117 μm, d
002 is 0.337 nm, Lc is 25 nm, La is 17 n
Except for using m and R values of 0.1 and a specific surface area of 1 m 2 / g), a graphite composite adhering to copper oxide was prepared by the method described in Example 6. The weight ratio of graphite to copper in the resulting copper-coated graphite powder was 88:12. Further, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite attached with copper oxide was performed, it was found to be graphite and cupric oxide.

【0067】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは305μm(集電体の厚みが
50μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the produced negative electrode was 8 cm 2 , and the thickness was 305 μm (the thickness of the current collector was 50 μm).

【0068】この負極を0.05mA/cm2の電流密
度にした以外は実施例1に記載された方法で評価した。
The negative electrode was evaluated by the method described in Example 1 except that the current density was 0.05 mA / cm 2 .

【0069】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり361mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり337mAhであった。
As a result, the discharge capacity in the second cycle was 361 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 337 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0070】実施例1〜6と比較例4の結果を表1に示
す。これから黒鉛の粒径は80μm以下のものがよいと
判明した。
Table 1 shows the results of Examples 1 to 6 and Comparative Example 4. This proved that graphite having a particle size of 80 μm or less was good.

【0071】実施例7 黒鉛粒子としてマダガスカル産の天然黒鉛を用いた以外
は実施例6に記載された方法で酸化銅付着黒鉛複合体を
作製した。このときできた銅被覆黒鉛粉末の黒鉛と銅と
の重量比は89:11であった。また、作製した酸化銅
付着黒鉛複合体の粉末X線広角回折測定を行ったとこ
ろ、黒鉛および酸化第二銅であることがわかった。
Example 7 A graphite composite adhering to copper oxide was prepared by the method described in Example 6, except that natural graphite produced in Madagascar was used as graphite particles. The weight ratio of graphite to copper in the resulting copper-coated graphite powder was 89:11. Further, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite attached with copper oxide was performed, it was found to be graphite and cupric oxide.

【0072】上述した方法で作製した酸化銅付着黒鉛複
合体にノニオン系の分散剤を添加し、ポリテトラフルオ
ロエチレン(乾燥後、酸化銅付着黒鉛複合体とポリテト
ラフルオロエチレンとの重量比は、77:23であ
る。)のディスパージョン液を加えてペースト状にした
ものを、銅箔集電体上、両面に塗布した。これを60℃
で乾燥、240℃で熱処理後、プレスし、さらに水分除
去のために200℃で減圧乾燥したものを負極として用
いた。この負極は、表面積8cm2、電極の厚みが83
μm(集電体の厚みが50μm)である。
A nonionic dispersant was added to the copper oxide-deposited graphite composite produced by the above-mentioned method, and the mixture was dried with polytetrafluoroethylene (after drying, the weight ratio of the copper oxide-deposited graphite composite to polytetrafluoroethylene was: (77:23) was applied to both sides of the copper foil current collector in the form of a paste by adding the dispersion liquid. 60 ℃
, Heat-treated at 240 ° C, pressed, and dried at 200 ° C under reduced pressure to remove moisture, and used as the negative electrode. This negative electrode has a surface area of 8 cm 2 and an electrode thickness of 83
μm (the thickness of the current collector is 50 μm).

【0073】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0074】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり387mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり359mAhであった。
As a result, the discharge capacity in the second cycle was 387 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 359 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0075】比較例5 酸化銅付着黒鉛複合体は実施例7に記載された材料を用
いた。
Comparative Example 5 The material described in Example 7 was used for the graphite composite with copper oxide.

【0076】乾燥後、酸化銅付着黒鉛複合体とポリテト
ラフルオロエチレンとの重量比を63:37にした以外
は実施例7に記載された方法で負極を作製した。作製し
た負極の表面積が8cm2、厚みは88μmである。
After drying, a negative electrode was prepared in the same manner as in Example 7, except that the weight ratio of the graphite composite with copper oxide and polytetrafluoroethylene was changed to 63:37. The surface area of the produced negative electrode was 8 cm 2 , and the thickness was 88 μm.

【0077】この負極を実施例7に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 7.

【0078】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり362mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり344mAhであった。
As a result, the discharge capacity in the second cycle was 362 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 344 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0079】実施例8 酸化銅付着黒鉛複合体は実施例7に記載された材料を用
いた。
Example 8 The material described in Example 7 was used for the graphite composite attached with copper oxide.

【0080】乾燥後、酸化銅付着黒鉛複合体とポリテト
ラフルオロエチレンとの重量比を97:3にした以外は
実施例1に記載された方法で負極を作製した。作製した
負極の表面積が8cm2、厚みは76μm(集電体の厚
みが50μm)である。
After drying, a negative electrode was prepared in the same manner as in Example 1 except that the weight ratio of the graphite composite with copper oxide and polytetrafluoroethylene was changed to 97: 3. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 76 μm (the thickness of the current collector was 50 μm).

【0081】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0082】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり415mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり351mAhであった。
As a result, the discharge capacity in the second cycle was 415 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 351 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0083】比較例6 酸化銅付着黒鉛複合体は実施例7に記載された材料を用
いた。
Comparative Example 6 The material described in Example 7 was used as the graphite composite attached with copper oxide.

【0084】乾燥後、酸化銅付着黒鉛複合体とポリテト
ラフルオロエチレンとの重量比を99.5:0.5にし
た以外は、実施例1に記載された方法で負極を作製した
ところ、集電体から剥離した。
After drying, a negative electrode was prepared by the method described in Example 1 except that the weight ratio of the graphite composite with copper oxide and polytetrafluoroethylene was 99.5: 0.5. It was peeled off from the conductor.

【0085】実施例7、8と比較例5、6の結果を表2
に示す。これと実施例1〜6から、酸化銅付着黒鉛複合
体と結着材との重量比は99:1〜70:30が最適で
あることが判明した。
Table 2 shows the results of Examples 7 and 8 and Comparative Examples 5 and 6.
Shown in From this and Examples 1 to 6, it was found that the optimal weight ratio of the graphite composite adhering to copper oxide and the binder was 99: 1 to 70:30.

【0086】[0086]

【表2】 [Table 2]

【0087】実施例9 黒鉛粒子として人造黒鉛(鱗片状、粒径7μm、d002
は0.336nm、Lcは22nm、Laは13nm、
R値は0.1、比表面積10m2/g)を用いた以外は
実施例6に記載された方法で酸化銅付着黒鉛複合体を作
製した。このときできた銅被覆黒鉛粉末の黒鉛と銅との
重量比は89:11であった。また、作製した酸化銅付
着黒鉛複合体の粉末X線広角回折測定を行ったところ、
黒鉛および酸化第二銅であることがわかった。
Example 9 As graphite particles, artificial graphite (flaky, particle size 7 μm, d 002)
Is 0.336 nm, Lc is 22 nm, La is 13 nm,
An R-value of 0.1 and a specific surface area of 10 m 2 / g) were used to prepare a copper oxide-adhered graphite composite by the method described in Example 6. The weight ratio of graphite to copper in the resulting copper-coated graphite powder was 89:11. Further, when the powder X-ray wide-angle diffraction measurement of the produced copper oxide-adhered graphite composite was performed,
It was found to be graphite and cupric oxide.

【0088】上述した方法で作製した酸化銅付着黒鉛複
合体に、あらかじめ、N,N−ジメチルホルムアミドに
ポリフッ化ビニリデンを溶解させたもの(N,N−ジメ
チルホルムアミドとポリフッ化ビニリデンの重量比は、
1.5:0.05である。)に加え、ペースト状にし
た。この時、酸化銅付着黒鉛複合体とポリフッ化ビニリ
デンとの乾燥後の重量比は、91:9であるように混合
した。このペーストを、ステンレス箔集電体上、両面に
塗布した。これを65℃で乾燥、155℃で熱処理後、
プレスし、さらに水分除去のために160℃で減圧乾燥
したものを負極として用いた。この負極は、表面積8c
2、電極の厚みが72μm(集電体の厚みが50μ
m)である。
The copper oxide-adhered graphite composite prepared by the above-described method is prepared by dissolving polyvinylidene fluoride in N, N-dimethylformamide in advance (the weight ratio of N, N-dimethylformamide to polyvinylidene fluoride is:
1.5: 0.05. ) And in the form of a paste. At this time, the weight ratio after drying of the graphite composite with copper oxide and polyvinylidene fluoride was mixed so as to be 91: 9. This paste was applied on both surfaces of a stainless steel foil current collector. After drying at 65 ° C and heat-treating at 155 ° C,
What was pressed and further dried under reduced pressure at 160 ° C. for removing water was used as a negative electrode. This negative electrode has a surface area of 8c.
m 2 , the electrode thickness is 72 μm (the current collector thickness is 50 μm)
m).

【0089】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0090】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり441mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり416mAhであった。
As a result, the discharge capacity in the second cycle was 441 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 416 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0091】実施例10 黒鉛粒子として変性黒鉛(鱗片状、粒径7μm、d002
は0.336nm、Lcは22nm、Laは13nm、
R値は0.1、比表面積10m2/g)を用いた以外は
実施例6に記載された方法で酸化銅付着黒鉛複合体を作
製した。このときできた銅被覆黒鉛粉末の黒鉛と銅との
重量比は98.1:1.9(黒鉛/(黒鉛+銅)=0.
981)であった。また、作製した酸化銅付着黒鉛複合
体の粉末X線広角回折測定を行ったところ、黒鉛および
酸化第二銅であることがわかった。
Example 10 Modified graphite (flaky, particle size 7 μm, d 002) was used as graphite particles.
Is 0.336 nm, Lc is 22 nm, La is 13 nm,
An R-value of 0.1 and a specific surface area of 10 m 2 / g) were used to prepare a copper oxide-adhered graphite composite by the method described in Example 6. The weight ratio of graphite to copper in the copper-coated graphite powder obtained at this time was 98.1: 1.9 (graphite / (graphite + copper) = 0.10).
981). Further, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite attached with copper oxide was performed, it was found to be graphite and cupric oxide.

【0092】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは70μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 70 μm (the current collector had a thickness of 5 μm).
0 μm).

【0093】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0094】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり397mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり374mAhであった。
As a result, the discharge capacity in the second cycle was 397 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 374 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0095】実施例11 銅被覆黒鉛粉末の黒鉛と銅との重量比は95:5(黒鉛
/(黒鉛+銅)=0.95)であった以外実施例10に
記載された方法で酸化銅付着黒鉛複合体を作製した。
Example 11 Copper oxide was prepared by the method described in Example 10 except that the weight ratio of graphite to copper in the copper-coated graphite powder was 95: 5 (graphite / (graphite + copper) = 0.95). An attached graphite composite was prepared.

【0096】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは78μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the prepared negative electrode was 8 cm 2 , and the thickness was 78 μm (the thickness of the current collector was 5 μm).
0 μm).

【0097】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0098】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり536mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり501mAhであった。
As a result, the discharge capacity in the second cycle was 536 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 501 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0099】実施例12 銅被覆黒鉛粉末の黒鉛と銅との重量比は91:9(黒鉛
/(黒鉛+銅)=0.91)であった以外実施例10に
記載された方法で酸化銅付着黒鉛複合体を作製した。
Example 12 Copper oxide was prepared by the method described in Example 10 except that the weight ratio of graphite to copper in the copper-coated graphite powder was 91: 9 (graphite / (graphite + copper) = 0.91). An attached graphite composite was prepared.

【0100】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは76μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the prepared negative electrode was 8 cm 2 , and the thickness was 76 μm (the thickness of the current collector was 5 μm).
0 μm).

【0101】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0102】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり425mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり412mAhであった。
As a result, the discharge capacity in the second cycle was 425 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 412 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0103】実施例13 銅被覆黒鉛粉末の黒鉛と銅との重量比は83:17(黒
鉛/(黒鉛+銅)=0.83)であった以外実施例10
に記載された方法で酸化銅付着黒鉛複合体を作製した。
Example 13 Example 10 was repeated except that the weight ratio of graphite to copper in the copper-coated graphite powder was 83:17 (graphite / (graphite + copper) = 0.83).
A copper oxide-adhered graphite composite was prepared by the method described in (1).

【0104】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは80μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 80 μm (the thickness of the current collector was 5 μm).
0 μm).

【0105】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0106】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり420mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり405mAhであった。
As a result, the discharge capacity in the second cycle was 420 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 405 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0107】実施例14 銅被覆黒鉛粉末の黒鉛と銅との重量比は77:23(黒
鉛/(黒鉛+銅)=0.77)であった以外実施例10
に記載された方法で酸化銅付着黒鉛複合体を作製した。
Example 14 Example 10 was repeated except that the weight ratio of graphite to copper in the copper-coated graphite powder was 77:23 (graphite / (graphite + copper) = 0.77).
A copper oxide-adhered graphite composite was prepared by the method described in (1).

【0108】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは79μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the produced negative electrode was 8 cm 2 , and the thickness was 79 μm (the thickness of the current collector was 5 μm).
0 μm).

【0109】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0110】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり381mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり368mAhであった。
As a result, the discharge capacity in the second cycle was 381 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 368 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0111】実施例15 銅被覆黒鉛粉末の黒鉛と銅との重量比は71:39(黒
鉛/(黒鉛+銅)=0.71)であった以外実施例10
に記載された方法で酸化銅付着黒鉛複合体を作製した。
Example 15 Example 10 was repeated except that the weight ratio of graphite to copper in the copper-coated graphite powder was 71:39 (graphite / (graphite + copper) = 0.71).
A copper oxide-adhered graphite composite was prepared by the method described in (1).

【0112】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは83μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 83 μm (the current collector had a thickness of 5 μm).
0 μm).

【0113】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0114】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり373mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり358mAhであった。
As a result, the discharge capacity in the second cycle was 373 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 358 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0115】実施例16 銅被覆黒鉛粉末の黒鉛と銅との重量比は67:33(黒
鉛/(黒鉛+銅)=0.67)であった以外実施例10
に記載された方法で酸化銅付着黒鉛複合体を作製した。
Example 16 Example 10 was repeated except that the weight ratio of graphite to copper in the copper-coated graphite powder was 67:33 (graphite / (graphite + copper) = 0.67).
A copper oxide-adhered graphite composite was prepared by the method described in (1).

【0116】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは81μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 81 μm (the thickness of the current collector was 5 μm).
0 μm).

【0117】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0118】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり375mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり349mAhであった。
As a result, the discharge capacity in the second cycle was 375 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 349 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0119】実施例17 銅被覆黒鉛粉末の黒鉛と銅との重量比は62.5:3
7.5(黒鉛/(黒鉛+銅)=0.625)であった以
外実施例10に記載された方法で酸化銅付着黒鉛複合体
を作製した。
Example 17 The weight ratio of graphite to copper in the copper-coated graphite powder was 62.5: 3.
A copper oxide-adhered graphite composite was prepared by the method described in Example 10 except that the ratio was 7.5 (graphite / (graphite + copper) = 0.625).

【0120】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは85μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 85 μm (the thickness of the current collector was 5 cm 2) .
0 μm).

【0121】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0122】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり371mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり346mAhであった。
As a result, the discharge capacity in the second cycle was 371 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 346 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0123】比較例7 変性黒鉛(鱗片状、粒径7μm、d002は0.336n
m、Lcは22nm、Laは13nm、R値は0.1、
比表面積10m2/g)のみ(重量比 黒鉛/(黒鉛+
銅)=1)を用いて実施例10に記載された方法で負極
を作製した。作製した負極の表面積が8cm2、厚みは
77μm(集電体の厚みが50μm)である。
Comparative Example 7 Modified graphite (flaky, particle size 7 μm, d 002 0.336 n
m, Lc is 22 nm, La is 13 nm, R value is 0.1,
Specific surface area 10m 2 / g only (weight ratio graphite / (graphite +
A negative electrode was produced by the method described in Example 10 using (copper) = 1). The surface area of the produced negative electrode was 8 cm 2 , and the thickness was 77 μm (the thickness of the current collector was 50 μm).

【0124】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0125】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり361mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり340mAhであった。
As a result, the discharge capacity in the second cycle was 361 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 340 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0126】比較例8 銅被覆黒鉛粉末の黒鉛と銅との重量比は99:1(黒鉛
/(黒鉛+銅)=0.99)であった以外実施例10に
記載された方法で酸化銅付着黒鉛複合体を作製した。
Comparative Example 8 Copper oxide was obtained by the method described in Example 10 except that the weight ratio of graphite to copper in the copper-coated graphite powder was 99: 1 (graphite / (graphite + copper) = 0.99). An attached graphite composite was prepared.

【0127】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは72μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 72 μm (the current collector had a thickness of 5 μm).
0 μm).

【0128】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0129】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり364mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり332mAhであった。
As a result, the discharge capacity in the second cycle was 364 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 332 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0130】比較例9 銅被覆黒鉛粉末の黒鉛と銅との重量比は59:41(黒
鉛/(黒鉛+銅)=0.59)であった以外実施例10
に記載された方法で酸化銅付着黒鉛複合体を作製した。
Comparative Example 9 Example 10 was repeated except that the weight ratio of graphite to copper in the copper-coated graphite powder was 59:41 (graphite / (graphite + copper) = 0.59).
A copper oxide-adhered graphite composite was prepared by the method described in (1).

【0131】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは87μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 87 μm (the current collector had a thickness of 5 μm).
0 μm).

【0132】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0133】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり352mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり316mAhであった。
As a result, the discharge capacity in the second cycle was 352 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 316 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0134】比較例10 銅被覆黒鉛粉末の黒鉛と銅との重量比は53:47(黒
鉛/(黒鉛+銅)=0.53)であった以外実施例10
に記載された方法で酸化銅付着黒鉛複合体を作製した。
Comparative Example 10 The copper-coated graphite powder had a weight ratio of graphite to copper of 53:47 (graphite / (graphite + copper) = 0.53).
A copper oxide-adhered graphite composite was prepared by the method described in (1).

【0135】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは86μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 86 μm (the current collector had a thickness of 5 μm).
0 μm).

【0136】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0137】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり320mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり304mAhであった。
As a result, the discharge capacity in the second cycle was 320 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 304 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0138】実施例10〜17と比較例2、7〜10の
結果を表3に示す。これらについて、黒鉛の黒鉛とメッ
キされた銅との混合物に対する重量比と2サイクル目の
電極の単位体積(集電体の体積は除く)あたりの放電容
量の関係を図1に示す。これより、黒鉛とメッキされた
銅との重量比が98.5:1.5〜62:38の範囲に
あることが好ましく、98.5:1.5〜75:25の
範囲にあることが特に好ましいと判明した。
Table 3 shows the results of Examples 10 to 17 and Comparative Examples 2 and 7 to 10. FIG. 1 shows the relationship between the weight ratio of graphite to the mixture of graphite and plated copper and the discharge capacity per unit volume (excluding the volume of the current collector) of the electrode in the second cycle. Thus, the weight ratio of graphite to plated copper is preferably in the range of 98.5: 1.5 to 62:38, and more preferably in the range of 98.5: 1.5 to 75:25. It turned out to be particularly preferred.

【0139】[0139]

【表3】 [Table 3]

【0140】実施例18 ・負極の作製 酸化銅付着黒鉛複合体は実施例7に記載された材料を用
いた。
Example 18 Production of Negative Electrode The material described in Example 7 was used for the graphite composite with copper oxide.

【0141】上述した方法で作製した酸化銅付着黒鉛複
合体に、ノニオン系の分散剤を添加し、ポリテトラフル
オロエチレン(乾燥後、酸化銅付着黒鉛複合体とポリテ
トラフルオロエチレンとの重量比は、91:9であ
る。)のディスパージョン液を加えてペースト状にした
ものを、ニッケル3次元多孔質集電体に塗布し、孔中に
ペーストを塗り込んだ。これを60℃で乾燥、240℃
で熱処理後、プレスし、さらに水分除去のために200
℃で減圧乾燥したものを負極として用いた。この負極
は、直径14.5mm、電極の厚みが0.41mmのペ
レットである。
A nonionic dispersant was added to the copper oxide-deposited graphite composite produced by the above-mentioned method, and the mixture was mixed with polytetrafluoroethylene (after drying, the weight ratio of the copper oxide-deposited graphite composite to polytetrafluoroethylene was changed to , 91: 9) was applied to a nickel three-dimensional porous current collector, and the paste was applied to the holes. This is dried at 60 ° C, 240 ° C
After heat treatment with, press and further 200 to remove moisture
What was dried under reduced pressure at ℃ was used as a negative electrode. This negative electrode is a pellet having a diameter of 14.5 mm and an electrode thickness of 0.41 mm.

【0142】・正極の作製 炭酸リチウムと炭酸コバルト、三酸化アンチモンをリチ
ウム原子とコバルト原子、アンチモン原子の比で1:
0.95:0.05になるようにそれぞれ秤量し、これ
を乳鉢で混合した後、空気中900℃で20時間焼成
し、その後乳鉢で粉砕することにより活物質の粉末を得
た。この活物質は、Li0.98Co0.95Sb0.052の組
成を有していた。このようにして得られた正極活物質を
アセチレンブラックと混合し、ノニオン系の分散剤を添
加し、ポリテトラフルオロエチレン(乾燥後、正極活物
質とアセチレンブラック、ポリテトラフルオロエチレン
との重量比は、100:10:5である。)のディスパ
ージョン液を加えてペースト状にしたものを、チタンメ
ッシュ集電体上に塗布した。これを60℃で乾燥、24
0℃で熱処理後、プレスし、さらに水分除去のために2
00℃で減圧乾燥したものを正極として用いた。この正
極は、直径14.5mm、電極の厚みが0.93mmの
ペレットである。
Preparation of Positive Electrode Lithium carbonate and cobalt carbonate, and antimony trioxide were mixed in a ratio of lithium atom to cobalt atom and antimony atom of 1:
Each was weighed so as to be 0.95: 0.05, mixed in a mortar, baked in air at 900 ° C. for 20 hours, and then ground in a mortar to obtain an active material powder. This active material had a composition of Li 0.98 Co 0.95 Sb 0.05 O 2 . The thus obtained positive electrode active material is mixed with acetylene black, a nonionic dispersant is added, and polytetrafluoroethylene (after drying, the weight ratio of the positive electrode active material to acetylene black and polytetrafluoroethylene is , 100: 10: 5), and the resulting mixture was made into a paste by applying to a titanium mesh current collector. This is dried at 60 ° C., 24
After heat treatment at 0 ° C, press, and 2 to remove moisture
What was dried under reduced pressure at 00 ° C. was used as a positive electrode. This positive electrode is a pellet having a diameter of 14.5 mm and an electrode thickness of 0.93 mm.

【0143】・電池の組立 図2に示すように、予め内底面に正極集電体2が溶接に
よって取り付けられ、絶縁パッキン8が載置された正極
缶1に、正極3を圧着した。次に、この上に微多孔性ポ
リプロピレンのセパレータ7を載置し、エチレンカーボ
ネートとプロピレンカーボネート、ジエチルカーボネー
トとの2:1:3の混合溶媒に1mol/lのLiPF6
を溶解した電解液を含浸させる。一方、負極缶4の内面
に、負極集電体5を溶接し、この負極集電体に負極6を
圧着させる。次に前記セパレータ7の上に前記負極6を
重ね正極缶1と負極缶4を絶縁パッキン8を介在させて
かしめ、コイン型電池を作製する。
Assembling of Battery As shown in FIG. 2, the positive electrode current collector 2 was previously attached to the inner bottom surface by welding, and the positive electrode 3 was crimped to the positive electrode can 1 on which the insulating packing 8 was placed. Next, a microporous polypropylene separator 7 was placed on top of this, and 1 mol / l LiPF 6 was added to a 2: 1: 3 mixed solvent of ethylene carbonate, propylene carbonate, and diethyl carbonate.
Is dissolved in the electrolytic solution. On the other hand, the negative electrode current collector 5 is welded to the inner surface of the negative electrode can 4, and the negative electrode 6 is pressed to the negative electrode current collector. Next, the negative electrode 6 is placed on the separator 7 and the positive electrode can 1 and the negative electrode can 4 are caulked with the insulating packing 8 interposed therebetween, thereby producing a coin-type battery.

【0144】・電池の評価 作製したコイン型電池を、充放電電流2mA、充電上限
電圧4.2Vで、4.2Vに達した後4.2Vの定電圧
充電を行い、充電時間を12時間とした。放電の下限電
圧を2.5Vとして容量を測定した。評価には、電池の
放電容量で行った。
Evaluation of Battery The produced coin-type battery was charged at a charging / discharging current of 2 mA, and reached a charging upper limit voltage of 4.2 V. After reaching 4.2 V, the battery was charged at a constant voltage of 4.2 V, and the charging time was 12 hours. did. The capacity was measured with the lower limit voltage of the discharge being 2.5 V. The evaluation was performed on the discharge capacity of the battery.

【0145】その結果、放電における平均電圧が3.7
Vであり、2サイクル目の放電容量は、19mAh、1
0サイクル目の放電容量は、17mAhであった。
As a result, the average voltage in the discharge was 3.7
V, and the discharge capacity at the second cycle was 19 mAh, 1
The discharge capacity at the 0th cycle was 17 mAh.

【0146】比較例11 マダガスカル産の天然黒鉛のみを用いて実施例18に記
載された方法で負極を作製した。作製した負極の大き
さ、厚み共に同じである。正極および電池も実施例18
に記載された方法で作製した。
Comparative Example 11 A negative electrode was produced by the method described in Example 18 using only natural graphite produced in Madagascar. The size and thickness of the produced negative electrode are the same. The positive electrode and the battery were also prepared in Example 18.
Was prepared by the method described in (1).

【0147】この電池を実施例18に記載された方法で
評価した。
This battery was evaluated by the method described in Example 18.

【0148】その結果、放電における平均電圧が3.7
Vであり、2サイクル目の放電容量は、14mAh、1
0サイクル目の放電容量は、13mAhであった。
As a result, the average voltage in the discharge was 3.7
V, and the discharge capacity in the second cycle was 14 mAh, 1
The discharge capacity at the 0th cycle was 13 mAh.

【0149】実施例19 ・負極の作製 酸化銅付着黒鉛複合体は実施例11に記載された材料を
用いた。
Example 19 Production of Negative Electrode The material described in Example 11 was used for the graphite composite with copper oxide.

【0150】上述した方法で作製した酸化銅付着黒鉛複
合体に、ノニオン系の分散剤を添加し、ポリテトラフル
オロエチレン(乾燥後、酸化銅付着黒鉛複合体とポリテ
トラフルオロエチレンとの重量比は、91:9であ
る。)のディスパージョン液を加えてペースト状にした
ものを、ニッケル3次元多孔質集電体に塗布し、孔中に
ペーストを塗り込んだ。これを60℃で乾燥、240℃
で熱処理後、プレスし、さらに水分除去のために200
℃で減圧乾燥したものを負極として用いた。この負極
は、直径14.5mm、電極の厚みが0.37mmのペ
レットである。
A nonionic dispersant was added to the copper oxide-deposited graphite composite produced by the above method, and the mixture was dried with polytetrafluoroethylene (after drying, the weight ratio of the copper oxide-deposited graphite composite to polytetrafluoroethylene was changed to , 91: 9) was applied to a nickel three-dimensional porous current collector, and the paste was applied to the pores. This is dried at 60 ° C, 240 ° C
After heat treatment with, press and further 200 to remove moisture
What was dried under reduced pressure at ℃ was used as a negative electrode. This negative electrode is a pellet having a diameter of 14.5 mm and an electrode thickness of 0.37 mm.

【0151】・正極の作製 炭酸リチウムと二酸化マンガンを、リチウム原子とマン
ガン原子の比で1.1:2になるようにそれぞれ秤量
し、これを乳鉢で混合した後、空気中900℃で3日間
焼成し、その後乳鉢で粉砕することにより活物質LiM
24の粉末を得た。このようにして得られた正極活物
質を導電材(アセチレンブラックと膨張黒鉛との重量比
2:1の混合物)と混合し、ノニオン系の分散剤を添加
し、ポリテトラフルオロエチレン(乾燥後、正極活物質
と導電材、ポリテトラフルオロエチレンとの重量比は、
100:10:5である。)のディスパージョン液を加
えてペースト状にしたものを、チタンメッシュ集電体上
に塗布した。これを60℃で乾燥、240℃で熱処理
後、プレスし、さらに水分除去のために200℃で減圧
乾燥したものを正極として用いた。この正極は、直径1
4.5mm、電極の厚みが1.0mmのペレットであ
る。
Preparation of Positive Electrode Lithium carbonate and manganese dioxide were each weighed so that the ratio of lithium atoms to manganese atoms was 1.1: 2, mixed in a mortar, and then in air at 900 ° C. for 3 days. The active material LiM is fired and then crushed in a mortar.
A powder of n 2 O 4 was obtained. The positive electrode active material thus obtained is mixed with a conductive material (a mixture of acetylene black and expanded graphite at a weight ratio of 2: 1), a nonionic dispersant is added, and polytetrafluoroethylene (after drying, The weight ratio between the positive electrode active material and the conductive material, polytetrafluoroethylene,
100: 10: 5. The dispersion liquid prepared in (1) was added to form a paste, which was applied onto a titanium mesh current collector. This was dried at 60 ° C., heat-treated at 240 ° C., pressed, and dried under reduced pressure at 200 ° C. to remove moisture, and used as a positive electrode. This positive electrode has a diameter of 1
The pellets are 4.5 mm and the thickness of the electrodes is 1.0 mm.

【0152】・電池の組立 電解液にエチレンカーボネートとγ−ブチロラクトン、
ジエチルカーボネートとの3:1:3の混合溶媒に1m
ol/lのLiPF6を溶解したものを用いた以外、実
施例18に記載された方法でコイン型電池を作製した。
Battery assembly Ethylene carbonate and γ-butyrolactone were used in the electrolyte.
1m in a 3: 1: 3 mixed solvent with diethyl carbonate
A coin-type battery was produced by the method described in Example 18 except that a solution in which ol / l of LiPF 6 was dissolved was used.

【0153】・電池の評価 作製したコイン型電池を、充放電電流1mA、充電上限
電圧4.2Vで、4.2Vに達した後4.2Vの定電圧
充電を行い、充電時間を24時間とした。放電の下限電
圧を2.5Vとして容量を測定した。評価には、電池の
放電容量で行った。
Evaluation of Battery The produced coin-type battery was charged at a charging / discharging current of 1 mA, reached a charging upper limit voltage of 4.2 V, reached 4.2 V, was charged at a constant voltage of 4.2 V, and was charged for 24 hours. did. The capacity was measured with the lower limit voltage of the discharge being 2.5 V. The evaluation was performed on the discharge capacity of the battery.

【0154】その結果、放電における平均電圧が3.7
Vであり、2サイクル目の放電容量は、20mAh、1
0サイクル目の放電容量は、15mAhであった。
As a result, the average voltage in the discharge was 3.7
V, and the discharge capacity in the second cycle was 20 mAh, 1
The discharge capacity at the 0th cycle was 15 mAh.

【0155】比較例12 変性黒鉛(鱗片状、粒径7μm、d002は0.336n
m、Lcは22nm、Laは13nm、R値は0.1、
比表面積10m2/g)のみを用いて実施例19に記載
された方法で負極を作製した。作製した負極の大きさ、
厚み共に同じである。正極および電池も実施例19に記
載された方法で作製した。
Comparative Example 12 Modified graphite (flaky, particle size 7 μm, d 002 0.336 n
m, Lc is 22 nm, La is 13 nm, R value is 0.1,
A negative electrode was produced by the method described in Example 19 using only the specific surface area (10 m 2 / g). The size of the prepared negative electrode,
The thickness is the same. A positive electrode and a battery were also prepared by the method described in Example 19.

【0156】この電池を実施例19に記載された方法で
評価した。
This battery was evaluated by the method described in Example 19.

【0157】その結果、放電における平均電圧が3.7
Vであり、2サイクル目の放電容量は、13mAh、1
0サイクル目の放電容量は、12mAhであった。
As a result, the average voltage in the discharge was 3.7
V, and the discharge capacity in the second cycle was 13 mAh, 1
The discharge capacity at the 0th cycle was 12 mAh.

【0158】実施例18、19と比較例11、12の結
果を表4に示す。これより、酸化銅付着黒鉛複合体を含
む負極を用いると、高容量のリチウム二次電池を作製す
ることが可能である。
Table 4 shows the results of Examples 18 and 19 and Comparative Examples 11 and 12. Thus, a high-capacity lithium secondary battery can be manufactured using the negative electrode including the graphite composite with copper oxide.

【0159】[0159]

【表4】 [Table 4]

【0160】[0160]

【発明の効果】本発明による負極、つまりリチウムのイ
ンターカレーション・デインターカレーション可能な黒
鉛に酸化銅が付着した酸化銅付着黒鉛複合体と結着材と
を混合した電極は、大きい放電容量を示す。また負極の
より低い電位を用いることができることより、電池電圧
の高いリチウム二次電池を提供することができる。した
がって、本発明による負極を使用し、優れたリチウム二
次電池を提供することができる。
The negative electrode according to the present invention, that is, the electrode obtained by mixing a copper oxide-adhered graphite composite obtained by adhering copper oxide to graphite capable of intercalating and deintercalating lithium and a binder, has a large discharge capacity. Is shown. Further, since a lower potential of the negative electrode can be used, a lithium secondary battery with a high battery voltage can be provided. Therefore, an excellent lithium secondary battery can be provided using the negative electrode according to the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例10〜17と比較例2、7〜10におけ
る、黒鉛の黒鉛とメッキされた銅との混合物に対する重
量比と2サイクル目の電極の単位体積(集電体の体積は
除く)あたりの放電容量の関係を示す図である。
FIG. 1 shows the weight ratio of graphite to a mixture of graphite and plated copper and the unit volume of an electrode in the second cycle (excluding the volume of the current collector) in Examples 10 to 17 and Comparative Examples 2 and 7 to 10. FIG. 4 is a diagram showing a relationship between discharge capacities per square brackets).

【図2】この発明の実施例18、19と比較例11、1
2で製作した電池の説明図である。
FIG. 2 shows Examples 18 and 19 of the present invention and Comparative Examples 11 and 1
FIG. 3 is an explanatory view of a battery manufactured in Step 2.

【符号の説明】[Explanation of symbols]

1 正極缶 2 正極集電体 3 正極 4 負極缶 5 負極集電体 6 負極 7 セパレータ 8 絶縁パッキン Reference Signs List 1 positive electrode can 2 positive electrode current collector 3 positive electrode 4 negative electrode can 5 negative electrode current collector 6 negative electrode 7 separator 8 insulating packing

フロントページの続き (72)発明者 西村 直人 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 山田 和夫 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 米田 哲也 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 平5−258773(JP,A) 特開 平6−325753(JP,A) 特開 平4−179069(JP,A) 特開 平1−279578(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/02 - 4/04 H01M 4/36 - 4/62 H01M 10/40 Continued on the front page (72) Inventor Naoto Nishimura 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Inventor Kazuo Yamada 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72 ) Inventor Tetsuya Yoneda 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (56) References JP-A-5-258773 (JP, A) JP-A-6-325575 (JP, A) 4-179069 (JP, A) JP-A-1-279578 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/02-4/04 H01M 4/36-4 / 62 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極、負極及び非水系のイオン伝導体か
らなる電池において、前記負極が負極活物質の主成分と
してリチウムイオンのインターカレーション・デインタ
ーカレーション可能な黒鉛より成り、この黒鉛粒子全部
あるいは一部分の表面上に酸化銅が付着している複合体
と結着材が混合された電極であるリチウム二次電池。
1. A battery comprising a positive electrode, a negative electrode and a non-aqueous ion conductor, wherein the negative electrode is made of graphite capable of intercalating / deintercalating lithium ions as a main component of a negative electrode active material, and the graphite particles A lithium secondary battery that is an electrode in which a binder and a composite having copper oxide attached on all or a part of its surface are mixed.
【請求項2】 負極活物質である黒鉛の粒径が80μm
以下である請求項1記載のリチウム二次電池。
2. The particle size of graphite as a negative electrode active material is 80 μm.
The lithium secondary battery according to claim 1, wherein:
【請求項3】 黒鉛粒子の表面上に酸化銅が付着してい
る複合体が、黒鉛粒子表面上の一部に銅を被覆した後、
酸化処理を施すことにより酸化銅を生成させる製造方法
により製造した複合体である請求項1記載のリチウム二
次電池。
3. A composite in which copper oxide is adhered on the surface of graphite particles, after coating copper on a part of the surface of the graphite particles,
The lithium secondary battery according to claim 1, which is a composite produced by a production method of producing copper oxide by performing an oxidation treatment.
【請求項4】 黒鉛と被覆された銅の比率が、黒鉛と銅
の重量比で98.5:1.5〜62:38である請求項
3記載のリチウム二次電池。
4. The lithium secondary battery according to claim 3, wherein the weight ratio of graphite to copper is from 98.5: 1.5 to 62:38 by weight of graphite and copper.
【請求項5】 結着材がポリテトラフルオロエチレン、
ポリフッ化ビニリデン、ポリエチレン、ポリプロピレ
ン、ポリオレフィン系ポリマー、合成ゴム類である請求
項1記載のリチウム二次電池。
5. The binder is polytetrafluoroethylene,
The lithium secondary battery according to claim 1, wherein the lithium secondary battery is polyvinylidene fluoride, polyethylene, polypropylene, a polyolefin-based polymer, or a synthetic rubber.
JP5136099A 1993-05-14 1993-06-07 Lithium secondary battery Expired - Fee Related JP2960834B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5136099A JP2960834B2 (en) 1993-06-07 1993-06-07 Lithium secondary battery
DE69404901T DE69404901T2 (en) 1993-05-14 1994-05-13 Lithium secondary battery
EP94303451A EP0627776B1 (en) 1993-05-14 1994-05-13 Lithium secondary battery
US08/242,106 US5432029A (en) 1993-05-14 1994-05-13 Lithium secondary battery
US08/427,226 US5478364A (en) 1993-05-14 1995-04-24 Method of manufacturing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5136099A JP2960834B2 (en) 1993-06-07 1993-06-07 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH06349482A JPH06349482A (en) 1994-12-22
JP2960834B2 true JP2960834B2 (en) 1999-10-12

Family

ID=15167252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5136099A Expired - Fee Related JP2960834B2 (en) 1993-05-14 1993-06-07 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2960834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121392A1 (en) * 2014-02-13 2015-08-20 Rockwood Lithium GmbH Stabilized (partly) lithiated graphite materials, process for preparing them and use for lithium batteries

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3222022B2 (en) * 1994-10-27 2001-10-22 シャープ株式会社 Method for producing lithium secondary battery and negative electrode active material
DE69602637T2 (en) * 1995-02-02 1999-09-30 Hitachi Ltd Secondary battery and material for negative electrode of a secondary battery
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
JP4461498B2 (en) * 1997-12-16 2010-05-12 パナソニック株式会社 Nonaqueous electrolyte secondary battery and negative electrode thereof
KR19990057611A (en) * 1997-12-30 1999-07-15 조정래 Lithium-ion Secondary Battery
JP5000979B2 (en) * 1998-05-13 2012-08-15 宇部興産株式会社 Non-aqueous secondary battery
JP4725489B2 (en) * 1998-05-13 2011-07-13 宇部興産株式会社 Non-aqueous secondary battery
KR100416093B1 (en) * 2001-05-23 2004-01-24 삼성에스디아이 주식회사 Method for manufacturing lithium battery
JP4659327B2 (en) * 2002-06-20 2011-03-30 三星エスディアイ株式会社 Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery
US6855459B2 (en) 2002-06-20 2005-02-15 Samsung Sdi Co., Ltd Electrode for rechargeable lithium battery, method of preparing same and rechargeable lithium battery having the same
KR100709860B1 (en) 2005-07-22 2007-04-23 삼성에스디아이 주식회사 Electrode including si material layer and porous layer and the lithium battery employing the same
KR100766967B1 (en) * 2006-11-20 2007-10-15 삼성에스디아이 주식회사 Electrode for rechargeable lithium battery, and rechargeable lithium battery prepared therefrom
JP4702321B2 (en) * 2007-05-11 2011-06-15 宇部興産株式会社 Non-aqueous secondary battery
JP4967839B2 (en) * 2007-06-14 2012-07-04 宇部興産株式会社 Non-aqueous secondary battery
JP4725562B2 (en) * 2007-08-24 2011-07-13 宇部興産株式会社 Non-aqueous secondary battery
JP4924852B2 (en) 2009-04-24 2012-04-25 大日本印刷株式会社 Method for producing electrode plate for non-aqueous electrolyte secondary battery
JP4930733B2 (en) * 2009-04-24 2012-05-16 大日本印刷株式会社 Non-aqueous electrolyte secondary battery negative electrode plate, non-aqueous electrolyte secondary battery negative electrode manufacturing method, and non-aqueous electrolyte secondary battery
JP5212394B2 (en) 2009-04-24 2013-06-19 大日本印刷株式会社 Method for producing electrode plate for non-aqueous electrolyte secondary battery
JP2011100746A (en) * 2009-04-24 2011-05-19 Dainippon Printing Co Ltd Anode plate for nonaqueous electrolyte solution secondary battery, manufacturing method for the same, and nonaqueous electrolyte solution secondary battery
JP5136804B2 (en) 2009-04-24 2013-02-06 大日本印刷株式会社 Non-aqueous electrolyte secondary battery electrode plate, non-aqueous electrolyte secondary battery electrode plate manufacturing method, and non-aqueous electrolyte secondary battery
JP5196197B2 (en) 2009-04-24 2013-05-15 大日本印刷株式会社 Method for producing electrode plate for non-aqueous electrolyte secondary battery
CN113394402B (en) * 2021-07-01 2022-08-09 安徽科达新材料有限公司 Morphology-controllable spherical graphite negative electrode material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121392A1 (en) * 2014-02-13 2015-08-20 Rockwood Lithium GmbH Stabilized (partly) lithiated graphite materials, process for preparing them and use for lithium batteries
CN106537652A (en) * 2014-02-13 2017-03-22 罗克伍德锂有限责任公司 Stabilized (partly) lithiated graphite materials, process for preparing them and use for lithium batteries
US10522819B2 (en) 2014-02-13 2019-12-31 Albemarle Germany Gmbh Stabilised (partially) lithiated graphite materials, methods for the production thereof and use for lithium batteries

Also Published As

Publication number Publication date
JPH06349482A (en) 1994-12-22

Similar Documents

Publication Publication Date Title
JP2960834B2 (en) Lithium secondary battery
JP3200289B2 (en) Lithium secondary battery
US5478364A (en) Method of manufacturing lithium secondary battery
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
US5965296A (en) Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
KR20130004536A (en) Negative active material, manufacturing method thereof, and lithium battery containing the material
JP2015115319A (en) Negative electrode active material, lithium battery including the same, and method of manufacturing the negative electrode active material
JP2003303585A (en) Battery
JP3304267B2 (en) Non-aqueous secondary battery and method for producing negative electrode active material
JP2007250390A (en) Negative electrode, secondary battery and manufacturing method of negative electrode
JP2009266705A (en) Lithium secondary battery
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP4513385B2 (en) Negative electrode for secondary battery and secondary battery
JP2018006331A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP3340337B2 (en) Non-aqueous secondary battery and method for producing negative electrode active material
JP4747514B2 (en) Method for producing negative electrode for lithium ion secondary battery
JP3140880B2 (en) Lithium secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JP3440705B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2002093416A (en) Negative electrode material for lithium secondary battery, negative electrode and secondary battery using the same
JP4162075B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5217083B2 (en) Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2006134684A (en) Negative electrode and battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees