JP3082341B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JP3082341B2
JP3082341B2 JP03244454A JP24445491A JP3082341B2 JP 3082341 B2 JP3082341 B2 JP 3082341B2 JP 03244454 A JP03244454 A JP 03244454A JP 24445491 A JP24445491 A JP 24445491A JP 3082341 B2 JP3082341 B2 JP 3082341B2
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
alloy
battery
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03244454A
Other languages
Japanese (ja)
Other versions
JPH06283167A (en
Inventor
圭一 長谷川
宏之 森
正治 綿田
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP03244454A priority Critical patent/JP3082341B2/en
Publication of JPH06283167A publication Critical patent/JPH06283167A/en
Application granted granted Critical
Publication of JP3082341B2 publication Critical patent/JP3082341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、水素吸蔵合金を用い
た水素吸蔵電極に関するものであり、特にAB5型水素
吸蔵合金相を有し、ニッケル−水素二次電池を構成する
水素吸蔵電極に関するものである。
BACKGROUND OF THE INVENTION This invention relates to a hydrogen absorbing electrode using a hydrogen storage alloy, particularly having a AB 5 type hydrogen storage alloy phase, a nickel - relates to a hydrogen absorbing electrode which constitutes the hydrogen rechargeable battery Things.

【0002】[0002]

【従来の技術】水素吸蔵合金を用いたニッケル−水素二
次電池は、エネルギー密度が高く、また、カドミウムな
どを含まず低公害性を有するため、近年ポータブル機器
用電源などの用途に多くの需要がある。
2. Description of the Related Art A nickel-hydrogen secondary battery using a hydrogen storage alloy has a high energy density and a low pollution property without containing cadmium or the like. There is.

【0003】[0003]

【発明が解決しようとする問題点】ポータブル機器用電
源として用いた場合、近年の機器の多機能化、消費電流
の増大、小型化などに伴い、電池の使用環境(機器内
部)は高温になることが多く、ニッケル−水素電池の高
性能化にあたり、高温特性の改良は不可欠である。
Problems to be Solved by the Invention When used as a power source for portable equipment, the environment in which the battery is used (inside the equipment) becomes high with the recent multifunctionalization of the equipment, an increase in current consumption, and miniaturization. In many cases, improvement in high-temperature characteristics is indispensable for improving the performance of nickel-hydrogen batteries.

【0004】ニツケル−水素電池の高温特性の中でも、
高温下での放電容量の減少は最も大きい問題の一つであ
り、水素吸蔵合金を用いたニッケル−水素二次電池の場
合、負極である水素吸蔵電極の特性が高温下での放電容
量等の電池性能に及ぼす影響は大きく、高温特性の優れ
た水素吸蔵合金の開発が望まれていた。
[0004] Among the high-temperature characteristics of nickel-hydrogen batteries,
Reduction of discharge capacity at high temperatures is one of the biggest problems.In the case of nickel-hydrogen secondary batteries using a hydrogen storage alloy, the characteristics of the hydrogen storage electrode, which is the negative electrode, are such as the discharge capacity at high temperatures. The effect on the battery performance is significant, and the development of a hydrogen storage alloy having excellent high-temperature characteristics has been desired.

【0005】この発明は以上の従来技術における問題に
鑑みてなされたものであり、高温特性に優れ、長寿命の
ニツケル−水素電池を構成することができる水素吸蔵電
極を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and has as its object to provide a hydrogen storage electrode which has excellent high-temperature characteristics and can constitute a long-life nickel-hydrogen battery. .

【0006】[0006]

【目的を達成するための手段】すなわちこの出願の発明
の水素吸蔵電極はLmNiAlCo Fe で表さ
れる水素吸蔵合金相を少なくとも一部に有することを特
徴とする。
Hydrogen storage electrodes of the invention In order to achieve the object] That this application is characterized by having at least a portion of the hydrogen storage alloy phase expressed by LmNi x Al y Co z Fe u .

【0007】[0007]

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】ここでLmは希土類元素の混合物であり、
その希土類元素の混合物のうちLaは40wt%以上とする
のが好ましい。Laが40wt%未満では得られる水素吸蔵
電極の高温下における放電容量が不十分となり、Laが
40wt%以上であれば、高温下における放電容量の低下が
ないからである。
Here, Lm is a mixture of rare earth elements,
La in the mixture of rare earth elements is preferably set to 40 wt% or more. If La is less than 40 wt%, the discharge capacity of the obtained hydrogen storage electrode at high temperatures becomes insufficient, and La becomes
If the content is 40 wt% or more, there is no decrease in discharge capacity at high temperatures.

【0012】また、以上のこの出願の発明の水素吸蔵電
極においては3.5≦x≦4.5、0.05≦y≦0.9、0.1≦z+
u≦1.5、4.5≦x+y+z+u≦5.5とするのが良い。
xが3.5未満では放電電圧が低下し、逆に4.5を越えると
y+zの比率が低下するのでAl、Co添加の効果が得
られなくなる。
Further, in the hydrogen storage electrode of the invention of the present application, 3.5 ≦ x ≦ 4.5, 0.05 ≦ y ≦ 0.9, 0.1 ≦ z +
It is preferable that u ≦ 1.5 and 4.5 ≦ x + y + z + u ≦ 5.5.
If x is less than 3.5, the discharge voltage decreases, and if it exceeds 4.5, the ratio of y + z decreases, so that the effect of adding Al and Co cannot be obtained.

【0013】yが0.05未満では得られる水素吸蔵合金の
結晶構造における格子間隔が小さくなり、水素吸蔵速度
が低下し充電速度が低下する。逆に0.9を越えると結晶
構造の格子間隔が過剰に拡大し、平衡解離圧が低下して
水素吸蔵量が低下する。
When y is less than 0.05, the lattice spacing in the crystal structure of the obtained hydrogen storage alloy becomes small, and the hydrogen storage rate decreases and the charging rate decreases. Conversely, if it exceeds 0.9, the lattice spacing of the crystal structure is excessively enlarged, the equilibrium dissociation pressure is reduced, and the hydrogen storage amount is reduced.

【0014】z+uが0.1未満では合金組成中に含むC
o量が不十分で、La量の増加やAlの置換によって、
得られる水素吸蔵合金に寿命の低下がみられる。逆にz
+uが1.5を越えると得られる合金中のCo及びFeの
含有量が過剰となり、他の成分特にNi、Alの含有量
が相対的に抑制される結果となり、放電容量の低下等の
悪影響が生じ好ましくない。4.5≦x+y+z≦5.5の範
囲外では、AB5構造の金属間化合物の化学量論比から
逸脱するため好ましくない。
If z + u is less than 0.1, C contained in the alloy composition
Insufficient amount of o, increase of La amount and substitution of Al
The life of the obtained hydrogen storage alloy is reduced. Conversely z
When + u exceeds 1.5, the contents of Co and Fe in the obtained alloy become excessive, and the contents of other components, particularly Ni and Al, are relatively suppressed, resulting in an adverse effect such as a decrease in discharge capacity. Not preferred. Outside the range of 4.5 ≦ x + y + z ≦ 5.5, the stoichiometric ratio of the intermetallic compound having the AB 5 structure is not preferable.

【0015】[0015]

【作用】水素吸蔵電極は、高温になると放電容量が減少
する性質がみられる。この現象は、水素吸蔵合金の結晶
構造に関係しており、結晶構造における格子間隔の大き
い水素吸蔵合金は吸蔵速度が大きいため充電効率が良い
傾向がみられる。また結晶構造における格子間隔が大き
くなると水素吸蔵合金の平衡解離圧も下がる傾向がある
ことから、この平衡解離圧を放電容量減少の程度につい
ての指標とすることができる。
The hydrogen storage electrode has a characteristic that the discharge capacity decreases at high temperatures. This phenomenon is related to the crystal structure of the hydrogen storage alloy, and the hydrogen storage alloy having a large lattice spacing in the crystal structure tends to have a high charging efficiency due to a high storage rate. Also, since the equilibrium dissociation pressure of the hydrogen storage alloy tends to decrease as the lattice spacing in the crystal structure increases, this equilibrium dissociation pressure can be used as an index for the degree of discharge capacity reduction.

【0016】一般に合金の結晶格子間隔を拡げるために
は、Alの添加が効果的であることが知られている。し
かし、Alの添加によって格子間隔が拡大し平衡解離圧
が下がるのに伴い、逆に水素吸蔵量の低下が見られるこ
とから、Alの置換量には限界があり、0.05≦y≦0.9
が適当である。一方、AB5形水素吸蔵合金のAに相当
するMm(ミッシュメタル)中のLa量を増加させる
と、Mm全体の水素化熱の絶対量(△H)が低下するた
め、水素吸蔵合金全体の平均解離圧は下がる。また、L
a量を増加させると吸蔵量の増大もみられる。従って、
MmNi5のMm中のLa量を増加させ、Niの一部を
Alで適当量置換することにより、吸蔵量を低下させる
ことなく平衡解離圧を下げることができる。
It is generally known that the addition of Al is effective for increasing the crystal lattice spacing of an alloy. However, the addition of Al increases the lattice spacing and lowers the equilibrium dissociation pressure. Conversely, a decrease in the amount of hydrogen absorbed is seen. Therefore, the amount of Al substitution is limited, and 0.05 ≦ y ≦ 0.9.
Is appropriate. On the other hand, increasing the amount of La in Mm (misch metal) which corresponds to the A of the AB 5 form hydrogen storage alloy, the absolute amount of total hydrogen Kanetsu Mm (△ H) for decreases, the overall hydrogen storage alloy The average dissociation pressure drops. Also, L
When the amount a is increased, the occlusion amount is also increased. Therefore,
Increasing the amount of La in Mm of MmNi 5, a part of Ni by appropriate amount replaced by Al, it is possible to lower the equilibrium dissociation pressure without decreasing the storage amount.

【0017】ところが、Al、Laいずれの元素もアル
カリ電解液中で水素電位よりも卑な平衡電位を持つた
め、合金腐食を進行させる作用を合わせ持ち、そのため
前述する様にAlを添加し、さらにLa量を増加する場
合には、得られる水素吸蔵合金が腐食し易いものとな
る。この様に耐腐食性が低い合金を電極として用いた場
合、使用過程における腐食の進行により電極の寿命が短
かくなるという問題が生じる。
However, since both elements, Al and La, have an equilibrium potential lower than the hydrogen potential in the alkaline electrolyte, they also have the effect of promoting the corrosion of the alloy. Therefore, Al is added as described above. When the amount of La is increased, the obtained hydrogen storage alloy tends to corrode. When such an alloy having low corrosion resistance is used as an electrode, there is a problem that the life of the electrode is shortened due to the progress of corrosion in the use process.

【0018】しかし、本発明者らは水素吸蔵合金中にC
oを含むと、腐食の進行にともなう電極特性の低下が抑
制されることを見いだし、さらにこの電極特性の低下を
抑制するCoの作用についても明らかにした。腐食の進
行に伴う水素吸蔵合金電極の特性劣化は、腐食生成物が
粒子間に介在し、合金粉末の導電性が低下するためであ
ることが知られている。一方、Coの酸化還元電位と水
素吸蔵電極の充放電電位領域は重なり、合金腐食により
生成したCo(II)錯イオンは水素吸蔵電極の充電電位
でCo金属に還元され、その際合金粒子間に導電性ネッ
トワークを形成する。したがってCoを含む合金ではこ
のような導電性ネットワークの形成により、図1に示す
ように合金粒子間の導電性が補償されていることが確認
される。
However, the present inventors have found that C in the hydrogen storage alloy.
It was found that when o was included, the deterioration of the electrode characteristics due to the progress of corrosion was suppressed, and the effect of Co, which suppresses the deterioration of the electrode characteristics, was also clarified. It is known that the deterioration of the characteristics of the hydrogen-absorbing alloy electrode accompanying the progress of corrosion is due to corrosion products being interposed between the particles and lowering the conductivity of the alloy powder. On the other hand, the oxidation-reduction potential of Co and the charge / discharge potential region of the hydrogen storage electrode overlap, and the Co (II) complex ion generated by the corrosion of the alloy is reduced to Co metal at the charge potential of the hydrogen storage electrode. Form a conductive network. Therefore, in the alloy containing Co, it is confirmed that the conductivity between the alloy particles is compensated by the formation of such a conductive network as shown in FIG.

【0019】また、Coを含む合金の腐食形態は、Co
を含まない合金と大きな差がみられる。Co粉末を合金
粉末と混合して添加した場合においてもこの差がみられ
ることから、この腐食形態の違いは析出したCo、ある
いは、放電の際溶出したCo錯イオンに起因するものと
考えられる。
The corrosion mode of the alloy containing Co is Co
There is a large difference from the alloy containing no. Since this difference is observed even when Co powder is mixed with the alloy powder and added, it is considered that this difference in the corrosion form is caused by the precipitated Co or the Co complex ion eluted during the discharge.

【0020】さらに、充電後および放電後に電極中に吸
蔵されている水素量を測定したところ、図2に示すよう
にCoを含む合金では深い放電が可能なことがわかる。
Coは水素のイオン化反応に対し優れた触媒活性を有す
ることが知られており、このような放電深度の深さは合
金表面に析出したCo層の触媒作用も加わって生じる現
象であると考えられる。
Further, when the amount of hydrogen occluded in the electrode after charging and after discharging was measured, it was found that deep discharge was possible with an alloy containing Co as shown in FIG.
It is known that Co has excellent catalytic activity for hydrogen ionization reaction, and such a depth of discharge is considered to be a phenomenon caused by the catalytic action of the Co layer deposited on the alloy surface. .

【0021】以上のように、Coを合金組成中に含むこ
とで、La量の増加やAlの置換によっても寿命の低下
はみられず、高性能な電極として維持することができ
る。さらに、Co以外にCoの一部をFeの元素で適当
量置換すると、電極の初期活性化が速やかになり、プラ
トーの平坦性が向上したり、耐食性が向上するなど、さ
らに高性能な電極とする事ができる。
As described above, by including Co in the alloy composition, the life is not shortened even when the amount of La is increased or Al is replaced, and the electrode can be maintained as a high-performance electrode. Further, when a part of Co other than Co is replaced by an appropriate amount of Fe element, the initial activation of the electrode is prompt, the flatness of the plateau is improved, and the corrosion resistance is improved. You can do it.

【0022】すなわち一般にCoを含む合金は、空気中
で表面に緻密な酸化皮膜を形成する。したがってこの様
な不働態酸化皮膜が形成された合金素材を電極に用いた
場合、使用に先立ち、電極の活性化のために数サイクル
の充放電を繰り返すか、もしくは電極を作製する前に予
め合金粉末を酸やアルカリでエッチング処理し、表面皮
膜を除去する操作、あるいは電極作製工程すべてを不活
性雰囲気にするなどの対策が必要となる。
That is, an alloy containing Co generally forms a dense oxide film on the surface in air. Therefore, when an alloy material on which such a passive oxide film is formed is used for an electrode, it is necessary to repeat several cycles of charging and discharging to activate the electrode before use, or to perform alloying before manufacturing the electrode. It is necessary to take measures such as an operation of removing the surface film by etching the powder with an acid or an alkali or an inert atmosphere in all the electrode manufacturing steps.

【0023】この様なCo添加にともない生じる問題の
解消を目的として、各種合金組成による電極の初期容量
変化を調べたところ、図3に示すように合金組成中にF
eを含むと、初期から安定した電極特性を得ることがで
き、前述した各種操作、対策は全く必要なくなることが
わかった。これは可逆水素電位よりも僅かに卑な平衡電
位を持つFeが、開路状態あるいは放電中の電極におい
て溶出するため、前述した不働態酸化皮膜が容易に破壊
されるのではないかと考えられる。また、この様に合金
から溶出したFe錯イオンは、Co同様充電時に金属に
還元され、導電性ネットワークを形成しており、このF
eによる導電性ネットワーク形成作用によっても得られ
る電極の放電深度が深くなることから、Coの一部をF
e等によって置換しても、Co添加による水素吸蔵合金
の特性向上に対する悪影響はない。
In order to solve such problems caused by the addition of Co, changes in the initial capacity of the electrode due to various alloy compositions were examined. As shown in FIG.
It was found that when e was included, stable electrode characteristics could be obtained from the beginning, and the above-described various operations and countermeasures were not required at all. This is thought to be because Fe, which has an equilibrium potential slightly lower than the reversible hydrogen potential, elutes at the electrode in the open or discharging state, so that the above-mentioned passive oxide film may be easily destroyed. Further, the Fe complex ions eluted from the alloy in this way are reduced to metal at the time of charging similarly to Co, forming a conductive network.
e, the depth of discharge of the electrode also obtained by the conductive network forming action becomes deep, so that a part of Co
Even if it is replaced by e or the like, there is no adverse effect on the improvement of the properties of the hydrogen storage alloy by the addition of Co.

【0024】[0024]

【実施例】以下にこの出願の発明の実施例を説明する。実施例 1 目的組成となるよう秤量した成分元素をるつぼに投入
し、高周波溶解炉を用いて溶解し、冷却後機械粉砕する
ことで水素吸蔵合金粉末試料を得た。この粉末にPVA
(ホ゜リヒ゛ニルアルコール)水溶液を加えペースト状にし、ニッケ
ル繊維基板に充填、乾燥後プレスして水素吸蔵電極とし
た。この水素吸蔵電極を負極とし、公知の高密度カドミ
レス水酸化ニッケル活物質を用いたペースト式ニッケル
電極を正極とし、公称容量1100mAHのAAサイズ
密閉形ニッケル−水素電池を構成した。
Embodiments of the present invention will be described below. Example 1 A component element weighed to a target composition was put into a crucible, melted using a high-frequency melting furnace, cooled, and mechanically pulverized to obtain a hydrogen storage alloy powder sample. PVA is added to this powder
An aqueous solution of (polyvinyl alcohol) was added to form a paste, filled in a nickel fiber substrate, dried and pressed to form a hydrogen storage electrode. This hydrogen storage electrode was used as a negative electrode, and a pasted nickel electrode using a known high-density cadmium-less nickel hydroxide active material was used as a positive electrode to constitute an AA-size sealed nickel-hydrogen battery with a nominal capacity of 1100 mAH.

【0025】このニッケル−水素電池につき電池容量、
電池寿命、放電電圧等の各種特性を評価した。表1に2
0℃における電池容量を100%としたときの45℃に
おける電池容量を示す。LaをLm中60wt%含有する
この発明の実施例の組成であるA〜Dは45℃において
もほとんど容量減少していないのに対し、Mm中のLa
含有量が29wt%である比較例では50%近くの容量減少を
生じていることがわかる。
The battery capacity of this nickel-hydrogen battery,
Various characteristics such as battery life and discharge voltage were evaluated. Table 2
This shows the battery capacity at 45 ° C. assuming that the battery capacity at 0 ° C. is 100%. The compositions A to D of the examples of the present invention containing 60 wt% of La in Lm show little decrease in capacity even at 45 ° C., whereas La in Mm
It can be seen that in the comparative example in which the content is 29 wt%, the capacity is reduced by nearly 50%.

【0026】[0026]

【表1】 充電:0.3C,150% 放電:0.2C終止電圧1.0V Lm:Lm中、La=60wt% Mm:Mm中、La=29wt%[Table 1] Charge: 0.3C, 150% Discharge: 0.2C Final voltage 1.0V Lm: La = 60wt% in Lm Mm: La = 29wt% in Mm

【0027】次に図4にLm中のLa量により45℃で
の電池容量がどのように変化するかを調べた結果を示
す。La量が30wt%以上含まれると45℃における容
量減少が抑制される効果がみられ、La量が40wt%以
上になると容量減少はほとんど防止さ れること
がわかる。
FIG. 4 shows the result of examining how the battery capacity at 45 ° C. changes depending on the amount of La in Lm. It can be seen that when the La content is 30 wt% or more, the capacity reduction at 45 ° C. is suppressed, and when the La content is 40 wt% or more, the capacity reduction is almost prevented.

【0028】表2に合金組成により電池の寿命がどの様
に変化するかを調べた結果を示す。Coを含有する実施
例の試料A、Bがほとんど電池容量に変化がないのに対
し、高温特性に優れたLmを用いた合金組成であって
も、Coを含まない組成の比較例2と、Mmを用いかつ
Coを含まない組成の比較例3試料では電池容量が極端
に減少しており、合金腐食が進行するため電池寿命が低
下することがわかる。
Table 2 shows the results of examining how the life of the battery changes depending on the alloy composition. Although the sample A and the sample B of the example containing Co have almost no change in the battery capacity, even if the alloy composition using Lm excellent in the high-temperature characteristics, the comparative example 2 of the composition not containing Co, In the sample of Comparative Example 3 using Mm and containing no Co, the battery capacity was extremely reduced, and it was found that the battery life was shortened due to the progress of alloy corrosion.

【0029】[0029]

【表2】 充電:0.5C,150% 放電:1.0C終止電圧1.0V C400/C10:400サイクル目容量と10サイクル目容量の
比率 Lm:Lm中、La≧40wt% Mm:Mm中、La=29wt%
[Table 2] Charge: 0.5 C, 150% Discharge: 1.0 C Final voltage 1.0 V C 400 / C 10 : Ratio of 400th cycle capacity to 10th cycle capacity Lm: La ≧ 40 wt% in Lm Mm: La = 29 wt% in Mm

【0030】以上の特性試験後の比較例の電池を解体し
て調べたところ、負極表面にはMmを構成する希土類元
素の水酸化物が多量に生成しており、合金粉末の導電性
も低下していた。これに対しこの発明の実施例の水素吸
蔵電極を用いた電池では、初期の状態と大きな変化はみ
られず、長期のサイクルに耐えることが確認された。
When the battery of the comparative example after the above-mentioned characteristic test was disassembled and examined, a large amount of a hydroxide of a rare earth element constituting Mm was formed on the surface of the negative electrode, and the conductivity of the alloy powder also decreased. Was. On the other hand, in the battery using the hydrogen storage electrode according to the example of the present invention, there was no significant change from the initial state, and it was confirmed that the battery could endure a long cycle.

【0031】実施例2 目的組成となるよう秤量した成分元素をるつぼに投入
し、高周波溶解炉を用いて溶解し、冷却後機械粉砕する
ことでこの出願の発明の実施例の組成AとしてLmNi
3.7Al0.3Co0.7Fe0.3、比較例Bとし
てMmNi3.9Al0.3Co0.8、比較例Cとし
てLmNi3.6Al0.9Mn0.2の合金粉末試料
を得た。なお、Lm中のLa量は60wt% 、Mm中の
La量は29wt%であった。この粉末にPVA(ホ゜リヒ゛ニ
ルアルコール)水溶液を加えペースト状にし、ニッケル繊維基
板に充填、乾燥後プレスして水素吸蔵電極とした。
Example 2 A component element weighed to a desired composition was put into a crucible, melted using a high-frequency melting furnace, cooled, and then mechanically pulverized to obtain LmNi as a composition A in an example of the present invention.
3.7 Al 0.3 Co 0.7 Fe 0.3 , MmNi 3.9 Al 0.3 Co 0.8 as Comparative Example B, and LmNi 3.6 Al 0.9 Mn 0.2 as Comparative Example C. An alloy powder sample was obtained. The La content in Lm was 60 wt%, and the La content in Mm was 29 wt%. An aqueous solution of PVA (polyvinyl alcohol) was added to the powder to form a paste. The paste was filled in a nickel fiber substrate, dried and pressed to form a hydrogen storage electrode.

【0032】この水素吸蔵電極を負極とし、周知の高密
度カドミレス水酸化ニッケル活物質を用いたペースト式
ニッケル電極を正極とし、公称容量1100mAHのAA
サイズ密閉形ニッケル−水素電池を構成した。このニッ
ケル−水素電池につき電池容量、電池寿命、放電電圧等
の各種特性を評価した。
The hydrogen storage electrode was used as a negative electrode, the paste type nickel electrode using a known high-density cadmium-less nickel hydroxide active material was used as a positive electrode, and an AA having a nominal capacity of 1100 mAH was used.
A sealed nickel-hydrogen battery was constructed. Various characteristics such as battery capacity, battery life, and discharge voltage of this nickel-hydrogen battery were evaluated.

【0033】図5に20℃における電池容量を100%
としたときの45℃における電池容量を示す。この出願
の発明の組成を用いた実施例Aの電池は45℃において
もほとんど容量減少していないことがわかる。また表3
に充電−放電サイクルに対する電池容量変化を調べた結
果を示す。比較例Cを用いた電池では高温特性に優れる
Lmを用いた合金組成であっても、CoおよびFeを含
まない組成であるため電池寿命の低下がみられた。
FIG. 5 shows that the battery capacity at 20 ° C. is 100%.
The battery capacity at 45 ° C. is shown. It can be seen that the capacity of the battery of Example A using the composition of the invention of this application hardly decreased even at 45 ° C. Table 3
The results of examining the change in battery capacity with respect to the charge-discharge cycle are shown in FIG. In the battery using Comparative Example C, even if the alloy composition used Lm, which has excellent high-temperature characteristics, the battery life was reduced because the composition did not contain Co and Fe.

【0034】[0034]

【表3】 充電:0.5C,150% 放電:1.0C終止電圧1.0V C400/C10:400サイクル目容量と10サイクル目容量の
比率
[Table 3] Charging: 0.5 C, 0.99% discharge: 1.0 C end voltage 1.0V C 400 / C 10: 400 cycle capacity and 10th cycle ratio of capacity

【0035】前記比較例Cの電池を解体して調べたとこ
ろ、負極表面にはLmを構成する希土類元素の水酸化物
が多量に生成しており、合金粉末の導電性も低下してい
た。これに対しこの出願の発明を実施した実施例Aの水
素吸蔵電極を用いた電池では、初期の状態と大きな変化
はみられず、長期サイクルに耐えることが確認された。
When the battery of Comparative Example C was disassembled and examined, a large amount of the hydroxide of the rare earth element constituting Lm was formed on the surface of the negative electrode, and the conductivity of the alloy powder was also reduced. On the other hand, in the battery using the hydrogen storage electrode of Example A in which the invention of the present application was implemented, no significant change was observed from the initial state, and it was confirmed that the battery could withstand a long-term cycle.

【0036】図6には以上の実施例A、比較例B、比較
例Cの各電池の放電電圧を調べた結果を示す。図に示す
ように、この出願の発明の実施例の電池Aは高い放電電
圧を有することがわかる。またカレントインタラプタに
より調べるとこの実施例の電極Aは比較例B,Cに比べ
活性化過電圧などの、抵抗過電圧以外の分極が小さいこ
とが判明した。このことから、実施例の電極AではCo
およびFeを合金組成中に含むことで放電反応がスムー
ズに行われていることがわかる。
FIG. 6 shows the results of examining the discharge voltages of the batteries of Example A, Comparative Example B, and Comparative Example C. As shown in the figure, it can be seen that the battery A of the example of the present invention has a high discharge voltage. Inspection by a current interrupter revealed that the electrode A of this example had smaller polarizations than the resistance overvoltage such as the activation overvoltage as compared with the comparative examples B and C. For this reason, in the electrode A of the embodiment, Co
It can be seen that the discharge reaction was smoothly performed by including Fe and Fe in the alloy composition.

【0037】以上の各実施例では、正極に高密度カドミ
レス水酸化ニッケル粉末を用いたペースト式ニッケル電
極を用いたが、これに限定されることなく、焼結式ニッ
ケル極や中和法による水酸化ニッケル粉末を用いたペー
スト式ニッケル電極でも良い。また、水素吸蔵電極およ
び正極の基板としてニッケル繊維基板を用いたが、これ
に限らず、エキスパンドメタル、発泡ニッケル、ニッケ
ルめっきパンチングメタルなどでも良い。
In each of the above embodiments, a paste-type nickel electrode using high-density cadmium-less nickel hydroxide powder was used for the positive electrode. However, the present invention is not limited to this. A paste-type nickel electrode using nickel oxide powder may be used. Further, although a nickel fiber substrate was used as the substrate for the hydrogen storage electrode and the positive electrode, the invention is not limited to this, and expanded metal, foamed nickel, nickel-plated punching metal, or the like may be used.

【0038】[0038]

【発明の効果】以上のようにこの出願の発明の水素吸蔵
電極によればLmNi Al Co Fe で表される
水素吸蔵合金相を少なくとも一部に有し、Lmで表され
る希土類元素の混合物中のLaを40wt%以上とし、かつ
成分比でAlを0.05≦y≦0.9の範囲で含有するように
し、さらにCo及びFeの元素を成分比で0.1≦z+u
≦1.5の範囲で含有するようにしたことにより、この水
素吸蔵電極で構成した電池では、サイクル寿命などを低
下させることなく高温特性を向上させることができるの
みならず、電池を活性化するために煩雑な操作や対策を
講じるまでもなく速やかに活性化し、放電電圧も高い電
池とすることができるという効果がある。
Represented by LmNi x Al y Co z Fe u According to the hydrogen absorbing electrode of the invention of this application as described above, according to the present invention
Having at least a portion of a hydrogen storage alloy phase, represented by Lm
La in the mixture of rare earth elements is 40 wt% or more, and
In order to contain Al in the range of 0.05 ≦ y ≦ 0.9 in component ratio
And the elements of Co and Fe in a component ratio of 0.1 ≦ z + u
≤ 1.5, this water
Batteries composed of elemental occlusion electrodes have a low cycle life, etc.
High temperature properties without lowering
In addition, complicated operations and measures must be taken to activate the battery.
It is activated immediately without taking any action, and the discharge voltage is high.
There is an effect that it can be a pond.

【0039】[0039]

【図面の簡単な説明】[Brief description of the drawings]

図1 Co添加による合金粉末の導電率変化を示す図で
ある。 図2 電極の放電深度を示す図である。 図3 各種合金組成と放電容量の関係を示す図である。 図4 Lm中のLa量と放電容量との関係を示す図であ
る。 図5 温度と放電容量との関係を示す図である。 図6 実施例及び比較例の電池の放電電圧を示す図であ
る。
FIG. 1 is a diagram showing a change in conductivity of an alloy powder due to Co addition. FIG. 2 is a diagram showing the depth of discharge of an electrode. FIG. 3 is a diagram showing the relationship between various alloy compositions and discharge capacity. FIG. 4 is a diagram showing the relationship between the amount of La in Lm and the discharge capacity. FIG. 5 is a diagram showing the relationship between temperature and discharge capacity. 6 is a diagram showing the discharge voltage of the batteries of Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 押谷 政彦 大阪府高槻市城西町6番6号 湯浅電池 株式会社内 (56)参考文献 特開 昭60−250558(JP,A) 特開 昭62−264557(JP,A) 特開 平4−293746(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/26 H01M 4/38 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Masahiko Oshitani 6-6 Josai-cho, Takatsuki-shi, Osaka Yuasa Battery Co., Ltd. (56) References JP-A-60-250558 (JP, A) JP-A-62- 264557 (JP, A) JP-A-4-293746 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/24-4/26 H01M 4/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LmNiAlCo Fe で表される
水素吸蔵合金相を少なくとも一部に有することを特徴と
する水素吸蔵電極(Lm:希土類元素の混合物であり、
うち、La≧40wt%、3.5≦x≦4.5、0.05≦y≦0.9、0.
1≦z+u≦1.5、4.5≦x+y+z+u≦5.5)。
1. A LmNi x Al y Co z Fe hydrogen storage electrode, characterized in that it comprises at least a portion of the hydrogen storage alloy phase expressed by u (Lm: a mixture of rare earth elements,
Of these, La ≧ 40 wt%, 3.5 ≦ x ≦ 4.5, 0.05 ≦ y ≦ 0.9, 0.
1 ≦ z + u ≦ 1.5, 4.5 ≦ x + y + z + u ≦ 5.5).
JP03244454A 1991-08-29 1991-08-29 Hydrogen storage electrode Expired - Fee Related JP3082341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03244454A JP3082341B2 (en) 1991-08-29 1991-08-29 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03244454A JP3082341B2 (en) 1991-08-29 1991-08-29 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH06283167A JPH06283167A (en) 1994-10-07
JP3082341B2 true JP3082341B2 (en) 2000-08-28

Family

ID=17118897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03244454A Expired - Fee Related JP3082341B2 (en) 1991-08-29 1991-08-29 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3082341B2 (en)

Also Published As

Publication number Publication date
JPH06283167A (en) 1994-10-07

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH11176436A (en) Alkaline storage battery
JPH02277737A (en) Electrode made of hydrogen storage alloy
US5043233A (en) Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
JP3358702B2 (en) Nickel electrode for alkaline storage battery
JP2000294234A (en) Nickel hydrogen storage battery and manufacture of the same
JP2752970B2 (en) Hydrogen storage electrode
JP3082341B2 (en) Hydrogen storage electrode
JP2000021392A (en) Nonaqueous secondary battery
JPS62271349A (en) Hydrogen occlusion electrode
JP2740175B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JPS62249358A (en) Hydrogen storage electrode
JP3082348B2 (en) Nickel-hydrogen battery
JP2823301B2 (en) Hydrogen storage alloy electrode
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP2745501B2 (en) Sealed alkaline storage battery
USRE34471E (en) Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
JPH08321302A (en) Hydrogen storage electrode
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JP3432847B2 (en) Hydrogen storage alloy electrode
JP2713881B2 (en) Sealed metal oxide / hydrogen battery
JP3412170B2 (en) Hydrogen storage electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees