JP5217083B2 - Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP5217083B2
JP5217083B2 JP2005330051A JP2005330051A JP5217083B2 JP 5217083 B2 JP5217083 B2 JP 5217083B2 JP 2005330051 A JP2005330051 A JP 2005330051A JP 2005330051 A JP2005330051 A JP 2005330051A JP 5217083 B2 JP5217083 B2 JP 5217083B2
Authority
JP
Japan
Prior art keywords
metal
ion secondary
lithium ion
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005330051A
Other languages
Japanese (ja)
Other versions
JP2007141504A (en
Inventor
康一 武井
秀秋 上原
宏一 片山
軍 揚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005330051A priority Critical patent/JP5217083B2/en
Publication of JP2007141504A publication Critical patent/JP2007141504A/en
Application granted granted Critical
Publication of JP5217083B2 publication Critical patent/JP5217083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池用負極合剤、それを用いた負極及びリチウムイオン二次電池に関し、特に高エネルギー密度、長サイクル寿命特性を有するリチウムイオン二次電池に関する。 The present invention includes a negative electrode mixture for lithium ion secondary batteries, its Re relates negative electrode and a lithium ion secondary battery using, in particular, high energy density, a lithium ion secondary battery having a long cycle life characteristics.

携帯電子機器の小型軽量化、多機能化に伴い、高エネルギー密度を有する電池、特に二次電池に対する要求が高くなっている。リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池と比較して高電圧、高容量を有し、しかも軽量であるため、上記携帯電子機器に多く使用されるようになってきている。   As portable electronic devices become smaller and lighter and more multifunctional, demands for batteries having a high energy density, particularly secondary batteries, are increasing. Lithium ion secondary batteries have high voltage and high capacity compared to nickel cadmium batteries and nickel metal hydride batteries, and are light in weight, and thus are increasingly used in the portable electronic devices.

リチウムイオン二次電池の負極活物質には、現在、黒鉛質負極材が一般的に使用されている。黒鉛質負極材の放電容量は、せいぜい360mAh/gであり、より高い放電容量を有する負極材が求められている。   At present, a graphite negative electrode material is generally used as a negative electrode active material of a lithium ion secondary battery. The discharge capacity of the graphite negative electrode material is at most 360 mAh / g, and a negative electrode material having a higher discharge capacity is demanded.

高い放電容量を有する負極材として、Si、Sn、Al、Pb等のリチウムと合金を形成する金属が検討されている。これらは、例えばSiは4000mAh/gという非常に大きな放電容量が得られるが、充放電(リチウムとの合金形成、分解)時に大きな体積変化を伴うため、粒子が崩壊・微粒子化し、その結果として充放電容量が大きく低下するという問題がある。この問題を解決する方策として、銅集電体表面にメッキ法によりSn薄膜を形成した電極(特許文献1)、銅集電体表面にスパッタ法によりSi薄膜を形成した電極が提案されている(特許文献2)。これらの方法によりサイクル特性はかなり改善されるが、前者ではSn層を厚膜化した場合サイクル劣化が大きくなる、入出力特性が低いという課題があり、後者は高価な設備が必要という問題がある。   As a negative electrode material having a high discharge capacity, a metal that forms an alloy with lithium such as Si, Sn, Al, and Pb has been studied. For example, Si has a very large discharge capacity of 4000 mAh / g, but a large volume change occurs during charge / discharge (formation and decomposition of an alloy with lithium). There is a problem that the discharge capacity is greatly reduced. As measures for solving this problem, an electrode in which an Sn thin film is formed on the surface of a copper current collector by plating (Patent Document 1), and an electrode in which an Si thin film is formed on the surface of a copper current collector by sputtering are proposed ( Patent Document 2). Although the cycle characteristics are considerably improved by these methods, the former has a problem that the cycle deterioration becomes large when the Sn layer is thickened, and the input / output characteristics are low, and the latter has a problem that expensive equipment is required. .

金属Si微粒子と炭素、黒鉛粒子を一体化した複合材粒子が提案されている(特許文献3)。金属Siを微粒子とすることにより、充放電時の粒子の崩壊を抑制し、さらに炭素、黒鉛粒子と一体化することによりリチウムイオン、電子の移動経路を確保し、結果としてサイクル劣化を抑制するものである。本手法でもサイクル劣化はかなり改善されるが、充放電サイクルにおいて複合材中の金属Si微粒子が膨張・収縮し、その結果として複合材粒子が膨張、さらに崩壊するため、長期的な信頼性に欠けるという課題がある。   Composite particles in which metal Si fine particles, carbon, and graphite particles are integrated have been proposed (Patent Document 3). By making metal Si fine particles, particle collapse during charge and discharge is suppressed, and by integrating with carbon and graphite particles, lithium ion and electron transfer paths are secured, and as a result, cycle deterioration is suppressed. It is. Although this method can also significantly improve cycle deterioration, the metal Si fine particles in the composite material expand and contract during the charge / discharge cycle, and as a result, the composite material particles expand and further collapse, resulting in lack of long-term reliability. There is a problem.

リチウムと合金を形成する金属の酸化物を負極材として用いることが提案されている。例えば、SSiO・炭素・黒鉛複合材(特許文献4)が挙げられる。これらは、金属Siを用いた複合材と比較して良好なサイクル特性を示すが、不可逆容量が大きいという課題がある。この大きな不可逆容量はそれぞれの酸化物が金属Siに還元されるために生じるものと考えられている。 It has been proposed to use an oxide of a metal that forms an alloy with lithium as the negative electrode material. For example, an SSiO 2 / carbon / graphite composite material (Patent Document 4) may be mentioned. Although these show favorable cycle characteristics as compared with composite materials using metal Si, there is a problem that the irreversible capacity is large. This large irreversible capacity is thought to occur because each oxide is reduced to metallic Si.

特開2003−157833JP2003-157833 特開2001−210319JP2001-210319 特開2000−268824JP 2000-268824 特開2000−203818JP2000-203818

本発明は、リチウムと合金を形成する金属或いはその酸化物を用いた負極材におけるサイクル劣化、大きな不可逆容量を改良したリチウムイオン二次電池用負極合剤、高容量で信頼性の高いリチウムイオン二次電池用電極及びリチウムイオン二次電池を提供する。 The present invention, cycle deterioration, a large irreversible capacity to improve the lithium-ion secondary battery negative electrode mixture, a lithium ion secondary reliable high capacity in metal or a negative electrode material using the oxide to form an alloy with lithium An electrode for a secondary battery and a lithium ion secondary battery are provided.

本発明は、下記(1)〜()に記載の事項をその特徴とするものである。
(1)リチウムと合金形成可能な金属(Ma)と金属(Mb)の酸化物がメカニカルアロイング処理により一体化された複合材を含むリチウムイオン二次電池用負極材と、電解液中での膨潤度が%以下である樹脂からなるバインダと、を含み、前記金属(Ma)がSnであり、前記金属(Mb)がAl或いはMgであるリチウムイオン二次電池用負極合剤。
(2)リチウムと合金形成可能な金属(Ma)がリチウムと合金を形成しない金属(Mc)と合金を形成していることを特徴とする上記(1)記載のリチウムイオン二次電池用負極合剤。
)金属(Mc)がCoであることを特徴とする上記(2)に記載のリチウムイオン二次電池用負極合剤。
)リチウムと合金形成可能な金属(Ma)と金属(Mb)の酸化物がメカニカルアロイング処理により一体化された複合材がさらに炭素、或いは炭素及び黒鉛と複合化されていることを特徴とする上記(1)〜(3)のいずれか1項に記載のリチウムイオン二次電池用負極合剤。
)上記(1)〜()のいずれか1項に記載のリチウムイオン二次電池用負極合剤を用いて集電体に結着してなるリチウムイオン二次電池用負極。
)上記(5)に記載のリチウムイオン二次電池用負極を有してなるリチウムイオン二次電池。
The present invention is characterized by the following items (1) to ( 6 ).
(1) A negative electrode material for a lithium ion secondary battery including a composite material in which an oxide of metal (Ma) and metal (Mb) capable of forming an alloy with lithium is integrated by mechanical alloying treatment ; seen containing a binder which degree of swelling is made of a resin is 7% or less, wherein the metal (Ma) is the Sn, the metal (Mb) is a negative electrode mixture for a lithium ion secondary battery as Al or Mg.
(2) for lithium ion secondary battery according to (1), characterized in that Lithium alloy capable of forming metal (Ma) form a lithium metal alloy without the formation (Mc) and alloys Negative electrode mixture.
( 3 ) The negative electrode mixture for a lithium ion secondary battery as described in ( 2) above, wherein the metal (Mc) is Co.
( 4 ) A composite material in which a metal (Ma) alloy capable of forming an alloy with lithium and an oxide of metal (Mb) is integrated by mechanical alloying is further combined with carbon or carbon and graphite. to (1) to (3) anode mixture for lithium ion secondary battery according to any one of.
( 5 ) A negative electrode for a lithium ion secondary battery formed by binding to a current collector using the negative electrode mixture for a lithium ion secondary battery according to any one of (1) to ( 4 ) above.
( 6 ) A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to (5 ) above.

本発明のリチウムイオン二次電池用負極合剤、或いは本発明のリチウムイオン二次電池用負極を用いることにより、高容量で且つ充放電サイクル性に優れたリチウムイオン二次電池を作製することができる。 Anode mixture for lithium ion secondary battery of the present invention, or by using the negative electrode for a lithium ion secondary battery of the present invention, is possible to produce a superior lithium ion secondary battery and the charge-discharge cycle characteristics at high capacity it can.

本発明のリチウムイオン二次電池用負極材は、リチウムと合金形成可能な金属(Ma)と金属(Mb)の酸化物が一体化された複合材を含む。このような複合材は、リチウムと合金形成可能な金属(Ma)の酸化物と金属(Mb)を不活性雰囲気中でメカニカルアロイング処理して作製され、金属(Ma)は極めて微細な粒子として当該複合材中に分散するため、リチウムとの合金形成時の膨張が抑制され、その結果としてサイクル性が改善されるものと推定される。また、金属(Ma)の酸化物を用いた場合と比較して不可逆容量が大幅に低減でき、電池の高容量化が得られる。   The negative electrode material for a lithium ion secondary battery of the present invention includes a composite material in which an oxide of metal (Ma) and metal (Mb) capable of forming an alloy with lithium is integrated. Such a composite material is manufactured by mechanically alloying a metal (Ma) oxide capable of forming an alloy with lithium and a metal (Mb) in an inert atmosphere, and the metal (Ma) is formed as extremely fine particles. Since it is dispersed in the composite material, it is presumed that expansion during the formation of an alloy with lithium is suppressed, and as a result, the cycle performance is improved. In addition, the irreversible capacity can be significantly reduced as compared with the case where a metal (Ma) oxide is used, and the capacity of the battery can be increased.

また、上記メカニカルアロイング処理において、金属(Ma)の酸化物、金属(Mb)と共にリチウムと合金を形成しない金属(Mc)の酸化物を共存させることにより、メカニカルアロイング処理における金属(Ma)の酸化物の還元反応を促進することができ、また、得られる複合材において金属(Ma)が金属(Mc)と合金を形成するため、リチウムとの合金形成時の膨張が抑制されると共に、導電性が向上し、サイクル性、充放電速度が改善させる。   Further, in the mechanical alloying process, the metal (Ma) in the mechanical alloying process coexists with the oxide of the metal (Ma) and the metal (Mc) oxide that does not form an alloy with lithium together with the metal (Mb). In addition, since the metal (Ma) forms an alloy with the metal (Mc) in the obtained composite material, expansion during the formation of the alloy with lithium is suppressed, Conductivity is improved, and cycle performance and charge / discharge speed are improved.

本発明のリチウムイオン二次電池用負極材は、リチウムと合金形成可能な金属(Ma)と金属(Mb)の酸化物が一体化された複合材を含む。さらに、本発明のリチウムイオン二次電池用負極材は、リチウムと合金を形成しない金属(Mc)と合金化したリチウムと合金形成可能な金属(Ma)と金属(Mb)が一体化した複合材を含む。本発明のこのような複合材は、リチウムと合金形成可能な金属(Ma)の酸化物と金属(Mb)、又はリチウムと合金形成可能な金属(Ma)の酸化物と金属(Mb)、金属(Mc)を不活性雰囲気中でメカニカルアロイング処理して作製される。   The negative electrode material for a lithium ion secondary battery of the present invention includes a composite material in which an oxide of metal (Ma) and metal (Mb) capable of forming an alloy with lithium is integrated. Furthermore, the negative electrode material for a lithium ion secondary battery of the present invention is a composite material in which a metal (Ma) and metal (Mb) capable of forming an alloy with lithium alloyed with a metal (Mc) that does not form an alloy with lithium are integrated. including. Such a composite material of the present invention includes a metal (Ma) oxide and metal (Mb) capable of forming an alloy with lithium, or a metal (Ma) oxide and metal (Mb) capable of forming an alloy with lithium, a metal (Mc) is produced by mechanical alloying treatment in an inert atmosphere.

金属(Ma)としては、Snを用いることができ、金属(Mb)としてはAl、Mgを用いることが出来る。金属(Ma)の酸化物としてはSnO、SnOを用いることが出来る。金属(Mc)としてはCo等を用いることができ、金属(Ma)としてSnと組合せると好適である。 Sn can be used as the metal (Ma), and Al and Mg can be used as the metal (Mb). SnO 2 or SnO can be used as the metal (Ma) oxide. Co or the like can be used as the metal (Mc), and it is preferable to combine with Sn as the metal (Ma).

これらの金属酸化物及び金属を不活性雰囲気中でメカニカルアロイング処理すると、金属(Ma)の酸化物は金属(Mb)によって還元され、金属(Mb)の酸化物と金属(Ma)が一体化した複合材、或いは金属(Mb)の酸化物と金属(Mc)と合金化した金属(Ma)が一体化した複合材が得られる。これらの存在は、複合材の広角X線回折図より確認することが出来る。当複合材中で金属(Ma)は非常に小さな微粒子として存在していると考えられ、複合材の広角X線回折線の半値幅より求められた結晶子サイズは数nm〜数十nmである。得られる複合材の粒子径は1〜20μmである。   When these metal oxides and metal are mechanically alloyed in an inert atmosphere, the metal (Ma) oxide is reduced by the metal (Mb), and the metal (Mb) oxide and the metal (Ma) are integrated. Or a composite material in which an oxide of metal (Mb) and a metal (Ma) alloyed with metal (Mc) are integrated. The presence of these can be confirmed from the wide-angle X-ray diffraction diagram of the composite material. The metal (Ma) is considered to exist as very small fine particles in the composite material, and the crystallite size obtained from the half-value width of the wide-angle X-ray diffraction line of the composite material is several nm to several tens of nm. . The resulting composite material has a particle size of 1 to 20 μm.

メカニカルアロイング処理における金属(Ma)の酸化物に対する金属(Mb)の比率は、金属(Ma)の酸化物をすべて還元するのに必要な量(化学量論比)、若しくは若干過剰とすることが好ましい。化学量論比よりも少ない場合、得られる複合材中には金属(Ma)の酸化物が残留し、リチウムイオン二次電池用負極材として用いた場合、不可逆容量が大きくなる。一方、過剰に多い場合には得られる複合材中に非常に活性な金属(Mb)が残留するため、取扱いに危険が伴うようになるため好ましくない。好ましい比率は1.0〜1.6である。   The ratio of the metal (Mb) to the metal (Ma) oxide in the mechanical alloying process is an amount (stoichiometry) necessary to reduce all the metal (Ma) oxide (stoichiometric ratio) or slightly excessive. Is preferred. When the ratio is less than the stoichiometric ratio, metal (Ma) oxide remains in the obtained composite material, and when used as a negative electrode material for a lithium ion secondary battery, the irreversible capacity increases. On the other hand, when the amount is excessively large, a very active metal (Mb) remains in the obtained composite material. A preferred ratio is 1.0 to 1.6.

メカニカルアロイング処理には、強い圧縮、せん断力が発生する公知の設備を使用することができ、例えば遊星ボールミル、振動ボールミル、ロッドミル、ボールミル等を用いることが出来る。   For the mechanical alloying treatment, known equipment that generates strong compression and shearing force can be used. For example, a planetary ball mill, a vibration ball mill, a rod mill, a ball mill, or the like can be used.

メカニカルアロイング処理において、処理環境(処理容器内)の雰囲気は、金属(Mb)及び生成する金属(Ma)の酸化を抑制するため、不活性雰囲気とすることが好ましい。窒素、アルゴン、ヘリウム等が使用できる。   In the mechanical alloying process, the atmosphere of the processing environment (in the processing container) is preferably an inert atmosphere in order to suppress the oxidation of the metal (Mb) and the generated metal (Ma). Nitrogen, argon, helium, etc. can be used.

メカニカルアロイング処理の時間は、処理によって生じる反応の進み具合を観察することによって決定されるべきものであり、1時間〜数十時間の範囲である。   The mechanical alloying time should be determined by observing the progress of the reaction caused by the treatment, and is in the range of 1 hour to several tens of hours.

本発明のリチウムイオン二次電池用負極材において、リチウムと合金形成可能な金属(Ma)がリチウムと合金を形成しない金属(Mc)と合金を形成していても良い。金属(Ma)としてSn、金属(Mc)としてCoを用いることが好適である。金属(Ma)が金属(Mc)との合金となることにより、リチウムとの合金形成(充電時)の膨張が更に抑制されると共に、導電性が向上し、リチウムイオン二次電池用負極材として用いた場合、サイクル性、充放電速度が向上する。   In the negative electrode material for a lithium ion secondary battery of the present invention, the metal (Ma) capable of forming an alloy with lithium may form an alloy with a metal (Mc) that does not form an alloy with lithium. It is preferable to use Sn as the metal (Ma) and Co as the metal (Mc). As the metal (Ma) becomes an alloy with the metal (Mc), the expansion of the alloy formation with lithium (during charging) is further suppressed, the conductivity is improved, and the anode material for the lithium ion secondary battery When used, cycleability and charge / discharge speed are improved.

上記のリチウムと合金形成可能な金属(Ma)がリチウムと合金を形成しない金属(Mc)との合金となっている複合材は、メカニカルアロイング処理において、金属(Ma)の酸化物、金属(Mb)と共に金属(Mc)を処理に供することによって作製することができる。メカニカルアロイング処理において金属(Mc)を共存させると、上記の複合材特性の改善が図れると共に、金属(Ma)の酸化物の還元反応が促進されるため、メカニカルアロイング処理時間の短縮、或いは金属(Ma)の酸化物の残留が抑制され、不可逆容量の低減ができる。金属(Ma)としてはSn、その酸化物としてはSnO、SnOを用いることができ、金属(Mc)としてはCoが好適である。 In the mechanical alloying process, the composite material in which the metal (Ma) capable of forming an alloy with lithium is an alloy of a metal (Mc) that does not form an alloy with lithium is an oxide of a metal (Ma), a metal ( It can be produced by subjecting the metal (Mc) to the treatment together with Mb). When the metal (Mc) is allowed to coexist in the mechanical alloying process, the above composite material characteristics can be improved and the reduction reaction of the metal (Ma) oxide is promoted. Residue of metal (Ma) oxide is suppressed, and irreversible capacity can be reduced. Sn can be used as the metal (Ma), SnO or SnO 2 can be used as its oxide, and Co is preferable as the metal (Mc).

本発明のリチウムイオン二次電池用負極材では、リチウムと合金形成可能な金属(Ma)と金属(Mb)の酸化物が一体化された複合材を更に炭素、或いは炭素及び黒鉛粒子と複合化することが出来る。複合材をさらに炭素、或いは炭素及び黒鉛粒子と複合化することにより、充放電時の複合材粒子の膨張収縮が抑制され、その結果としてサイクル性が改善され、また、導電性が向上するため充放電速度が向上する。 In the negative electrode material for a lithium ion secondary battery of the present invention, a composite material in which an oxide of metal (Ma) and metal (Mb) capable of forming an alloy with lithium is integrated with carbon or carbon and graphite particles. I can do it . The double cause material further carbon, or by complexing with carbon and graphite particles, it is suppressed expansion and contraction of composite particles during charging and discharging, resulting cyclability are improved as also for conductivity is improved Charge / discharge speed is improved.

本発明のリチウムイオン二次電池用負極材は、電解液中での膨潤度が7%以下、好ましくは5%以下の樹脂からなるバインダを用いて集電体に結着して負極とすることにより、リチウムイオン二次電池として更に優れた特性を発揮することが出来る。電解液中での膨潤度は、以下のようにして求めることができる。バインダーを含む溶液をテフロン(登録商標)コーティングしたステンレス板上に塗布、80℃で1時間、乾燥し、形成されたバインダ樹脂フィルムを剥離し、120℃、真空中、5時間乾燥する。得られたバインダ樹脂フィルムを電解液{1M LiPF、EC/DMC/DEC(1/1/1)}に浸漬し、50℃で24時間放置する。膨潤度は、この電解液浸漬前後での重量変化より算出される。膨潤度が大きな樹脂からなるバインダを用いた場合、電池内でバインダが膨潤、結着力が低下し、負極材の充放電時の膨張収縮によって負極材粒子間、負極材/集電体間の接合が破壊され、容量低下が生じる。上記のような樹脂からなるバインダは、例えば、LSR7(日立化成工業株式会社製)、LA132(Chengdu Indigo Power Sources Co., LtD製)として入手可能である。
本発明のリチウムイオン二次電池用負極は、本発明のリチウムイオン二次電池用負極材と前記バインダ樹脂、溶剤、導電助材を十分混練し、銅箔等の集電体に塗布、乾燥、プレスして作製することができる。導電助材としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛粉を用いることができる。また、本発明のリチウムイオン二次電池用負極は、本発明のリチウムイオン二次電池用負極材と黒鉛質リチウムイオン二次電池用負極材と前記バインダ樹脂、溶剤を十分混練し、銅箔等の集電体に塗布、乾燥、プレスして作製することができる。
The negative electrode material for a lithium ion secondary battery of the present invention is formed into a negative electrode by binding to a current collector using a binder made of a resin having a degree of swelling of 7% or less, preferably 5% or less in an electrolytic solution. Therefore, it is possible to exhibit further excellent characteristics as a lithium ion secondary battery. The degree of swelling in the electrolytic solution can be determined as follows. A solution containing a binder is applied onto a Teflon (registered trademark) -coated stainless steel plate, dried at 80 ° C. for 1 hour, the formed binder resin film is peeled off, and dried in a vacuum at 120 ° C. for 5 hours. The obtained binder resin film is immersed in an electrolytic solution {1M LiPF 6 , EC / DMC / DEC (1/1/1)} and left at 50 ° C. for 24 hours. The degree of swelling is calculated from the weight change before and after immersion in the electrolyte solution. When a binder made of a resin with a high degree of swelling is used, the binder swells in the battery, the binding force decreases, and the negative electrode material is bonded between the negative electrode material particles and the negative electrode material / current collector due to expansion and contraction during charge / discharge of the negative electrode material. Is destroyed and the capacity is reduced. The binder made of the resin as described above is available as, for example, LSR7 (manufactured by Hitachi Chemical Co., Ltd.) or LA132 (manufactured by Chengdu Indigo Power Sources Co., LtD).
The negative electrode for a lithium ion secondary battery of the present invention is sufficiently kneaded with the negative electrode material for a lithium ion secondary battery of the present invention and the binder resin, solvent, and conductive additive, applied to a current collector such as a copper foil, dried, It can be made by pressing. As the conductive aid, carbon black such as acetylene black and ketjen black, and graphite powder can be used. The negative electrode for a lithium ion secondary battery of the present invention is a mixture of a negative electrode material for a lithium ion secondary battery of the present invention, a negative electrode material for a graphite lithium ion secondary battery, the binder resin, and a solvent, and a copper foil or the like. The current collector can be applied, dried and pressed.

本発明のリチウムイオン二次電池用負極材或いは負極を用いてリチウムイオン二次電池を作製する場合、正極材料は特に限定されず、公知の材料、例えばLiCoO、LiNiO、LiMn等のリチウム含有酸化物を使用することができる。正極は、粉末状のこれら正極材料にバインダの他、必要であれば導電材、溶剤等を添加して十分混練後、アルミニウム箔等の集電体に塗布、乾燥、プレスして作製することができる。 When producing a lithium ion secondary battery using the negative electrode material for lithium ion secondary batteries or the negative electrode of the present invention, the positive electrode material is not particularly limited, and known materials such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc. Lithium-containing oxides can be used. A positive electrode can be prepared by adding a conductive material, a solvent, etc., if necessary, to a powdered positive electrode material, kneading and applying, drying and pressing on a current collector such as an aluminum foil. it can.

また、セパレータについても特に限定はなく、公知の材料を使用することが可能である。
電解質用溶媒としては、公知のリチウム塩を溶解できる非プロトン性、低誘電率の溶媒を使用することができる。例えば、エチレンカーボネート、プロピレンカーボネート、ジエチレンカーボネート、ジメチルカーボネート、メチル・エチルカーボネート、アセトニトリル、プロピオニトリル、テトラヒドロフラン、γ―ブチロラクトン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、スルホラン、メチルスルホラン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の溶媒を単独、或いは複数混合して使用することができる。
Moreover, there is no limitation in particular also about a separator, It is possible to use a well-known material.
As the electrolyte solvent, an aprotic solvent having a low dielectric constant capable of dissolving a known lithium salt can be used. For example, ethylene carbonate, propylene carbonate, diethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, acetonitrile, propionitrile, tetrahydrofuran, γ-butyrolactone, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Use a solvent such as dioxolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, sulfolane, methyl sulfolane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide alone or in combination. Can do.

電解質として用いるリチウム塩としては、LiClO、LiAsF、LiPF、LiBF、LiB(C、LiCl、CHSOLi、CFSOLi等があり、これらの塩を単独、或いは複数混合して使用することができる。 Examples of the lithium salt used as the electrolyte include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, CH 3 SO 3 Li, CF 3 SO 3 Li, and the like. It can be used alone or in combination.

また、リチウム固体二次電池、ポリマーリチウム二次電池を作成する場合においては、公知の正極、ポリマー電解質、固体電解質と共に、本発明のリチウムイオン二次電池用負極材或いは負極を用いることにより、安全性が高く、高容量の二次電池を作製することができる。   In addition, when making a lithium solid secondary battery or a polymer lithium secondary battery, the negative electrode material for a lithium ion secondary battery or the negative electrode of the present invention can be used together with a known positive electrode, polymer electrolyte, and solid electrolyte. A high-capacity secondary battery with high capacity can be manufactured.

〔実施例1〕
遊星ボールミル{Planetary Mono Mill P-6(Fritsch Germany)、容器:ステンレス製、容積80ml、ステンレス製ボール(φ10mm、10個)}の容器にSnO、Al(200mesh以下)、Coを重量比1:0.27:0.16で秤量、投入した。 容器内をアルゴンガスでパージした後、密閉し、450rpmで10時間、メカニカルアロイング処理を行った。得られた複合材の広角X線回折図にはCoSn、Al及び少量の未反応のCoが観察された。
[Example 1]
Planetary Mono Mill P-6 (Planetary Mono Mill P-6 (Fritsch Germany), container: made of stainless steel, volume 80 ml, stainless steel balls (10 mm diameter, 10 pieces)) SnO 2 , Al (200 mesh or less), Co in weight ratio 1: 0.27: Weighed and charged at 0.16. After purging the inside of the container with argon gas, it was sealed and subjected to mechanical alloying at 450 rpm for 10 hours. CoSn 3 , Al 2 O 3 and a small amount of unreacted Co were observed in the wide-angle X-ray diffraction pattern of the obtained composite material.

〔実施例2〕
遊星ボールミルの容器にSnO、Al、Coを重量比で1:0.176:0.148で秤量し、実施例1と同様にしてメカニカルアロイング処理を行った。得られた複合材の広角X線回折図にはCoSnとAlが観察された。
[Example 2]
SnO, Al, and Co were weighed at a weight ratio of 1: 0.176: 0.148 in a container of a planetary ball mill, and mechanical alloying was performed in the same manner as in Example 1. CoSn 3 and Al 2 O 3 were observed in the wide-angle X-ray diffraction pattern of the obtained composite material.

〔実施例3〕
遊星ボールミルの容器にSnO、Alを重量比で1:0.27で秤量し、実施例1と同様にしてメカニカルアロイング処理を行った。得られた複合材の広角X線回折図にはSn、Alの他、少量の未反応のSnO、Alが観察された。
Example 3
SnO 2 and Al were weighed at a weight ratio of 1: 0.27 in a planetary ball mill container and subjected to mechanical alloying in the same manner as in Example 1. In addition to Sn and Al 2 O 3 , a small amount of unreacted SnO 2 and Al were observed in the wide-angle X-ray diffraction pattern of the obtained composite material.

〔実施例4〕
遊星ボールミルの容器にSnO、Mg、Coを重量比で1:0.235:0.148で秤量し、実施例1と同様にしてメカニカルアロイング処理を行った。得られた複合材の広角X線回折図にはCoSnとMgOが観察された。
Example 4
SnO, Mg, and Co were weighed at a weight ratio of 1: 0.235: 0.148 in a planetary ball mill container, and mechanical alloying was performed in the same manner as in Example 1. CoSn 3 and MgO were observed in the wide-angle X-ray diffraction pattern of the obtained composite material.

〔比較例1〕
遊星ボールミルの容器にSnO、Al、Sbを重量比で1:0.176:0.9で秤量し、実施例1と同様にしてメカニカルアロイング処理を行った。得られた複合材の広角X線回折図にはSn、SnSb、Al、Sb、Alが観察された。
[Comparative Example 1]
SnO, Al, and Sb were weighed at a weight ratio of 1: 0.176: 0.9 in a planetary ball mill container, and mechanical alloying was performed in the same manner as in Example 1. Sn, SnSb, Al 2 O 3 , Sb, and Al were observed in the wide-angle X-ray diffraction pattern of the obtained composite material.

<参考例>
〔充放電特性評価〕
実施例1〜4で作製した複合材について、複合材87%に対し、5%のアセチレンブラック、及びバインダーとして8%のポリ弗化ビニリデン(呉羽化学製、KF1120)、及び溶媒としてN−メチル−ピロリドンを添加、混練しスラリーとした。得られたスラリーを銅箔に塗布、乾燥後、プレスして負極を作製した。
<Reference example>
[Charge / discharge characteristics evaluation]
About the composite material produced in Examples 1-4, 5% of acetylene black, 8% of polyvinylidene fluoride (manufactured by Kureha Chemical, KF1120) as a binder, and N-methyl- as a solvent with respect to 87% of the composite material Pyrrolidone was added and kneaded to form a slurry. The obtained slurry was applied to a copper foil, dried, and then pressed to prepare a negative electrode.

得られた負極を打ち抜き、対極として金属リチウム、電解液として1M LiPF/EC+DMC(容積比1:1)を用い、コインセル(CR2016型)を用いて電池を組みたてた。電流密度0.3mA/cm、カットオフ電圧を金属リチウム電位に対して充電時0.0V、放電時1.4Vとして充放電を行った。表1に各複合材の充放電評価結果を示す。同表には、比較例としてSnO(比較例2)、及びSnO(比較例3)について、同様にして測定した充放電評価結果を示す。 The obtained negative electrode was punched out, and a battery was assembled using a coin cell (CR2016 type) using metallic lithium as a counter electrode, 1M LiPF 6 / EC + DMC (volume ratio 1: 1) as an electrolyte. Charging / discharging was performed with a current density of 0.3 mA / cm 2 and a cut-off voltage of 0.0 V during charging and 1.4 V during discharging with respect to the metal lithium potential. Table 1 shows the charge / discharge evaluation results of each composite material. The table shows the charge / discharge evaluation results measured in the same manner for SnO 2 (Comparative Example 2) and SnO (Comparative Example 3) as comparative examples.

本発明のリチウムイオン二次電池は、金属酸化物を負極材として用いた場合(比較例3、4)と比較し、初回充放電効率が高く、また3サイクル後での容量維持率が大きいことが分かる。
また、メカニカルアロイング処理時、リチウムと合金形成可能な金属(Ma)の酸化物、金属(Mb)と共にリチウムと合金を形成しない金属(Mc)を共存、且つMcをCoとすることにより、初回充放電効率が高く、3サイクル後での容量維持率が大きくなることが分かる。
The lithium ion secondary battery of the present invention has a high initial charge / discharge efficiency and a large capacity retention rate after 3 cycles compared to the case where a metal oxide is used as a negative electrode material (Comparative Examples 3 and 4). I understand.
Further, at the time of mechanical alloying, the metal (Ma) oxide that can form an alloy with lithium, the metal (Mb) that does not form an alloy with lithium (Mc), and Mc as Co are used for the first time. It can be seen that the charge / discharge efficiency is high, and the capacity retention rate after 3 cycles is increased.

Figure 0005217083
Figure 0005217083

〔実施例7、8〕
実施例2で作製した複合材について、バインダーをPVdFからLA132(Chengdu Indigo Power Sources Co., Ltd.製)(実施例7)、LSR7(日立化成工業株式会社製)(実施例8)に替え、実施例2と同様にして充放電特性の評価を行った。結果を表に示す。
[Examples 7 and 8]
About the composite material produced in Example 2, the binder is changed from PVdF to LA132 (manufactured by Chengdu Indigo Power Sources Co., Ltd.) (Example 7), LSR7 (manufactured by Hitachi Chemical Co., Ltd.) (Example 8), The charge / discharge characteristics were evaluated in the same manner as in Example 2. The results are shown in Table 3 .

Figure 0005217083
バインダ添加量:固形分濃度
Figure 0005217083
Binder addition amount: solid content concentration

Claims (6)

リチウムと合金形成可能な金属(Ma)と金属(Mb)の酸化物がメカニカルアロイング処理により一体化された複合材を含むリチウムイオン二次電池用負極材と、電解液中での膨潤度が%以下である樹脂からなるバインダと、を含み、
前記金属(Ma)がSnであり、前記金属(Mb)がAl或いはMgであるリチウムイオン二次電池用負極合剤。
A negative electrode material for a lithium ion secondary battery including a composite material in which an oxide of metal (Ma) and metal (Mb) capable of forming an alloy with lithium is integrated by mechanical alloying , and a degree of swelling in an electrolyte solution and a binder consisting of a 7% or less is resin, only including,
A negative electrode mixture for a lithium ion secondary battery, wherein the metal (Ma) is Sn and the metal (Mb) is Al or Mg .
リチウムと合金形成可能な金属(Ma)がリチウムと合金を形成しない金属(Mc)と合金を形成していることを特徴とする請求項1記載のリチウムイオン二次電池用負極合剤。 2. The negative electrode mixture for a lithium ion secondary battery according to claim 1 , wherein the metal (Ma) capable of forming an alloy with lithium forms an alloy with a metal (Mc) that does not form an alloy with lithium. 属(Mc)がCoであることを特徴とする請求項2に記載のリチウムイオン二次電池用負極合剤。 Metals (Mc) is a negative electrode mixture for a lithium ion secondary battery according to claim 2, characterized in that the Co. リチウムと合金形成可能な金属(Ma)と金属(Mb)の酸化物がメカニカルアロイング処理により一体化された複合材がさらに炭素、或いは炭素及び黒鉛と複合化されていることを特徴とする請求項1〜3のいずれか1項に記載のリチウムイオン二次電池用負極合剤。 A composite material in which an oxide of metal (Ma) and metal (Mb) capable of forming an alloy with lithium is integrated by mechanical alloying is further combined with carbon or carbon and graphite. anode mixture for lithium ion secondary battery according to any one of clauses 1-3. 請求項1〜のいずれか1項に記載のリチウムイオン二次電池用負極合剤を用いて集電体に結着してなるリチウムイオン二次電池用負極。 The negative electrode for lithium ion secondary batteries formed by binding to the current collector using the negative electrode mixture for lithium ion secondary batteries according to any one of claims 1 to 4 . 請求項に記載のリチウムイオン二次電池用負極を有してなるリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to claim 5 .
JP2005330051A 2005-11-15 2005-11-15 Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Expired - Fee Related JP5217083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330051A JP5217083B2 (en) 2005-11-15 2005-11-15 Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330051A JP5217083B2 (en) 2005-11-15 2005-11-15 Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011243791A Division JP5472263B2 (en) 2011-11-07 2011-11-07 Method for producing negative electrode material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2007141504A JP2007141504A (en) 2007-06-07
JP5217083B2 true JP5217083B2 (en) 2013-06-19

Family

ID=38204144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330051A Expired - Fee Related JP5217083B2 (en) 2005-11-15 2005-11-15 Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5217083B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753545B2 (en) * 2010-03-03 2014-06-17 3M Innovative Properties Company Composite negative electrode materials
KR20120046104A (en) 2010-06-25 2012-05-09 파나소닉 주식회사 Lithium ion secondary battery
JP5933252B2 (en) * 2011-12-26 2016-06-08 日立マクセル株式会社 Non-aqueous secondary battery
JP2013191529A (en) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298122A (en) * 1995-04-27 1996-11-12 Sony Corp Nonaqueous electrolyte secondary battery
JP3941235B2 (en) * 1998-05-13 2007-07-04 宇部興産株式会社 Non-aqueous secondary battery
JP2000090922A (en) * 1998-09-09 2000-03-31 Sumitomo Metal Ind Ltd Lithium secondary battery, its negative electrode material, and manufacture of the material
JP2001325950A (en) * 2000-05-15 2001-11-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell and negative electrode of the same
JP2003157851A (en) * 2001-08-30 2003-05-30 Hitachi Chem Co Ltd Thermosetting polyvinyl alcohol-based binder resin composition, mix slurry, electrode, nonaqueous electrolyte secondary battery, and thermosetting polyvinyl alcohol-based binder resin for electrode material
JP3982230B2 (en) * 2001-10-18 2007-09-26 日本電気株式会社 Secondary battery negative electrode and secondary battery using the same
JP5060010B2 (en) * 2002-10-18 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2004031217A (en) * 2002-06-27 2004-01-29 Sony Corp Battery
JP2004200115A (en) * 2002-12-20 2004-07-15 Sony Corp Negative electrode and battery using it
JP2004319469A (en) * 2003-04-02 2004-11-11 Matsushita Electric Ind Co Ltd Negative electrode active substance and nonaqueous electrolyte secondary cell
JP4736804B2 (en) * 2003-04-24 2011-07-27 日本ゼオン株式会社 Binder for lithium ion secondary battery electrode
JP2004335335A (en) * 2003-05-09 2004-11-25 Mitsubishi Materials Corp Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using the same
KR100595896B1 (en) * 2003-07-29 2006-07-03 주식회사 엘지화학 A negative active material for lithium secondary battery and a method for preparing same
JP4171904B2 (en) * 2003-08-05 2008-10-29 信越化学工業株式会社 Lithium ion secondary battery negative electrode material and method for producing the same
JP3995050B2 (en) * 2003-09-26 2007-10-24 Jfeケミカル株式会社 Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2005149957A (en) * 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP4513385B2 (en) * 2004-03-31 2010-07-28 日本電気株式会社 Negative electrode for secondary battery and secondary battery
JP4547963B2 (en) * 2004-03-31 2010-09-22 日本電気株式会社 Negative electrode for secondary battery, method for producing the same, and secondary battery

Also Published As

Publication number Publication date
JP2007141504A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
KR101362513B1 (en) Anode Active Material and Battery Using the Same
JP3726958B2 (en) battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4329676B2 (en) Negative electrode active material and secondary battery using the same
JP2004362895A (en) Negative electrode material, and battery using it
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
JP5234600B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the negative electrode, and method for producing negative electrode for lithium ion secondary battery
JP2003208893A (en) Non-aqueous secondary battery and charging method thereof
JP5217083B2 (en) Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4055207B2 (en) Negative electrode active material and battery using the same
JP4897718B2 (en) Negative electrode active material and secondary battery
JP2018139214A (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
JP6123674B2 (en) Lithium secondary battery and vehicle using the same
JP5754383B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP5754382B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP3734169B2 (en) Battery negative electrode material and battery using the same
JP2020047608A (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
JP2005317447A (en) Battery
CN111052486A (en) Nonaqueous electrolyte secondary battery
JP2007059206A (en) Anode and battery
JP5472263B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP6245954B2 (en) Negative electrode active material for lithium ion secondary battery
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JP2000200603A (en) Negative-electrode material, its manufacture, and battery using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5217083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees