JP2713881B2 - Sealed metal oxide / hydrogen battery - Google Patents
Sealed metal oxide / hydrogen batteryInfo
- Publication number
- JP2713881B2 JP2713881B2 JP60133985A JP13398585A JP2713881B2 JP 2713881 B2 JP2713881 B2 JP 2713881B2 JP 60133985 A JP60133985 A JP 60133985A JP 13398585 A JP13398585 A JP 13398585A JP 2713881 B2 JP2713881 B2 JP 2713881B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- hydrogen
- capacity
- alloy
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、金属酸化物を正極活物質とし水素を負極活
物質とする、いわゆる金属酸化物・水素二次電池に関
し、更に詳しくは、水素負極が水素吸蔵合金で構成さ
れ、電池内圧を低位に保持し、自己放電も抑制され、さ
らに初期からその性能を発揮しかつ長寿命を維持する金
属酸化物・水素電池に関する。
〔発明の技術的背景とその問題点〕
現在、金属酸化物・水素電池において、水素負極を水
素吸蔵合金で構成した形式のものが注目を集めている。
その理由は、この電池系が元来高エネルギー密度を有
し、容積効率的に有利であり、しかも安全作動が可能で
あって、特性的にも信頼度の点でも優れているからであ
る。
この形式の電池の水素負極に用いる水素吸蔵合金とし
ては、従来から、LaNi5が多用されている。また、La,C
e,Pr,Nd,Smなどのランタン系元素の混合物であるミッシ
ュメタル(以下Mmと指称する)とNiとの合金、すなわち
MmNi5も広く用いられている。このほかLaCo5,SmCo5など
の希土類元素とCoとの合金もしばしば用いられている。
このような水素吸蔵合金を用いた場合、その電池内圧
は水素吸蔵合金を使用しない電池の内圧(50kg/cm2以
下)に比べてたしかに低くなることは事実である。しか
しながら、その値は常温においても依然として2〜5kg/
cm2程度であって、例えばニッケルカドミウム電池の内
圧(0〜1kg/cm2)に比べれば高い値である。
電池内圧が大気圧よりも高い場合には、電池容器の構
造をある程度堅牢にすることが必要であることと並ん
で、特性的には次のような不都合な事態を惹起する。第
1の問題は、電池内の水素分子はその分子径が小さく、
そのため電池容器から徐々にせよ漏洩することが不可避
であり、安全性を著しく損なうこと:第2の問題は、第
1の現象の結果、水素負極から吸蔵されている水素が放
出されて電池容量は低下し自己放電を招くことである。
このようなことから、水素負極には平衡プラトー圧の
低い水素吸蔵合金を使用することが提案され、各種の合
金の研究が進められている。
例えば、LaNi5,MmNi5に関していえば、常温における
それぞれの平衡プラトー圧は約3気圧,15気圧と高いの
で、これらを負極材料として使用した電池では前述の安
全性低下および自己放電招来という不都合が生ずる。
一方、たとえこの平衡プラトー圧は低くても吸蔵し得
る水素量が小さい水素吸蔵合金を負極材料として構成し
た電池では、次のような問題点が惹起される。まず第1
に、水素吸蔵量が小さいので充電可能な電池容量が小さ
くなると:第2に充電容量が小さいため、過充電状態に
なりやすく、その結果として気体状の水素が発生しやす
いことである。過充電時の水素発生は電池圧内上昇をも
たらすので、電池の安全性を損なう。
以上の点を考えあわせると、水素負極の材料として
は、平衡プラトー圧が低く、かつ水素吸蔵量が大きい水
素吸蔵合金を使用することが望ましいといえる。
例えば既知の水素吸蔵合金であるLaCo5,LaNi1.5Co3.5
の室温付近の平衡プラトー圧はそれぞれ0.1気圧,0.2気
圧と低いが、しかしながら3気圧以下で吸蔵し得る水素
量はLaNi5の約60%でしかない(H.H.Van Mal,K,H.J.Bus
chow and F.A.Kuijpers,J.Less−Common Metals,32,289
(1973))。従って、これらを負極材料とした電池で
は、容量が小さく過充電状態になりやすいという問題が
生じる。
また、すでに水素吸蔵合金電極の材料として使用され
た報告もあるLa−Ni−Co系合金(J.J.G.Willems,Philps
J.Res,39,1(1984))やMm−Ni−Co系合金の場合に
は、先のLa−Ni−Mn系合金やMm−Ni−Mn系合金に比べて
平衡プラトー圧をさらに低下させることは可能である
が、この種の合金は水素吸蔵量が充分に得られないとい
う問題を有していた。
このように電池の電極材料には水素吸蔵量が大きくか
つ平衡プラトー圧が低いという特性が共に必要とされる
が、従来これら双方を備えた電極はなく、実際の電池で
はさらに充放電の繰り返しにおける容量低下が少ないと
いう長寿命特性も要求される。これは水素吸蔵量が大き
く平衡プラトー圧が低い水素吸蔵合金を使用して水素負
極を構成し、電解液であるアルカリ水溶液中で充放電を
繰り返した時に、初期のうちは大容量が保持されかつ水
素発生が見られなくても、少ない充放電の繰り返しで電
池の寿命が尽きてしまうのでは、その利用に大幅な制限
が加わってしまうからである。例えばMmNi4.5Mn0.5やMn
Ni4.2Mn0.8合金といった従来より多用されている合金を
負極材料とした電極では、初期には充電容量に対し100
%の放電が可能であるが、約100回の充放電サイクルで8
0%に、約150回で50%に容量が低下してしまう。これは
電解液中での充放電サイクルに対して負極材料である水
素吸蔵合金が化学的に安定でないことが原因であると考
えられており、長寿命化のためにはこのような化学的安
定性をも要求される。
上記のような電極の化学的安定性は、例えばAlを成分
として少量含有する水素吸蔵合金を材料として使用した
場合に得られ、電極は長寿命となる(特願昭59−120826
号)。また、Al,Cr,Siのような元素の含有によって表面
に閉鎖された酸化物層が生じるため水素吸蔵合金が耐腐
蝕性をもつともいわれている(特開昭60−89066号)。
さらに、二次電池の電極には、できる限り簡単な操作
で短時間にその性能を発揮することが要求される。例え
ば、従来のニッケル−カドミウム電池では、電極をあら
かじめ数回充放電させるいわゆる化成処理を行なってい
るが、これは製造直後の電極では充電量に対して小さな
放電量しか得られず、充放電を繰り返すにつれて効率が
上昇していくという現象があるためである。水素吸蔵合
金電極の場合も同様の傾向が見られ、製造直後の充電に
対する放電効率は小さく、数回の充放電によりその性能
を発揮するようになる。これは、電極内部に含まれる水
素吸蔵合金粒子の表面に電解液が達し合金表面が電解液
からの水素の吸蔵に関して活性化されるためには1回以
上の充放電を必要とするためである。上記のような電極
の初期の活性化のための充放電は、電極のもつ理論容量
に比較して小さな充電量を以って行なわれる。このよう
な前処理を経ずにいきなり大容量の充電を施した場合に
は、水素吸蔵合金電極の表面で気体状の水素が発生し泡
となるために電極内部への電解液の浸透が妨げられ、ま
た電極表面からの合金粒子の剥離が誘起され、電極の容
量が著しく低下してしまうという不都合を生ずる。従っ
て、小容量の充放電という化成処理が必要とされるが、
少ない回数でこの処理を終え充分な性能に達するという
性質をもつ電極が工業的に有利であることは自明であ
る。
以上述べたように、金属酸化物・水素電池の負極材料
として用いる水素吸蔵合金には水素吸蔵量が大きく平衡
プラトー圧が低いことが求められ、それを使用した水素
合金電極にはさらに初期の化成処理が容易でかつ化学的
に安定で寿命の長い特性が求められるが、これらをすべ
て満足するような水素吸蔵合金電極は得られていない。
よって金属酸化物・水素電池に求められている大容量で
あり、かつ内圧上昇が防止され水素漏洩の危険が少なく
安定性にすぐれており、自己放電も少なくて長寿命であ
るという特性をすべて有した電池はつくりえなかった。
〔発明の目的〕
本発明は、従来の水素吸蔵合金電極のもつ上記のさま
ざまな問題点を解消する新しい水素吸蔵合金電極を提供
し、電池内圧が低位に保持されて水素漏洩が防止されて
安全性が確保され、自己放電も抑制された大容量かつ長
寿命の金属酸化物・水素電池の提供を目的とする。
〔発明の概要〕
本発明者らは、上記目的を達成すべく水素吸蔵合金を
材料とする電池負極について研究を重ねた結果、従来よ
りあるLa−Ni−Mn系合金、Mm−Ni−Mn系合金や、La−Ni
−Co系合金、Mm−Ni−Co系合金に比較して、M−Ni−Mn
−Co系合金(Mはイットリウムを含む希土類元素の少な
くとも一種を表す。)で各元素を所定の比で含む合金が
大きな水素吸蔵量と低い平衡プラトー圧を有し、かつ、
電極とした場合に、充電した電気量を100%放電し得る
容量の限界が大きく、またその限界を超えても放電効率
が100%からあまり低下せず、その結果大容量化がはか
れ水素発生を減少せしめるという事実を見出し、これよ
り該合金を負極とする金属酸化物・水素電池を開発する
に到った。
すなわち、本発明の金属酸化物・水素電池は、すなわ
ち、金属酸化物を正極活物質とし、水素を負極活物質と
する金属酸化物・水素電池において、負極が、
次式
MNixMnyCOzAw
(式中、Mはイットリウムを含む希土類元素の少なくと
も一種:AはAl、Ti,Si,Crより選ばれる元素の少なくとも
1種:x,y,z,wはそれぞれ原子比を表し、
3.5≦x≦4.8 ……
0.01<y≦1.2 ……
0.01<z≦1.5 ……
0.01≦w≦0.6 ……
4.8≦x+y+z+w≦5.2 ……
の関係を満足する数を表す。)
で示される水素吸蔵合金からなり、かつ、電池の構成要
素が容器内に収納されて密閉されていることを特徴とす
る密閉型金属酸化物・水素電池である。
式中Mはイットリウムを含む希土類元素のいずれか一
種であってもよいし、ランタン系元素数種の混合物であ
るミッシュメタル(Mm)や、ミッシュメタルのうちLa成
分の多いランタン富化ミッシュメタル(以下Lmと表
す。)であってもよい。
上記3種のうちMとしては、Lmであることが好まし
い。
この合金においてはMnとCoの両者を含むことにより、
水素吸蔵量を維持しながら平衡プラトー圧を低下させる
ことが実現される。式中のAは、電極材料として使用さ
れた際の電解液中での充放電サイクルに対する合金構造
の安定化に寄与する成分であり、Al,Ti,Si,およびCrよ
り選ばれる元素の少なくとも1種であるとき、電極とし
ての長寿命化が達成される。式の希土類元素以外の成
分の総量に関して言えば、式の範囲を外れる組成の合
金では典型的な水素吸蔵合金であるLaNi5の構造から大
きく歪んだ構造になるために水素吸蔵量が減少して好ま
しくない。
A元素量はwを原子比として式の範囲が必要であ
る。これが0.6<wとなると、水素吸蔵量が減少する結
果、容量低下をきたし、w<0.01では十分な効果が得ら
れない。また成分Aを含有してもその合金を材料として
構成された水素吸蔵合金電極が大容量を保持し、かつ初
期の化成処理時の特性を悪化させないためには、主成分
のNiを多く含むことが必要であり3.5<xとすることが
適当である。式の上限は4.8<xでは平衡プラトー圧
が上昇して問題が生じる。またMn量が1.2<yとなって
過剰となると水素吸蔵量の低下をきたし、一方Mn量がご
く微量すなわちy≦0.01の場合ではMnを含有させたこと
による効果が十分に得られないため式の範囲が必要に
なる。また、式の範囲のMnを含有する水素吸蔵量合金
を材料とする電極では、Mnを含まない場合に比べて化成
処理が容易になる。さらに、Co量も1.5<zとなると水
素吸蔵量が減少し、一方ごく微量すなわちz≦0.01の場
合ではCoを含有させることによる効果が有効に生かされ
ないという問題を生じる。以上の理由から、各成分の含
有比としては、、、、を満たす範囲であるこ
とが必要である。このような水素吸蔵合金を材料として
構成された電極を用いることにより大容量かつ長寿命の
安全性に優れた電池を得ることができる。
本発明者らは、Mi−Ni−Mn−Coからなる合金の一部を
合金構造の安定化に寄与する成分Aで置換したMNixMnyC
ozAwなる組成の合金を材料とする電極が、それぞれの成
分を適量含むときM−Ni−Mn−Coで表された合金から構
成された電極と比べてより長寿命となることを見出し
た。A元素の含有はその合金の水素吸蔵量を減少させ容
量低下を誘起する傾向があり、またその合金を材料とし
て使用された水素吸蔵合金電極の初期化成処理における
特性を悪化させる場合があるが、本発明者らは、合金組
成の研究の結果、大容量を保持し、かつ電極の初期の化
成処理が容易となるような組成範囲を決定することに成
功し、当該合金を電極材料として構成された負極を用い
た金属酸化物・水素電池を開発するに至った。
これらの本発明に係る合金は、目的組成から決められ
る各成分元素粉末の所定量を混合し、その混合粉末を例
えば真空アーク溶解炉で溶解することにより均一固溶体
として得ることができる。さらに、この固溶体を粉砕す
るか、あるいは常温で40kg/cm2程度の水素雰囲気中に置
くというような活性化処理を施すことにより容易にその
粉末体を調製することができる。
本発明の金属酸化物・水素電池において、負極として
は、負極活物質である水素を吸蔵・放出しうる前述の水
素吸蔵合金の粉末と、例えば、ポリテトラフルオロエチ
レンのような結着剤とを混合した後、シート化して構成
したシート電極が用いられる。また、該合金粉末とカル
ボキシメチルセルロース(CMC),ポリビニルアルコー
ル(PVA),ポリアクリル酸塩,ポリテトラフルオロエ
チレンなどの結着剤とH2Oとを混合してペースト状と
し、導電性の基板に充填、または、塗布することにより
負極を形成しても良い。負極材料の水素吸蔵合金は水素
を放出した状態で用いてもよいし、部分的に水素を吸蔵
した状態で用いてもよい。また正極としては、例えば金
属ニッケルの焼結体に水酸化ニッケルNi(OH)2)のよ
うな活物質を含浸、化成して成るニッケル酸化物(NiOO
H)の電極が用いられる。また、非焼結の水酸化ニッケ
ル(Ni(OH)2)ととコバルト化合物(Co,CoO,Co(O
H)2等)とを混合し、さらに該混合物とCMC,PVA,ポリ
アクリル酸塩などの結着剤とH2Oとを混合してペースト
状とし、導電性基板に充填、または、塗布した後、乾燥
して正極としても良い。そしてこのようにして得られた
正極及び負極とをKOHやNaOH等のアルカリ水溶液からな
る電解液に浸漬して本発明に係る金属酸化物・水素電池
が構成される。
〔発明の効果〕
以上説明したように、本発明によれば、前述したよう
な組成及び原子比を有するMNixMnyCozAwなる式で示され
る水素吸蔵合金を材料として構成した電極を負極として
用い、金属酸化物を活物質とする正極とともに電池を構
成することによって、大容量であり、かつ内圧上昇が防
止されて水素漏洩の危険の少ない安全性に優れた電池を
提供することができる。
本発明によれば、さらに、化成処理を困難にすること
なく、より長寿命な電池を提供することができる。
以下に本発明につき実施例に基づいて更に詳細に説明
する。
〔発明の実施例〕
参考例1.
(1) 負極形成
Lm,Ni,Mn,Coの各金属元素の粉末をそれぞれ所定量混
合し、得られた混合粉末を真空アーク溶解炉で溶解し
て、組成がLmNi4.15Mn0.8C0.005の均一固溶体を得た。
この固溶体を直径約5mmに破砕し、ついでこれを真空ポ
ンプおよび水素ボンベに接続された容器中に入れ、10-6
kg/cm2以下の真空に室温で1時間保ったのち、水素を導
入し、圧力約35kg/cm2の水素雰囲気下に室温で1〜数時
間保持することによって微粉化させた。再び1時間以上
10-3kg/cm2以下に保って室温〜60℃の範囲で脱気した
後、合金の粉末を容器から取り出した。得られた合金粉
末の粒径は2〜100μmであった。上記の例では、水素
を合金に吸蔵させることにより、合金の粉砕を行ってい
るが、ボールミル,パルペライザー,ジェットミル等の
粉砕機により粉砕したものを用いても良い。
この合金粉末とポリテトラフルオロエチレン(PTFE)
とを混合して充分に混練したのち厚み0.5mmのシートに
成形した。合金粉末とPTFEとの重量比は乾燥状態で96:4
であった。
得られたシート2枚を、1枚のニッケルネットの両面
から圧着して一体化し、厚み0.7mmの電極を形成しこれ
を負極とした。
(2) 正極の形成
多孔質のニッケル焼結体Ni(OH)2を含浸し、これを
化成処理してNiOOH電極を形成しこれを正極とした。
(3)電池の製造
以上の負極、正極、更には厚み0.3mmのポリプロピレ
ン不織布をセパレータとし、8モル/のKOH水溶液を
電解液として第1図に示した電池を製造した。
第1図において、1は負極、2はセパレータ、3は正
極である。4および5はそれぞれ負極および正極の端子
であり、電池容器6とは電気的に独立して外部に取り出
されている。7は電解液である。本発明による負極1を
セパレータ2でU字型につつみ、その両側から正極3を
配置してアクリル製のホルダー8で密着させた。正極の
容量は負極の容量より充分大きくなるように設定し、電
池性能が負極の特性に支配される条件で以下の測定を行
なった。
(4) 電池特性
この電池に定電流(負極に含まれる水素吸蔵合金1gあ
たり170mA)で充電時間を変化させてさまざまな充電容
量の充電を施し、定電流(負極に含まれる水素吸蔵合金
1gあたり170mA)で電池電圧が0.95Vに低下するまで放電
させたときの効率を測定した。なお、測定が先だって10
0mAhg-1以下で数回充放電を行ない、負極の性能が充分
に発揮される状態で実験を行なった。比較のためにCoを
含まない合金であるLmNi4.2Mn0.8を用いて同様の構成の
電池を製作し、同様の測定を行った。またMnを含まない
合金であるLmNi4.15Co0.8Al0.05を用いて同様の構成の
電池を作成し同様の測定を行った。第3図に結果を示
す。図中、充電容量は負極に含まれる合金の単位重量当
たりの容量として示され、効率は放電容量の充電容量に
対する百分率(すなわち、
で示されている。図中
が本発明によるLmNi4.15MN0.8Co0.05合金を負極材料と
して用いた電池の容量特性であり、
が比較例であるLmNi4.2Mn0.8、−▼−が比較例であるLm
Ni4.15Co0.8Al0.05の場合である。
Lm−Ni−Mn−Co系の合金を材料としたことによって、
Lm−Ni−Mn系及びLm−Ni−Co−Al系の合金よりも100%
の効率で放電し得る容量の範囲が拡大し、また効率が10
0%未満となる容量でも気体水素の発生が少ないことが
第3図からわかる。すなわち、LmNi4.2Mn0.8合金または
LmNi4.15Co0.8Al0.05合金を材料として使用した場合に
は約160mAhg-1を越える充電容量では100%の効率での放
電ができず、水素の発声が始まる。これに対し、本発明
によるLmNi4.15Mn0.8Co0.05合金電極を負極とする電池
では約190mAhg-1まで100%の効率で放電が可能である。
第3図の斜線で示した部分が発生水素量の差に相当し、
本発明による電池がより安全性に優れていることがわか
る。
実施例1
負極に用いた水素吸蔵合金が、本発明に係るLmNi4.2M
n0.5Co0.1Al0.2の組成であることを除いては参考例1と
同様の電池を製造し、その容量特性を調べた。結果は第
4図に
で示したように約200mAhg-1まで100%の効率で放電が可
能な大容量の電池が得られ、この容量以下では水素発生
は見られなかった。また、この電池のもつ容量を示す値
として、300mAhg-1の充電に対する放電容量を測定した
ところ、245mAhg-1であった。
実施例2
負極に用いた水素吸蔵合金が、本発明に係るLmNi4.0M
n0.6Co0.2Al0.2の組成であることを除いては実施例1と
同様の電池を製造し、その容量特性を調べた。結果を第
4図に
で示した。本実施例では約200mAhg-1まで100%の効率が
保持される大容量の電池となった。水素発生も200mAhg
-1まで見られなかった。
また比較例として、Niが不足しCoを過剰に含むLmNi
2.2Mn0.6Co2.0Al0.2合金を負極材料に使用した電池の容
量特性を第4図に
として示したが、本実施例の場合と比べて容量低下をき
たした。この時本実施例および比較例であるLmNi4.0Mn
0.6Co0.2Al0.2,LmNi2.2Mn0.6Co2.0Al0.2の各合金を使用
した電池の300mAhg-1の充電に対する放電容量はそれぞ
れ本実施例の場合は233mAhg-1,比較例の場合は178mAhg
-1であった。
実施例3
負極に用いた水素吸蔵合金が、本発明に係るLmNi4.2M
n0.3Co0.2Al0.3の組成であることを除いては実施例1と
同様の電池を製造した。その300mAhg-1の充電に対する
放電容量を測定したところ227mAhg-1であった。次にこ
の電池の寿命特性を調べた。実際に電池として使用する
場合には、水素漏洩の危険を避けるため、水素発生のな
い範囲の容量で充放電させる。従って本発明に係る電池
の寿命試験も、充電した電気量をほぼ100%放電し得る
容量を以って行なった。具体的には、あらかじめ小容量
の充放電サイクルを数回繰り返した電池に電流175mAhg
-1で1時間の充電を施し、その後同じ電流で電池電圧が
1.0Vに低下するまで放電し、これをくり返した。そして
放電容量の充電容量に対する百分率として高率を求めた
結果を第5図
で示した。
また、比較例として、従来品であるLmNi4.2Mn0.8の組
成からなる合金を負極材料として構成された電池、LmNi
4.2Mn0.5Al0.3の組成からなる合金を負極材料として構
成された電池及びLmNi4.2Co0.5Al0.3の組成からなる合
金を負極材料として構成された電池を実施例1と同様の
方法製造しその寿命特性を測定し、その結果を第5図に
LmNi4.2Mn0.8を使用した電池の特性を−●−、LmNi4.2M
n0.5Al0.3を使用した電池の特性を
LmNi4.2Co0.5Al0.3を使用した電池の特性を−▲−とし
て示した。第5図から明らかなように本発明によるLm4.
2Mn0.3Co0.2Al0.3の組成からなる合金を使用した電池は
600サイクルを経過しても90%以上の効率で放電してお
り、約100サイクルまでしか90%を維持しないLmNi4.2Mn
0.8の組成からなる合金使用の従来品、約200サイクルま
でしか90%を維持しないLmNi4.2Mn0.5Al0.3の組成から
なる合金使用の従来品、約300サイクルまでしか90%を
維持しないLmNi4.2Co0.5Al0.3の組成からなる合金使用
の従来品に比べ大幅な長寿命化が達成されていることが
わかる。
実施例4
負極に用いた水素吸蔵合金が、本発明に係るLmNi3.7M
n0.6Co0.5Al0.2の組成であることを除いては実施例1と
同様の電池を製造し、その300mAhg-1の充電に対する放
電容量を測定した。結果は233mAhg-1であった。ついで
この電池寿命特性を実施例4と同様の方法で調べた。そ
の結果は第5図にとして示したように、600サイクル以上効率90%を維持
するという長寿命の電池が得られた。
実施例5
実施例4と同様の組成LmNi4.2Mn0.3Co0.2Al0.3をもつ
水素吸蔵合金を実施例1と同様の方法で調製し、シート
に成形し、そのシートの重量5.5gの切片から負極を形成
した。さらに、実施例1と同様の正極、セパレータ、電
解液を使用して、第2図に示した電池を製造した。すな
わち、正極、セパレータ、負極を重ねて渦巻き状に巻
き、これを電解液とともに電池容器に収容して絶縁ガス
ケット9及び0−リング10を用いて密閉した。第2図に
おいて、1は負極、2はセパレータ、3は正極である。
負極1は電池容器6と密着している。本実施例の電池で
は正極の容量は負極の容量と同等以下となるように設定
した。7は電解液である。
この電池の初期の特性を調べるために、次のような充
放電サイクルによって放電容量の測定を行なった。まず
100mAhの充電によるサイクルを2回、続いて200mAhの充
電によるサイクルを2回、次に400mAhの充電によるサイ
クルを行なった。第6図に
として、各サイクルで得られた放電容量を示す。図中a,
b,cはそれぞれ充電容量100,200,400mAhを表し、また…
…は充電容量の変更が行なわれたことを示している。第
6図に見られるように、本実施例の電池は各充電容量に
対して2サイクル程度でほぼ100%の効率を示す。
次に比較例として、負極に用いた水素吸蔵合金が、Ni
量が不足となるLmNi3.2Mn0.6Co1.0Al0.2の組成であるこ
とを除いては実施例1と同様の電池を製造し、その寿命
特性を実施例3と同様の方法で調べた。ただし、本比較
例の電池が175mAhg-1の充電に対してほぼ100%の効率で
放電し得るようになるまでには、小容量で約20回の充放
電を繰り返すことが必要であった。結果は第5図に
として示したとおりであり、600サイクル以上100%に近
い効率を示すという長寿命の電池が得られた。このよう
に容量175mAhg-1での充放電では本比較例は良好な結果
を示したが、300mAhg-1の充電に対しては放電容量は215
mAhg-1と本発明に係る電池に比較して小容量であった。
さらに、別の比較例として上記と同じ組成のLmNi3.2M
n0.6CO1.0Al0.2の組成の合金を用いて実施例5と同様の
電池を製造し、その初期の特性を実施例5と同様の方法
で調べた。結果を第6図に
として示した。第5図に見られるように、本比較例の電
池は初期の効率が悪く、充電容量が100mAhと小さくとも
3サイクルでおよそ60%にしか達しない。この状態で充
電容量を200mAhに増大させたところ、放電容量はむしろ
減少した。ついで400mAhの充電によるサイクルを繰り返
すと放電容量は徐々に増大したが、10サイクルを経過し
ても充分な効率には至らなかった。従って本比較例のよ
うな電池はたとえ寿命的に優れてはいても、製造後その
性能が発揮されるまでに多数の充放電サイクルを必要と
するので工業的に不利である。
以上の実施例および比較例における水素吸蔵合金の組
成とそれを用いた電極の容量との関係をそれぞれまとめ
て第1表に示した。第1表からNiの原子比xが3.5より
大であるようなとき大容量が得られ、3.5以下で容量が
減少することがわかる。また第6図に示したように、電
池の初期特性についてNiの不足は悪影響を及ぼすので、
3.5<xであることが必要である。
実施例6
実施例4と同様の組成LmNi3.7Mn0.6Co0.5Al0.2をもつ
水素吸蔵合金を実施例1と同様の方法で調製し、実施例
5と同様の構成の電池を製造した。ただし、負極として
は重量7gのシートを用い、また電池内圧を送定するため
に、第2図の電池容器の正極の端子5の一部に圧力測定
器を取りつけた。
この電池に充電容量600mAhのサイクルを3回、800mAh
のサイクルを2回施し、次いで1Ahの充電によるサイク
ルを行なった。なお充電容量1Ahは正極の容量の約1.5倍
にあたる。第7図に−▽−として、この充放電サイクル
中の充電末期の電池内圧の最大値を示す。
充電容量が600mAh(第7図中aの部分)、800mAh(第
7図中bの部分)、1Ah(第7図中cの部分)と増加す
るにつれて内圧も上昇するが、電池容量の1.5倍の1Ah充
電でも内圧は最大4.6kgcm-2であり、通常の電池の安全
弁が少なくとも19kgcm-2の内圧に耐え得ることを考慮す
ると本実施例の電池は充分に安全であるといえる。なお
8回目以降の充電容量1Ahによる充放電サイクルでも内
圧は4.6kgcm-2を越えることはなかった。
次に比較例として、負極に用いた水素吸蔵合金が、Ni
量が不足となるLmNi3.2Mn0.6Co1.0Al0.2の組成であるこ
とを除いては実施例7と同様の電池を作成し、その内圧
の挙動を測定した。第7図に
としてその結果を示すが、600mAhの充電によるサイクル
を2回(第7図中aの部分)、800mAhの充電によるサイ
クルを3回(第7図中bの部分)施した後、充電容量1A
hでの充放電サイクル(第7図中cの部分)を繰り返し
た。
第7図から明らかなように、本比較例では充電容量が
600mAh,800mAh,1Ahと増えるにつれ内圧が増加し、4サ
イクル目で10kgcm-2に達する。さらに1Ahの充電時には
内圧11〜12kgcm-2となり、9サイクル目以降も同程度の
内圧を示した。本比較例のように初期の容量の1.5倍程
度の充電での充放電サイクルで内圧が10kgcm-2を越える
電池は危険であり、民生用の密閉型2次電池として不適
当である。このような内圧の上昇は負極材料の水素吸蔵
合金の組成中のNi量が不足した場合に見られ、特に前述
したMNixMnyCozAwの一般式で示される組成の合金では、
Ni量xが3.5を越えていることが必要である。Ni量が不
足の場合、上記の比較例に見られたような内圧の上昇に
よる危険性が生じる。
以上の実施例に示したように、本発明に係る合金を負
極材料として使用した金属酸化物・水素電池は、従来品
よるも大容量で長寿命かつ安全性に優れた電池である。
特に本発明に係るMNixMnyCozAwの組成で表わされる合金
を負極材料とする電池では、第5図に示した実施例4,5
に見られるように従来品に比較して大幅な長寿命化が達
成され、かつ第6図に示したように電池製造直後の処理
も容易である。また、本発明に係る組成の合金を負極材
料とする電池では、第7図に示したように良好な内圧特
性が得られ、安全性に優れている。これら合金の組成は
目的とする電池の特性との関連を勘案して規定した範囲
内でそれぞれ決めることができる。なお本発明に係る合
金の組成は、その製造時に入る不可避的な不純物を除く
ものではない。この不可避的な不純物としては例えば鉄
や錫等があげられる。DETAILED DESCRIPTION OF THE INVENTION
[Technical Field of the Invention]
The present invention uses a metal oxide as a positive electrode active material and hydrogen as a negative electrode active material.
Materials, so-called metal oxide / hydrogen secondary batteries
More specifically, the hydrogen anode is made of a hydrogen storage alloy.
The internal pressure of the battery is kept low, self-discharge is suppressed,
In addition, gold that exhibits its performance from the beginning and maintains a long life
The present invention relates to a metal oxide-hydrogen battery.
[Technical background of the invention and its problems]
Currently, in metal oxide / hydrogen batteries, the hydrogen anode is
Attention has been paid to those made of elemental storage alloys.
The reason is that this battery system originally has a high energy density.
And is advantageous in terms of volumetric efficiency, and safe operation is possible.
This is because it is excellent both in characteristics and reliability.
You.
The hydrogen storage alloy used for the hydrogen anode of this type of battery
Conventionally, LaNiFiveIs often used. Also, La, C
Missis, which is a mixture of lanthanide elements such as e, Pr, Nd, and Sm
Alloy of nickel (hereinafter referred to as Mm) and Ni,
MmNiFiveIs also widely used. In addition, LaCoFive, SmCoFiveSuch
Alloys of rare earth elements with Co are often used.
When such a hydrogen storage alloy is used, the internal pressure of the battery
Is the internal pressure of the battery not using a hydrogen storage alloy (50kg / cmTwoLess than
It is true that it is lower than that of (bottom). Only
However, its value is still 2-5 kg /
cmTwoDegree, for example, nickel cadmium battery
Pressure (0-1kg / cmTwo) Is higher than that of
If the internal pressure of the battery is higher than the atmospheric pressure,
Along with the need to make the structure somewhat robust
Then, the following inconveniences are caused characteristically. No.
The first problem is that the hydrogen molecule in the battery has a small molecular diameter,
Therefore, it is inevitable that the battery leaks gradually from the battery container.
And seriously impairs security: The second problem is
As a result of the phenomenon (1), the stored hydrogen is released from the hydrogen negative electrode.
The battery capacity is reduced and self-discharge is caused.
Therefore, the equilibrium plateau pressure is applied to the hydrogen anode.
It has been proposed to use low hydrogen storage alloys,
Research on gold is underway.
For example, LaNiFive, MmNiFiveAs for, at room temperature
Each equilibrium plateau pressure is as high as 3 atm and 15 atm
Therefore, in batteries using these as the negative electrode material,
Inconveniences such as deterioration of integrity and self-discharge occur.
On the other hand, even if this equilibrium plateau pressure is low,
A hydrogen storage alloy with a small amount of hydrogen
The following problems are caused in the battery. First,
In addition, since the hydrogen storage capacity is small, the rechargeable battery capacity is small.
When it comes to: Secondly, because the charging capacity is small, it becomes overcharged
Gaseous hydrogen as a result
That is. Hydrogen generation during overcharge also increases in battery pressure
Because it hurts, it impairs battery safety.
Considering the above points, as a material for the hydrogen anode,
Is water with a low equilibrium plateau pressure and a large hydrogen storage capacity.
It may be desirable to use an elemental storage alloy.
For example, LaCo, a known hydrogen storage alloyFive, LaNi1.5Co3.5
The equilibrium plateau pressure around room temperature was 0.1 atm and 0.2 atm, respectively.
Pressure but low, but can be stored below 3 atm
The quantity is LaNiFive(H.H.Van Mal, K, H.J.Bus
chow and F.A.Kuijpers, J. Less-Common Metals, 32,289
(1973)). Therefore, in batteries using these as the negative electrode material,
The problem is that the capacity is small and
Occurs.
It has already been used as a material for hydrogen storage alloy electrodes.
La-Ni-Co alloys (J.J.G.Willems, Philps
J. Res,39, 1 (1984)) and Mm-Ni-Co alloys
Is compared to the previous La-Ni-Mn-based alloy and Mm-Ni-Mn-based alloy.
It is possible to further reduce the equilibrium plateau pressure
However, it is said that this type of alloy does not have sufficient hydrogen storage capacity.
Had problems.
As described above, the electrode material of the battery has a large hydrogen storage capacity.
And low equilibrium plateau pressure are both required
However, there is no conventional electrode with both of these,
Means that the capacity decrease during repeated charge and discharge is small.
Such long life characteristics are also required. This is a large hydrogen storage capacity
Using a hydrogen storage alloy with low equilibrium plateau pressure
Configure the electrodes and charge and discharge in an alkaline aqueous solution that is an electrolyte.
When repeated, initially a large capacity is retained and water
Even if no element generation is observed, the charge
If the life of the pond will be exhausted, there will be significant restrictions on its use
Is added. For example, MmNi4.5Mn0.5And Mn
Ni4.2Mn0.8Alloys that have been used more than ever
For an electrode made of a negative electrode material, the charge capacity is initially 100%.
% Discharge is possible, but 8 times in about 100 charge / discharge cycles.
The capacity decreases to 0%, and to 50% after about 150 operations. this is
Water as negative electrode material for charge and discharge cycle in electrolyte
Attributed to the fact that elemental storage alloys are not chemically stable.
Therefore, such chemical safety is required to extend the service life.
It is also required to be qualitative.
The chemical stability of the electrode as described above, for example, Al component
Used a small amount of hydrogen storage alloy as material
And the electrode has a long life (Japanese Patent Application No. 59-120826).
issue). In addition, the inclusion of elements such as Al, Cr, Si
The hydrogen storage alloy is corrosion resistant due to the formation of a closed oxide layer
It is said to have corrosiveness (Japanese Patent Laid-Open No. 60-89066).
In addition, the electrodes of the rechargeable battery must be operated as easily as possible.
And exhibit its performance in a short time. example
For example, in a conventional nickel-cadmium battery,
So-called chemical treatment, in which the battery is charged and discharged several times
However, this is a small
Only the amount of discharge is obtained, and the efficiency increases as charging and discharging are repeated
This is because there is a phenomenon of rising. Hydrogen storage
A similar tendency is seen in the case of gold electrodes.
The discharge efficiency is low, and its performance can be improved by charging and discharging several times.
Will be demonstrated. This is due to the water contained inside the electrode.
Electrolyte reaches the surface of element storage alloy particles and the alloy surface becomes electrolyte
More than once to be activated for the storage of hydrogen from
This is because the above charging and discharging are required. Electrode as above
The charge and discharge for the initial activation of the electrode is the theoretical capacity of the electrode
Is performed with a smaller charge amount. like this
If a large capacity charge is suddenly applied without any pre-processing
Is a gas that generates gaseous hydrogen on the surface of the hydrogen storage alloy electrode.
This impedes the penetration of the electrolyte into the electrode,
The exfoliation of alloy particles from the contacted electrode surface is induced,
The disadvantage is that the amount is significantly reduced. Follow
Therefore, a chemical treatment of small capacity charge / discharge is required,
It is said that this process is completed in a small number of times and sufficient performance is achieved
It is self-evident that electrodes with properties are industrially advantageous.
You.
As described above, negative electrode materials for metal oxide / hydrogen batteries
Hydrogen storage alloy has a large hydrogen storage capacity and equilibrium
Low plateau pressure is required, and hydrogen
Alloy electrodes are easier to chemically convert at the initial stage and chemically
Characteristics that are stable and have a long life are required.
A hydrogen storage alloy electrode satisfying the above conditions has not been obtained.
Therefore, the large capacity required for metal oxide / hydrogen batteries
Prevents internal pressure rise and reduces the risk of hydrogen leakage
Excellent stability, low self-discharge and long life
A battery having all of the characteristics described above could not be produced.
[Object of the invention]
The present invention relates to the above-described configuration of a conventional hydrogen storage alloy electrode.
Providing a new hydrogen storage alloy electrode that solves various problems
The internal pressure of the battery is maintained at a low level, preventing hydrogen leakage.
Large capacity and long length, ensuring safety and suppressing self-discharge
The purpose is to provide a long-life metal oxide / hydrogen battery.
[Summary of the Invention]
The present inventors have developed a hydrogen storage alloy to achieve the above object.
As a result of repeated research on battery anodes used as materials,
La-Ni-Mn alloy, Mm-Ni-Mn alloy, La-Ni
-Co alloy, Mm-Ni-Co alloy compared to M-Ni-Mn
-Co alloys (M is a rare earth element containing yttrium
Represents at least a kind. ) Is an alloy containing each element in a specified ratio
Has large hydrogen storage capacity and low equilibrium plateau pressure, and
When used as an electrode, 100% of the charged electricity can be discharged
Large discharge capacity and discharge efficiency beyond the limit
Does not drop much from 100%, resulting in large capacity
And found the fact that it reduced hydrogen generation.
To develop metal oxide / hydrogen batteries using this alloy as the negative electrode
Reached.
That is, the metal oxide / hydrogen battery of the present invention
That is, metal oxide is used as a positive electrode active material, and hydrogen is used as a negative electrode active material.
Negative electrode in a metal oxide / hydrogen battery
Next formula
MNixMnyCOzAw
(Where M is at least the amount of rare earth elements including yttrium.
A kind: A is at least one of the elements selected from Al, Ti, Si, Cr
One type: x, y, z, w each represent an atomic ratio,
3.5 ≦ x ≦ 4.8 ……
0.01 <y ≦ 1.2 ......
0.01 <z ≦ 1.5 ......
0.01 ≦ w ≦ 0.6 ……
4.8 ≦ x + y + z + w ≦ 5.2 ……
Represents a number that satisfies the relationship )
Consisting of a hydrogen storage alloy indicated by
Element is housed in a container and hermetically sealed.
Sealed metal oxide / hydrogen battery.
In the formula, M is any one of rare earth elements including yttrium.
Species or a mixture of several lanthanum elements.
Misch metal (Mm) and La misch metal
Lanthanum-enriched misch metal (hereinafter referred to as Lm)
You. ).
Of the above three types, M is preferably Lm.
No.
By including both Mn and Co in this alloy,
Reduce equilibrium plateau pressure while maintaining hydrogen storage
Is realized. A in the formula is used as an electrode material.
Structure for charge-discharge cycling in electrolyte when immersed
Is a component that contributes to the stabilization of Al, Ti, Si, and Cr.
When at least one of the selected elements is used,
A longer service life is achieved. Formula other than the rare earth element
In terms of the total amount of components,
LaNi, a typical hydrogen storage alloy for goldFiveLarge from the structure of
Hydrogen storage capacity is reduced due to the highly distorted structure, which is preferable.
Not good.
The amount of element A needs to be within the range of the formula, where w is the atomic ratio.
You. When this becomes 0.6 <w, the hydrogen storage amount decreases.
As a result, the capacity decreased, and sufficient effects were not obtained at w <0.01.
Not. Even if component A is contained, its alloy is used as a material.
The configured hydrogen storage alloy electrode holds a large capacity and is the first
In order not to deteriorate the characteristics of the chemical conversion treatment during
It is necessary to contain a lot of Ni, and 3.5 <x
Appropriate. The upper limit of the equation is the equilibrium plateau pressure at 4.8 <x
Raises the problem. When the amount of Mn is 1.2 <y
If it becomes excessive, the amount of hydrogen storage decreases, while the amount of Mn decreases.
Mn is contained in a very small amount, that is, when y ≦ 0.01
Expression range is needed because the effect of
Become. Also, a hydrogen storage alloy containing Mn in the range of the formula
The electrode made of
Processing becomes easier. Furthermore, if the amount of Co also becomes 1.5 <z, water
When the amount of occluded element decreases, while the amount is very small, that is, when z ≦ 0.01
In the case, the effect of containing Co is effectively utilized
Cause the problem of not being. For the above reasons, the inclusion of each component
The ratio must be within the range that satisfies
Is necessary. Using such a hydrogen storage alloy as a material
Large capacity and long life by using structured electrode
A battery with excellent safety can be obtained.
The present inventors have developed a part of the alloy consisting of Mi-Ni-Mn-Co.
MNi substituted with component A that contributes to stabilization of the alloy structurexMnyC
ozAwElectrodes made of alloys of different compositions
When an appropriate amount is contained, it is composed of an alloy represented by M-Ni-Mn-Co.
Longer lifespan compared to fabricated electrodes
Was. The inclusion of element A reduces the hydrogen storage capacity of the alloy and reduces
And it tends to induce a decrease in
Of hydrogen storage alloy electrode used in the initialization treatment
Although the properties may be deteriorated, the present inventors
As a result of the research, the large capacity is maintained and the electrode is initialized.
To determine the composition range that facilitates the
Using a negative electrode composed of the alloy as an electrode material
Metal oxide and hydrogen batteries.
These alloys according to the present invention are determined from the target composition.
A predetermined amount of each component element powder is mixed, and the mixed powder is used as an example.
For example, a homogeneous solid solution can be obtained by melting in a vacuum arc melting furnace.
Can be obtained as Furthermore, this solid solution is pulverized.
Or 40kg / cm at room temperatureTwoPlace in a hydrogen atmosphere
It is easy to perform the activation process
A powder can be prepared.
In the metal oxide / hydrogen battery of the present invention,
Is the above-mentioned water that can occlude and release hydrogen as the negative electrode active material.
Powder of a nitrogen storage alloy and, for example, polytetrafluoroethylene.
After mixing with a binder such as ren, it is made into a sheet and configured
The used sheet electrode is used. In addition, the alloy powder and cal
Boxymethylcellulose (CMC), polyvinyl alcohol
(PVA), polyacrylate, polytetrafluoroe
Binder such as styrene and HTwoMix with O to make a paste
And filling or coating the conductive substrate
A negative electrode may be formed. The hydrogen storage alloy of the negative electrode material is hydrogen
May be used in the state of releasing hydrogen, or partially occlude hydrogen
You may use it in the state where it did. As the positive electrode, for example, gold
Nickel hydroxide nickel (OH) for sintered nickel2)
Nickel oxide (NiOO) impregnated with an active material
The electrode of H) is used. In addition, non-sintered nickel hydroxide
(Ni (OH)2) And cobalt compounds (Co, CoO, Co (O
H)2)), And further mix the mixture with CMC, PVA,
Binder such as acrylate and HTwoMix with O and paste
After filling or applying to the conductive substrate, dry it
It may be used as a positive electrode. And obtained in this way
The positive and negative electrodes are made of an aqueous alkaline solution such as KOH or NaOH.
Metal oxide-hydrogen battery according to the present invention immersed in an electrolytic solution
Is configured.
〔The invention's effect〕
As described above, according to the present invention, as described above,
With high composition and atomic ratioxMnyCozAwIs given by
An electrode made of a hydrogen storage alloy as a negative electrode
And a battery with a positive electrode containing a metal oxide as the active material.
By doing so, large capacity and internal pressure rise are prevented.
Battery that is stopped and has a low risk of hydrogen leakage and excellent safety
Can be provided.
According to the present invention, furthermore, the chemical conversion treatment is made difficult.
And a battery with a longer life can be provided.
Hereinafter, the present invention will be described in more detail based on examples.
I do.
(Example of the invention)
Reference example 1.
(1) Negative electrode formation
Mix predetermined amounts of powders of Lm, Ni, Mn and Co
And the resulting mixed powder is melted in a vacuum arc melting furnace.
The composition is LmNi4.15Mn0.8C0.005Was obtained.
This solid solution is crushed to a diameter of about 5 mm,
Pump and a container connected to a hydrogen cylinder.-6
kg / cmTwoAfter maintaining the following vacuum at room temperature for 1 hour, introduce hydrogen
Into, pressure about 35kg / cmTwo1 to several hours at room temperature under hydrogen atmosphere
Micronized by holding for a while. Over an hour again
Ten-3kg / cmTwoDegassed at room temperature to 60 ° C, keeping below
Thereafter, the alloy powder was taken out of the container. The obtained alloy powder
The particle size of the powder was 2 to 100 μm. In the above example, hydrogen
Crushing the alloy by absorbing ozone into the alloy
But ball mills, pulperizers, jet mills, etc.
Those crushed by a crusher may be used.
This alloy powder and polytetrafluoroethylene (PTFE)
And kneaded well to form a 0.5mm thick sheet
Molded. Weight ratio of alloy powder to PTFE is 96: 4 in dry state
Met.
The obtained two sheets are put on both sides of one nickel net.
To form a 0.7mm thick electrode.
Was used as a negative electrode.
(2) Formation of positive electrode
Porous nickel sintered body Ni (OH)2And impregnate this
A chemical conversion treatment was performed to form a NiOOH electrode, which was used as a positive electrode.
(3) Manufacturing of batteries
The above negative electrode, positive electrode, and 0.3 mm thick polypropylene
8 mol / KOH aqueous solution
The battery shown in FIG. 1 was manufactured as an electrolyte.
In FIG. 1, 1 is a negative electrode, 2 is a separator, and 3 is a positive electrode.
It is a pole. 4 and 5 are terminals of a negative electrode and a positive electrode, respectively.
And is taken out outside independently of the battery container 6.
Have been. 7 is an electrolytic solution. Negative electrode 1 according to the present invention
Wrap the separator in a U-shape with the separator 2 and attach the positive electrode 3 from both sides.
It was arranged and brought into close contact with an acrylic holder 8. Positive
The capacity is set to be sufficiently larger than the capacity of the negative electrode.
The following measurements were made under conditions where the battery performance was dominated by the characteristics of the negative electrode.
became.
(4) Battery characteristics
A constant current (1 g of hydrogen storage alloy contained in the negative electrode)
Or 170mA) to change the charging time
After charging the battery with a constant current (hydrogen storage alloy contained in the negative electrode)
Discharge until battery voltage drops to 0.95V at 170mA / g)
The efficiency at the time of this was measured. In addition, 10
0mAhg-1Charge and discharge several times in the following, and the performance of the negative electrode is sufficient
The experiment was performed in a state where it was exhibited. Co for comparison
LmNi is an alloy that does not contain4.2Mn0.8Of the same configuration using
A battery was manufactured and the same measurement was performed. Also does not contain Mn
LmNi alloy4.15Co0.8Al0.05Of the same configuration using
A battery was prepared and the same measurement was performed. Figure 3 shows the results
You. In the figure, the charging capacity is the unit weight of the alloy contained in the negative electrode.
The efficiency is calculated as the charge capacity of the discharge capacity.
Percentage (ie,
Indicated by In the figure
Is LmNi according to the present invention.4.15MN0.8Co0.05Alloy as anode material
The capacity characteristics of the battery used as
LmNi is a comparative example4.2Mn0.8,-▼-is a comparative example Lm
Ni4.15Co0.8Al0.05Is the case.
By using an Lm-Ni-Mn-Co alloy as a material,
100% higher than Lm-Ni-Mn and Lm-Ni-Co-Al alloys
The range of capacity that can be discharged with the efficiency of
Less gaseous hydrogen is generated even at capacity less than 0%
As can be seen from FIG. That is, LmNi4.2Mn0.8Alloy or
LmNi4.15Co0.8Al0.05When using alloys as materials
Is about 160mAhg-1With a charging capacity exceeding 100%
Electricity is not generated, and the utterance of hydrogen starts. In contrast, the present invention
By LmNi4.15Mn0.8Co0.05Battery with alloy electrode as negative electrode
About 190mAhg-1Up to 100% efficiency is possible.
The shaded portion in FIG. 3 corresponds to the difference in the amount of generated hydrogen,
It can be seen that the battery according to the present invention is more excellent in safety
You.
Example 1
The hydrogen storage alloy used for the negative electrode is LmNi according to the present invention.4.2M
n0.5Co0.1Al0.2Reference Example 1 except that the composition was
A similar battery was manufactured and its capacity characteristics were examined. The result is
In Figure 4
About 200mAhg as shown in-1Discharge with 100% efficiency up to
High-capacity batteries with a capacity of less than
Was not seen. A value indicating the capacity of this battery
As 300mAhg-1The discharge capacity for charging was measured
However, 245mAhg-1Met.
Example 2
The hydrogen storage alloy used for the negative electrode is LmNi according to the present invention.4.0M
n0.6Co0.2Al0.2Example 1 except that the composition was
A similar battery was manufactured and its capacity characteristics were examined. The result
In Figure 4
Indicated by In this embodiment, about 200 mAhg-1Up to 100% efficiency
It became a large capacity battery that could be retained. Hydrogen generation is also 200mAhg
-1Was not seen until.
As a comparative example, LmNi containing insufficient Ni and excess Co
2.2Mn0.6Co2.0Al0.2Battery capacity using alloy as anode material
Fig. 4 shows the quantitative characteristics
However, as compared with the case of this embodiment,
I did. At this time, the LmNi of the present example and the comparative example4.0Mn
0.6Co0.2Al0.2, LmNi2.2Mn0.6Co2.0Al0.2Use each alloy of
300mAhg of used battery-1Discharge capacity for charging
233 mAhg in the case of this embodiment-1, 178mAhg for the comparative example
-1Met.
Example 3
The hydrogen storage alloy used for the negative electrode is LmNi according to the present invention.4.2M
n0.3Co0.2Al0.3Example 1 except that the composition was
A similar battery was manufactured. Its 300mAhg-1Against charging
227 mAhg when measuring discharge capacity-1Met. Next
Of the battery was examined. Use it as a battery
In order to avoid the danger of hydrogen leakage,
Charge and discharge with a capacity in the range shown. Therefore, the battery according to the present invention
Life test can discharge almost 100% of charged electricity
Performed with volume. Specifically, small capacity
175mAhg for a battery that has been repeatedly charged and discharged several times
-1To charge for 1 hour, and then the battery voltage with the same current
Discharge was performed until the voltage dropped to 1.0 V, and this was repeated. And
High rate was calculated as a percentage of discharge capacity to charge capacity
Figure 5 shows the results
Indicated by
As a comparative example, a conventional product, LmNi4.2Mn0.8Pair of
Battery composed of an alloy consisting of
4.2Mn0.5Al0.3An alloy consisting of
Battery and LmNi4.2Co0.5Al0.3Of the composition
A battery composed of gold as a negative electrode material was manufactured in the same manner as in Example 1.
The method was manufactured and its life characteristics were measured. The results are shown in FIG.
LmNi4.2Mn0.8The characteristics of the battery using4.2M
n0.5Al0.3Battery characteristics using
LmNi4.2Co0.5Al0.3The characteristics of batteries using
Shown. As is apparent from FIG. 5, Lm4.
Batteries using an alloy consisting of 2Mn0.3Co0.2Al0.3
Discharge at an efficiency of 90% or more even after 600 cycles
LmNi maintains 90% for only about 100 cycles4.2Mn
0.8Conventional product using an alloy consisting of approximately 200 cycles
LmNi only maintains 90%4.2Mn0.5Al0.3From the composition of
90% only up to about 300 cycles
LmNi not maintained4.2Co0.5Al0.3Use of alloy consisting of
That a significantly longer life has been achieved compared to conventional products.
Recognize.
Example 4
The hydrogen storage alloy used for the negative electrode is LmNi according to the present invention.3.7M
n0.6Co0.5Al0.2Example 1 except that the composition was
Produce a similar battery and its 300mAhg-1Release for charging
The capacitance was measured. The result is 233mAhg-1Met. Incidentally
The battery life characteristics were examined in the same manner as in Example 4. So
Figure 5 shows the resultsMaintain 90% efficiency over 600 cycles
A long-life battery was obtained.
Example 5
Composition LmNi similar to Example 44.2Mn0.3Co0.2Al0.3With
A hydrogen storage alloy was prepared in the same manner as in Example 1, and a sheet was prepared.
To form a negative electrode from a 5.5 g section of the sheet
did. Further, the same positive electrode, separator, and electrode as in Example 1 were used.
Using the solution, the battery shown in FIG. 2 was manufactured. sand
That is, the positive electrode, the separator, and the negative electrode are stacked and spirally wound.
This is stored in a battery container together with the electrolyte and
Sealed with ket 9 and O-ring 10. In FIG.
Here, 1 is a negative electrode, 2 is a separator, and 3 is a positive electrode.
The negative electrode 1 is in close contact with the battery case 6. With the battery of this embodiment
Is set so that the capacity of the positive electrode is less than or equal to the capacity of the negative electrode
did. 7 is an electrolytic solution.
To determine the initial characteristics of this battery,
The discharge capacity was measured by the discharge cycle. First
Two cycles with a 100 mAh charge, followed by a 200 mAh charge
Power cycle twice, then 400 mAh charging
Kuru was done. In FIG.
Indicates the discharge capacity obtained in each cycle. A,
b and c represent the charging capacity of 100, 200 and 400 mAh respectively, and…
... indicate that the charging capacity has been changed. No.
As can be seen in FIG. 6, the battery of this embodiment has a
On the other hand, it shows almost 100% efficiency in about 2 cycles.
Next, as a comparative example, the hydrogen storage alloy used for the negative electrode was Ni
LmNi with insufficient amount3.2Mn0.6Co1.0Al0.2The composition of
A battery similar to that of Example 1 was manufactured except for
The characteristics were examined in the same manner as in Example 3. However, this comparison
Example battery is 175mAhg-1With almost 100% efficiency for charging
Approximately 20 small charges and discharges before discharge is possible
It was necessary to repeat the electricity. The results are shown in FIG.
And more than 600 cycles and close to 100%
A long-life battery exhibiting high efficiency was obtained. like this
175mAhg capacity-1Comparative example shows good results in charge and discharge
But 300 mAhg-1Discharge capacity is 215 for charging
mAhg-1And a smaller capacity than the battery according to the present invention.
Further, as another comparative example, LmNi having the same composition as above was used.3.2M
n0.6CO1.0Al0.2As in Example 5 using an alloy having the composition
A battery was manufactured, and its initial characteristics were measured in the same manner as in Example 5.
I checked in. Fig. 6 shows the results.
As shown. As can be seen in FIG.
Ponds have poor initial efficiency and charge capacity is as small as 100 mAh.
It reaches only about 60% in three cycles. In this state
When the capacity was increased to 200mAh, the discharge capacity was rather
Diminished. Then repeat the cycle with 400 mAh charging
The discharge capacity gradually increased, but after 10 cycles
However, it did not reach sufficient efficiency. Therefore, this comparative example
Such a battery has a good life even after its manufacture.
Requires multiple charge / discharge cycles before performance
This is industrially disadvantageous.
Set of hydrogen storage alloy in the above Examples and Comparative Examples
The relationship between the formation and the capacitance of the electrode using it is summarized
The results are shown in Table 1. Table 1 shows that the atomic ratio x of Ni is 3.5 or more.
Large capacity is obtained when it is large, and capacity is less than 3.5
It can be seen that it decreases. Also, as shown in FIG.
Since the lack of Ni has a bad effect on the initial characteristics of the pond,
It is necessary that 3.5 <x.
Example 6
Composition LmNi similar to Example 43.7Mn0.6Co0.5Al0.2With
A hydrogen storage alloy was prepared in the same manner as in Example 1, and
A battery having the same configuration as that of the battery No. 5 was manufactured. However, as a negative electrode
Uses a sheet weighing 7 g, and also transmits the internal pressure of the battery
Then, the pressure was measured on a part of the positive electrode terminal 5 of the battery container shown in FIG.
The vessel was attached.
This battery is charged 3 times with a charge capacity of 600mAh, 800mAh
Cycle twice, then cycle by charging 1Ah
Was done. The charge capacity of 1 Ah is about 1.5 times the capacity of the positive electrode
Hit. This charge / discharge cycle is indicated by-▽-in FIG.
Indicates the maximum value of the battery internal pressure at the end of charging in the middle.
The charging capacity is 600 mAh (part a in FIG. 7), 800 mAh (
7 (b) and 1Ah (c in FIG. 7)
The internal pressure also rises as the
Internal pressure is up to 4.6kgcm even with electricity-2And normal battery safety
Valve is at least 19kgcm-2To withstand the internal pressure of
Then, it can be said that the battery of this embodiment is sufficiently safe. Note that
Even after the 8th charge / discharge cycle with charge capacity 1Ah
The pressure is 4.6kgcm-2Never exceeded.
Next, as a comparative example, the hydrogen storage alloy used for the negative electrode was Ni
LmNi with insufficient amount3.2Mn0.6Co1.0Al0.2The composition of
A battery similar to that of Example 7 was prepared except for
Was measured. In FIG.
As a result, the cycle by charging 600 mAh
Twice (part a in FIG. 7) by charging at 800 mAh.
After applying the wheel three times (part b in FIG. 7), the charging capacity is 1A
Repeat the charge / discharge cycle (h in Fig. 7)
Was.
As is clear from FIG. 7, in this comparative example, the charging capacity was
The internal pressure increases as the current increases to 600 mAh, 800 mAh, and 1 Ah,
10kgcm at eye-2Reach In addition, when charging 1Ah
Internal pressure 11-12kgcm-2And the same level after 9th cycle
The internal pressure was indicated. 1.5 times the initial capacity as in this comparative example
Internal pressure is 10kgcm in charge / discharge cycle with degree of charge-2Cross over
Batteries are dangerous and are not suitable as sealed secondary batteries for consumer use
That's right. Such an increase in internal pressure is due to hydrogen absorption of the anode material.
This is seen when the amount of Ni in the alloy composition is insufficient.
MNixMnyCozAwIn an alloy having a composition represented by the general formula of
It is necessary that the amount x of Ni exceeds 3.5. Insufficient amount of Ni
In the case of feet, the internal pressure rises as seen in the comparative example above.
The danger arises.
As shown in the above examples, the alloy according to the present invention was negatively charged.
Metal oxide / hydrogen batteries used as electrode materials are
Therefore, it is a battery having a large capacity, a long life and excellent safety.
In particular, the alloy represented by the composition of MNixMnyCozAw according to the present invention
In the battery using as the negative electrode material, Examples 4 and 5 shown in FIG.
As shown in the figure, the service life is greatly extended compared to the conventional product.
And processing immediately after battery production as shown in FIG.
Is also easy. Further, the alloy having the composition according to the present invention is used as a negative electrode material.
As shown in Fig. 7, a good internal pressure characteristic
Good safety and excellent safety. The composition of these alloys is
Range specified in consideration of the relationship with the desired battery characteristics
Each can be decided within. In addition, according to the present invention,
Gold composition excludes unavoidable impurities that enter during its production
Not something. This inevitable impurity is, for example, iron
And tin.
【図面の簡単な説明】
第1図は本発明に係る電池の概略断面図、第2図は本発
明に係る電池の他の構造例の概略断面図、第3図および
第4図は本発明による電池ならびに比較例の容量特製
図、第5図は本発明による電池ならびに比較例の寿命特
性図、第6図は本発明による電池ならびに比較例の初期
容量特性図、第7図は本発明及び比較例の電池の充放電
サイクル数と電池内圧との関係を示した特性図である。
1……負極、2……セパレータ
3……正極、4……負極の端子、5……正極の端子
6……電池容器、7……電解液、8……ホルダー
9……絶縁ガスケット、10……O−リングBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of a battery according to the present invention, FIG. 2 is a schematic sectional view of another structural example of a battery according to the present invention, and FIGS. 5, a battery according to the present invention and a comparative example, FIG. 5 shows a life characteristic diagram of the battery according to the present invention and the comparative example, FIG. 6 shows an initial capacity characteristic diagram of the battery according to the present invention and the comparative example, and FIG. FIG. 9 is a characteristic diagram showing a relationship between the number of charge / discharge cycles and the internal pressure of the battery of the comparative example. DESCRIPTION OF SYMBOLS 1 ... Negative electrode, 2 ... Separator 3 ... Positive electrode, 4 ... Negative electrode terminal, 5 ... Positive electrode terminal 6 ... Battery container, 7 ... Electrolyte solution, 8 ... Holder 9 ... Insulating gasket, 10 …… O-ring
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 優治 川崎市幸区小向東芝町1 株式会社東芝 総合研究所内 (56)参考文献 特開 昭60−250558(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yuji Sato 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi Toshiba Corporation Within the Research Institute (56) References JP-A-60-250558 (JP, A)
Claims (1)
する金属酸化物・水素電池において、負極が、 次式 MNixMnyCOzAw (式中、Mはイットリウムを含む希土類元素の少なくと
も一種:AはAl、Ti,Si,Crより選ばれる元素の少なくとも
1種:x,y,z,wはそれぞれ原子比を表し、3.5≦x≦4.8、
0.01<y≦1.2、0.01<z≦1.5、0.01≦w≦0.6、4.8≦
x+y+z+w≦5.2の関係を満足する数を表す。) で示される水素吸蔵合金からなり、かつ、電池の構成要
素が容器内に収納されて密閉されていることを特徴とす
る密閉型金属酸化物・水素電池。(57) [Claims] The metal oxide as the positive electrode active material, the metal oxide-hydrogen batteries using hydrogen as a negative electrode active material, a negative electrode, in the formula MNi x Mn y CO z A w ( Formula, M at least of rare earth elements including yttrium Type: A is at least one type of element selected from Al, Ti, Si, Cr: x, y, z, w each represent an atomic ratio, 3.5 ≦ x ≦ 4.8,
0.01 <y ≦ 1.2, 0.01 <z ≦ 1.5, 0.01 ≦ w ≦ 0.6, 4.8 ≦
Represents a number that satisfies the relationship x + y + z + w ≦ 5.2. A sealed metal oxide-hydrogen battery comprising a hydrogen storage alloy represented by the formula (1), wherein the components of the battery are housed in a container and sealed.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60133985A JP2713881B2 (en) | 1985-06-21 | 1985-06-21 | Sealed metal oxide / hydrogen battery |
US06/872,844 US4696873A (en) | 1985-06-21 | 1986-06-11 | Rechargeable electrochemical cell with a negative electrode comprising a hydrogen absorbing alloy including rare earth component |
DE8686304743T DE3677831D1 (en) | 1985-06-21 | 1986-06-20 | RECHARGEABLE ELECTROCHEMICAL CELL WITH A NEGATIVE ELECTRODE MADE FROM A HYDROGEN ABSORBING ALLOY CONTAINING A RARE EARTH ELEMENT. |
EP86304743A EP0206776B1 (en) | 1985-06-21 | 1986-06-20 | Rechargeable electrochemical cell with a negative electrode comprising a hydrogen absorbing alloy including rare earth component |
CA000512075A CA1279095C (en) | 1985-06-21 | 1986-06-20 | Rechargeable electrochemical cell with a negative electrode comprising a hydrogen absorbing alloy including rare earth component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60133985A JP2713881B2 (en) | 1985-06-21 | 1985-06-21 | Sealed metal oxide / hydrogen battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61292855A JPS61292855A (en) | 1986-12-23 |
JP2713881B2 true JP2713881B2 (en) | 1998-02-16 |
Family
ID=15117688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60133985A Expired - Lifetime JP2713881B2 (en) | 1985-06-21 | 1985-06-21 | Sealed metal oxide / hydrogen battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2713881B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6220245A (en) * | 1985-07-18 | 1987-01-28 | Matsushita Electric Ind Co Ltd | Enclosed type alkaline storage battery |
JP2666249B2 (en) * | 1985-08-20 | 1997-10-22 | 松下電器産業株式会社 | Hydrogen storage alloy for alkaline storage batteries |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8303630A (en) * | 1983-10-21 | 1985-05-17 | Philips Nv | ELECTROCHEMICAL CELL WITH STABLE HYDRIDE-FORMING MATERIALS. |
JPS60250558A (en) * | 1984-05-25 | 1985-12-11 | Matsushita Electric Ind Co Ltd | Enclosed type alkaline storage battery |
JPH0719599B2 (en) * | 1985-04-10 | 1995-03-06 | 松下電器産業株式会社 | Storage battery electrode |
-
1985
- 1985-06-21 JP JP60133985A patent/JP2713881B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61292855A (en) | 1986-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0284333B1 (en) | Sealed type nickel-hydride battery and production process thereof | |
JP2771592B2 (en) | Hydrogen storage alloy electrode for alkaline storage batteries | |
US4925748A (en) | Alkaline storage battery using hydrogen absorbing alloy | |
US7544442B2 (en) | Hydrogen-absorbing alloy electrode and alkaline storage battery | |
JP2965475B2 (en) | Hydrogen storage alloy | |
US5242766A (en) | Hydrogen-occlusion electrode | |
JP2713881B2 (en) | Sealed metal oxide / hydrogen battery | |
JPH0797504B2 (en) | Sealed alkaline storage battery | |
US6197448B1 (en) | Hydrogen storage alloy | |
US5985057A (en) | Method of fabricating hydrogen absorbing alloy electrode | |
JP2566912B2 (en) | Nickel oxide / hydrogen battery | |
JPH0810596B2 (en) | Metal oxide / hydrogen battery | |
KR100207618B1 (en) | Negative electrode manufacturing method and secondary battery having it | |
JPH02250260A (en) | Hydrogen storage electrode and manufacture thereof | |
JP3343417B2 (en) | Metal oxide / hydrogen secondary battery | |
JPH08138658A (en) | Hydrogen storage alloy-based electrode | |
JP3322452B2 (en) | Rare earth hydrogen storage alloy for alkaline storage batteries | |
JP3392700B2 (en) | Alkaline secondary battery | |
JP3152845B2 (en) | Nickel-metal hydride battery | |
JP3101622B2 (en) | Nickel-hydrogen alkaline storage battery | |
JP3343413B2 (en) | Alkaline secondary battery | |
JPH0517659B2 (en) | ||
JP2679441B2 (en) | Nickel-metal hydride battery | |
JPH0754703B2 (en) | Metal oxide / hydrogen battery | |
JP3082341B2 (en) | Hydrogen storage electrode |