JPS63266764A - Negative electrode for secondary battery - Google Patents

Negative electrode for secondary battery

Info

Publication number
JPS63266764A
JPS63266764A JP62100724A JP10072487A JPS63266764A JP S63266764 A JPS63266764 A JP S63266764A JP 62100724 A JP62100724 A JP 62100724A JP 10072487 A JP10072487 A JP 10072487A JP S63266764 A JPS63266764 A JP S63266764A
Authority
JP
Japan
Prior art keywords
aluminum
electrode
melting point
low melting
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62100724A
Other languages
Japanese (ja)
Inventor
Yasuo Nakamura
安男 中村
Atsuki Funada
厚樹 船田
Mitsuru Koseki
満 小関
Masaru Fujita
優 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP62100724A priority Critical patent/JPS63266764A/en
Publication of JPS63266764A publication Critical patent/JPS63266764A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain an electrode which is lightweight and has large specific surface area and good workability as the negative electrode of a secondary battery which takes in and out lithium ions by heat-bonding aluminum-low melting point metal alloy powder to a thin film-like electrode substrate with a binder. CONSTITUTION:Aluminum-low melting point metal alloy powder comprising 80-99% aluminum and 1-20% at least one of Mg, Pb, Sn, Bi and In in an atomic ratio is heat-bonded the mesh like substrate of expanded metal or punched metal with a binder comprising olefin base thermoplastic polymer such as polyethylene and polypropylene which is less reactive with alkali metal to form a negative electrode. The aluminum-low melting point metal alloy powder is bonded to the thin electrode substrate plate with electrochemical activity retained, and the electrode having high mechanical strength and large specific surface area can be obtained.

Description

【発明の詳細な説明】 本発明は二次電池に係り、特にリチウムイオンの出入れ
をするアルミニウム合金を電極とする非水電解質二次電
池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a secondary battery, and more particularly to a non-aqueous electrolyte secondary battery using an aluminum alloy as an electrode for taking in and taking out lithium ions.

従来の技術 リチウム金属を負極活物質とする二次電池は高エネルギ
ー密度が達成できるという特徴があり、現在までにいく
つかの電池係が提案されている。例えば二硫化チタン、
グラファイト、二硫化モリブデン等の層間化合物を正極
活物質として用いる方法がある。また最近ではポリアセ
チレン等の導電性高分子へのドーピング・アンド−ピン
グを利用するものについても開発が進められている。し
かしこれらいずれの電池系においても負極に用いるリチ
ウム金属が樹枝状1こ析出して充放電効率の低下あるい
は短絡等が生じる。
BACKGROUND OF THE INVENTION Secondary batteries using lithium metal as a negative electrode active material are characterized by the ability to achieve high energy density, and several batteries have been proposed to date. For example, titanium disulfide,
There is a method of using an interlayer compound such as graphite or molybdenum disulfide as a positive electrode active material. Furthermore, in recent years, there has been progress in the development of devices that utilize doping and doping of conductive polymers such as polyacetylene. However, in any of these battery systems, the lithium metal used in the negative electrode precipitates in a dendritic structure, resulting in a decrease in charge/discharge efficiency or short circuits.

これに対する対策としては、従来いくつかの提案がなさ
れている。例えば電解質中にリチウムの樹枝状析出物を
抑える物質を添加する方法あるいはリチウムを合金化し
て負極とする方法等がある。合金の代表的なものとして
は、アルミニウムと合金化したもの、あるいは鉛、錫、
ビスマス等のリチウム吸蔵可能な低融点金属と合金化し
たものが知られている。アルミニウムとリチウムの合金
については特開昭48−33811号公報及び特公昭4
8−33812号公報に記載のように5〜30重ffi
%のアルミニウムを添加したものがある。この方法にお
いては、合金を溶融して電極基材上に付着させている。
As countermeasures against this problem, several proposals have been made in the past. For example, there is a method of adding a substance that suppresses dendritic precipitates of lithium to the electrolyte, or a method of alloying lithium to form a negative electrode. Typical alloys include those alloyed with aluminum, lead, tin,
It is known that it is alloyed with a low melting point metal that can absorb lithium, such as bismuth. For alloys of aluminum and lithium, see Japanese Patent Application Laid-Open No. 48-33811 and Japanese Patent Publication No. 4
5 to 30 ffi as described in Japanese Patent No. 8-33812
% of aluminum is added. In this method, the alloy is melted and deposited onto the electrode substrate.

また特開昭52−54)3号公報記載の方法においては
合金粉末を焼結させて電極に成型する方法がとられてい
る。
Further, in the method described in Japanese Patent Application Laid-Open No. 52-54)3, a method is used in which alloy powder is sintered and molded into an electrode.

一方、鉛、錫、ビスマス等とリチウムを合金化させる方
法については特開昭60−131776号公報に記載の
ように上記合金の粉末を四7ツ化エチレン樹脂と混練し
て電極基材に塗布する方法がある。
On the other hand, as for the method of alloying lithium with lead, tin, bismuth, etc., as described in JP-A-60-131776, the powder of the above alloy is kneaded with ethylene tetra7ide resin and applied to the electrode base material. There is a way to do it.

また、アルミニウム合金粉末を用いる電極の製造方法と
して特開昭59−217%5号公報では発泡メタル等の
多孔体にアルミニウム合金粉末を充填して保持する方法
がある。
Furthermore, as a method for manufacturing electrodes using aluminum alloy powder, Japanese Patent Application Laid-Open No. 59-217%5 discloses a method in which aluminum alloy powder is filled and held in a porous body such as a foamed metal.

発明が解決しようとする問題点 上記従来法のうち、リチウムと鉛、錫、ビスマス等の低
融点金属との合金粉末においては粉末を結着剤と混練し
て塗布するため、混線中に反応活性の強いリチウムと溶
媒、結着剤等が反応し、成型後の電極が電気化学的に不
活性になり易いといった問題があった。また、充放電中
にLiと四塩化エチレンとが反応し、効率を低下させる
Problems to be Solved by the Invention Among the conventional methods mentioned above, in the case of alloy powders of lithium and low-melting point metals such as lead, tin, and bismuth, the powder is kneaded with a binder and applied, so there is no reaction activity during cross-talk. There was a problem in that the strong lithium reacts with the solvent, binder, etc., and the electrode after molding tends to become electrochemically inactive. Furthermore, Li reacts with ethylene tetrachloride during charging and discharging, reducing efficiency.

問題点を解決するための手段 本発明の目的はリチウムイオンを出入れするとにある。Means to solve problems The purpose of the present invention is to introduce and extract lithium ions.

上記問題点を解決するため、アルミニウムー低融点金属
合金による電極作製方法を検討した。
In order to solve the above problems, we investigated a method for manufacturing electrodes using an aluminum-low melting point metal alloy.

リチウムの樹枝状析出物の生成を抑制するため1ζはア
ルミニウム含有量の多い合金を電極として用いることが
効果的である。ビー・エム・エル・ラオ、アール・ダプ
リュ・フランシス、エイチ・エイ・クリストファーによ
るジャーナル・オブ・エレクトロケミカル・ソサエティ
、第124巻、1490 ヘージ、1977年(B、M
、L、 RQO。
In order to suppress the formation of dendritic precipitates of lithium, it is effective to use an alloy with a high aluminum content as the electrode for 1ζ. Journal of the Electrochemical Society, Volume 124, 1490 by B. M. L. Rao, R. D. Francis, and H. A. Christopher, 1977 (B, M.
,L.R.Q.O.

R,W、 Fruncis 、 H,A、 Chris
tophen、 J、 Electochem、 So
c。
R, W, Francis, H, A, Chris
tophen, J, Electochem, So
c.

Vol、 124 (1977)、 pp、1490)
に記載されているように原子比で20%以上のアルミニ
ウムを含む合金においては、リチウムの溶解析出の電位
は純粋なリチウム金属に比べ0.3ないし0.4V高く
なり、電解質中のリチウムイオンはリチウム金属として
析出するのではなく、リチウムがアルミニウム中に固溶
、合金化するため樹状析出物の生成は起り難(なる。
Vol, 124 (1977), pp, 1490)
As described in , in alloys containing 20% or more aluminum in atomic ratio, the potential of lithium dissolution and precipitation is 0.3 to 0.4 V higher than that of pure lithium metal, and the lithium ions in the electrolyte are The formation of dendritic precipitates is difficult because lithium does not precipitate as lithium metal, but forms a solid solution and alloys in aluminum.

しかし、リチウム−アルミニウム合金においてアルミニ
ウムの含有量が多くなると合金はもろくなり、延性が失
われるといった欠点がある。
However, when the aluminum content increases in a lithium-aluminum alloy, the alloy becomes brittle and loses its ductility.

またリチウム−アルミニウム合金のリチウムの溶解−析
出の効率は90%程度であり、完全な可逆反応ではない
ため充放電サイクル特性が悪いといった問題がある。
In addition, the efficiency of dissolving and depositing lithium in a lithium-aluminum alloy is about 90%, and since the reaction is not completely reversible, there is a problem that the charge-discharge cycle characteristics are poor.

これらの問題に対する解決策としてアルミニウムー低融
点金属合金を粉末としてこれを好適な結着剤により薄膜
状の電極基材に熱圧着する方法に思い至った。粉末電極
は表面積を大きくとれるため、実質的な電流密度を下げ
る効果がある。また、ハロゲンを含まないオレフィン系
化合物の結着効果により、リチウムを含まないアルミニ
ウムー低融点合金粉末を電極基材に結着させるため、混
練及び熱圧着時等でリチウムと結着材、溶媒等との反応
を防ぎ、なおかつ捲回時等の脱落を防ぐことができる。
As a solution to these problems, we came up with a method of thermocompression bonding an aluminum-low melting point metal alloy powder to a thin film electrode base material using a suitable binder. Since powder electrodes have a large surface area, they have the effect of lowering the actual current density. In addition, in order to bind the lithium-free aluminum-low melting point alloy powder to the electrode base material due to the binding effect of the halogen-free olefin compound, lithium and binder, solvent, etc. It is possible to prevent reactions with the material and also prevent it from falling off during winding.

アルミニウムー低融点合金粉末を熱圧着成型する際1ζ
は結着剤の選択と作製過程の条件が課題である。熱圧着
成型の基材としては、一般的6ζ用いられているエキス
バンドメタルまたはパンチングメタル等の網目状金属を
用いれば良い。
1ζ when thermocompression molding aluminum-low melting point alloy powder
The issues are the selection of the binder and the conditions of the manufacturing process. As a base material for thermocompression molding, a mesh metal such as expanded metal or punched metal, which is commonly used in 6ζ, may be used.

一方、結着剤については、電池組み込み後の充電時にと
り込まれるリチウムイオンが非常に反応性に富むためそ
の選定には注意が必要である。
On the other hand, with regard to the binder, care must be taken in selecting the binder because the lithium ions taken in during charging after battery installation are highly reactive.

アルコール系の結着剤は水酸化リチウムを生成させる慣
れがある。またハロゲン化物系の結着剤もハロゲン化リ
チウムを生成すると考えられる。最も望ましいのはオレ
フィン系の熱可塑性ポリマーが挙げられる。その例とし
ては、ポリエチレン、ポリプロピレン等がある。これら
のポリマーは熱処理により軟化して溶融状態になり、ア
ルミニウムー低融点金属を電極基材に結着させる働きが
ある。その時の温度は軟化点よりやや低い温度が望まし
い。
Alcohol-based binders are used to producing lithium hydroxide. It is also believed that halide-based binders also generate lithium halides. Most desirable are olefin-based thermoplastic polymers. Examples include polyethylene, polypropylene, etc. These polymers are softened into a molten state by heat treatment, and have the function of binding aluminum, a low melting point metal, to the electrode base material. The temperature at that time is preferably slightly lower than the softening point.

作用 上記のポリマーの粉末とアルミニウムー低融点金属及び
カーボン粉末、カーボン繊維とを混合する。電極はその
混合物をエキスバンド等電極基材上に熱圧着成型により
作製し、結着剤の結着効果を発現させる。その時の温度
はポリマーの軟化点より低い方が望ましく、圧力もポリ
マーの圧縮成型圧程度が望ましい。また、アルミニウム
ー低融点合金は空気中では酸化皮膜が生成し易いため、
不活性ガス雰囲気または真空中で処理する必要がある。
Function The above polymer powder, aluminum-low melting point metal, carbon powder, and carbon fiber are mixed. The electrode is produced by thermocompression molding the mixture onto an electrode base material such as an expanded band, and the binding effect of the binder is exerted. The temperature at that time is preferably lower than the softening point of the polymer, and the pressure is also preferably about the compression molding pressure of the polymer. In addition, aluminum-low melting point alloys tend to form an oxide film in the air, so
It is necessary to process in an inert gas atmosphere or vacuum.

このようにして作製した電極は冷却後不活性ガス雰囲気
中にて、適当な正極と組み合せて電波を構成することが
できる。
After cooling, the electrode produced in this manner can be combined with a suitable positive electrode in an inert gas atmosphere to form a radio wave.

実施例 次に、本発明の実施例及び比較例について説明する。Example Next, examples and comparative examples of the present invention will be described.

実施例1 アルミニウムーマグネシウム合金(原子比97;3)の
粉末(100メツシユ以下)87重量部に10重量部の
ポリエチレン粉末、カーボン7アイパー(φ6μmX2
−)3重量部を加えてよ(混合し、5US316製のエ
キスバンドメタルを9φに打ち抜いたものの上に温度1
10℃、圧力200kof/−で熱圧着成型した。これ
を作用極に、過剰なリチウムアルミニウム合金(原子比
50 : 50)を対極として第1図に示すよ−うなセ
ルに組み込んだ。電解液としては精製済の1mol//
のLtBF+を含む炭酸プロピレン−ジメトキシエタン
混合溶媒(容積比1:1)を用い、充放電試験に供した
。充放電条件は電流密度0.5 mA/ cd、電極利
用率10%で充放電を行った。その時のサイクル数とク
ーロン効率の変化を第2図に示す。第2図より、初期に
クーロン効率100%近くを維持した後、効率95%付
近で安定し100サイクルでもなお90%以上の効率を
示した。
Example 1 87 parts by weight of powder (100 mesh or less) of aluminum-magnesium alloy (atomic ratio 97; 3), 10 parts by weight of polyethylene powder, carbon 7 eyeper (φ6 μm x 2
-) Add 3 parts by weight (mix and place on a 9φ punched expanded metal made of 5US316 at
Thermocompression molding was carried out at 10° C. and a pressure of 200 kof/−. This was incorporated into a cell as shown in FIG. 1, with an excess lithium aluminum alloy (atomic ratio 50:50) as a counter electrode and a working electrode. The electrolyte is purified 1 mol//
A charge/discharge test was conducted using a propylene carbonate-dimethoxyethane mixed solvent (volume ratio 1:1) containing LtBF+. The charging and discharging conditions were a current density of 0.5 mA/cd and an electrode utilization rate of 10%. Figure 2 shows the change in the number of cycles and coulombic efficiency at that time. From FIG. 2, after maintaining the Coulombic efficiency close to 100% in the initial stage, the efficiency stabilized at around 95%, and even after 100 cycles, the efficiency was still over 90%.

実施例2 アルミニウムーマグネシウム合金粉末(原子比97:3
.100メツシユ以下)87重量部に10重量部のポリ
プロピレン粉末、3重量部のカーボン粉末、カーボン繊
維とを加え混合した。その混合物を温度180℃、圧力
200 kg/−でエキスυ バンドメタル(SYS 316.9φ)上に熱圧着成型
し、実施例1と同様に充放電試験を行った。
Example 2 Aluminum-magnesium alloy powder (atomic ratio 97:3
.. 10 parts by weight of polypropylene powder, 3 parts by weight of carbon powder, and carbon fiber were added to 87 parts by weight (100 mesh or less) and mixed. The mixture was thermocompression molded on an extract υ band metal (SYS 316.9φ) at a temperature of 180° C. and a pressure of 200 kg/−, and a charge/discharge test was conducted in the same manner as in Example 1.

その時の充放電サイクルとクーロン効率の関係を第2図
に示す。充放電サイクル初期にクーロン効率100%近
くを維持し、その後効率95%付近で安定し、100サ
イクルでもなお90%以上の効率を示した。
The relationship between the charge/discharge cycle and the coulombic efficiency at that time is shown in FIG. The coulombic efficiency was maintained at nearly 100% at the beginning of the charge/discharge cycle, and thereafter the efficiency stabilized at around 95%, and even after 100 cycles, the efficiency was still over 90%.

比較例1 アルミニウムーマグネシウム合金粉末(原子比97:3
.100メツシユ以下)90重置部に10重量部のポリ
エチレン粉末を加え混合した。その混合物を温度110
℃、圧力200 kgf / aJで熱圧着成型し、実
施例2と同様の条件で充放電試験を行った。
Comparative Example 1 Aluminum-magnesium alloy powder (atomic ratio 97:3
.. (100 meshes or less) 10 parts by weight of polyethylene powder was added to 90 overlapping parts and mixed. The mixture was heated to a temperature of 110°C.
℃ and a pressure of 200 kgf/aJ, and a charge/discharge test was conducted under the same conditions as in Example 2.

その時の充放電サイクルとクーロン効率の関係を第2図
に示す。充放電サイクル初期にクーロン効率100%近
(を維持するが、その後、クーロン効率95%付近で安
定し、100サイクルで、クーロン効率60%に低下し
た。
The relationship between the charge/discharge cycle and the coulombic efficiency at that time is shown in FIG. At the beginning of the charge/discharge cycle, the coulombic efficiency remained close to 100%, but after that, the coulombic efficiency stabilized at about 95%, and after 100 cycles, the coulombic efficiency decreased to 60%.

なお第1図において、1はテフロン製セル、2はリチウ
ン、3はセパレータ、4は試料、5.5′は集電体、6
はテフロン製蓋である。
In Fig. 1, 1 is a Teflon cell, 2 is lithium, 3 is a separator, 4 is a sample, 5.5' is a current collector, and 6
is a Teflon lid.

発明の効果 上述のように本発明によれば、薄板状電極基材に電気化
学活性を保持したままでアルミニウムー低融点合金粉末
を処理できるため、高い強麿と実質的に大きな比重面積
をもつ電極が作製でき、このため、各種の形状の電池に
応用でき、高電流密度の電池が可能となる等工業的価値
甚だ大なるものである。
Effects of the Invention As described above, according to the present invention, it is possible to process aluminum-low melting point alloy powder while retaining electrochemical activity in the thin electrode base material, so that it has a high strength and a substantially large specific gravity area. It has great industrial value, as electrodes can be produced, and it can therefore be applied to batteries of various shapes, enabling batteries with high current density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において使用した電池の説明図、第2図
は充放電サイクルとクーロン効率の関係を示す曲線図で
ある。
FIG. 1 is an explanatory diagram of the battery used in the present invention, and FIG. 2 is a curve diagram showing the relationship between charge/discharge cycles and coulombic efficiency.

Claims (1)

【特許請求の範囲】 1、非水溶媒を用いる二次電池において、基材、アルミ
ニウムと1種類以上の抵融点金属からなる合金粉末、カ
ーボン粉末あるいはカーボン繊維のいずれか一方、又は
両方及びそれらを結着する有機化合物とによって構成さ
れることを特徴とする二次電池用負極。 2、有機化合物がアルカリ金属に対して反応性の低いオ
レフィン系の高分子である特許請求の範囲第1項記載の
二次電池用負極。 3、アルミニウムと低融点金属との合金が原子比にして
1〜20%のマグネシウム、鉛、錫、ビスマス、インジ
ウムのいずれか1つ以上と80〜99%のアルミニウム
によりなる合金粉末である特許請求範囲第1項記載の二
次電池用負極。
[Claims] 1. In a secondary battery using a non-aqueous solvent, a base material, an alloy powder made of aluminum and one or more types of low melting point metal, carbon powder, or carbon fiber, or both, and A negative electrode for a secondary battery, characterized in that it is composed of a binding organic compound. 2. The negative electrode for a secondary battery according to claim 1, wherein the organic compound is an olefinic polymer having low reactivity with alkali metals. 3. A patent claim in which the alloy of aluminum and a low melting point metal is an alloy powder consisting of 1 to 20% of any one or more of magnesium, lead, tin, bismuth, and indium and 80 to 99% of aluminum in terms of atomic ratio. A negative electrode for a secondary battery as described in Scope 1.
JP62100724A 1987-04-23 1987-04-23 Negative electrode for secondary battery Pending JPS63266764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62100724A JPS63266764A (en) 1987-04-23 1987-04-23 Negative electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100724A JPS63266764A (en) 1987-04-23 1987-04-23 Negative electrode for secondary battery

Publications (1)

Publication Number Publication Date
JPS63266764A true JPS63266764A (en) 1988-11-02

Family

ID=14281572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100724A Pending JPS63266764A (en) 1987-04-23 1987-04-23 Negative electrode for secondary battery

Country Status (1)

Country Link
JP (1) JPS63266764A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255670A (en) * 1991-01-30 1992-09-10 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolytic secondary battery
CN1322606C (en) * 2003-11-17 2007-06-20 三星Sdi株式会社 Negative electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2013065478A (en) * 2011-09-19 2013-04-11 Toyota Motor Corp Method for manufacturing lithium ion secondary battery
JP2014165001A (en) * 2013-02-25 2014-09-08 Honda Motor Co Ltd Negative electrode active material for secondary batteries and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010559A (en) * 1983-06-30 1985-01-19 Showa Denko Kk Electrode
JPS60131776A (en) * 1983-12-19 1985-07-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPS61158665A (en) * 1984-12-28 1986-07-18 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010559A (en) * 1983-06-30 1985-01-19 Showa Denko Kk Electrode
JPS60131776A (en) * 1983-12-19 1985-07-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPS61158665A (en) * 1984-12-28 1986-07-18 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255670A (en) * 1991-01-30 1992-09-10 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolytic secondary battery
CN1322606C (en) * 2003-11-17 2007-06-20 三星Sdi株式会社 Negative electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2013065478A (en) * 2011-09-19 2013-04-11 Toyota Motor Corp Method for manufacturing lithium ion secondary battery
JP2014165001A (en) * 2013-02-25 2014-09-08 Honda Motor Co Ltd Negative electrode active material for secondary batteries and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3846661B2 (en) Lithium secondary battery
US9876225B2 (en) Anode active material and battery
EP1033767B1 (en) Electrode material for negative pole of lithium secondary cell, electrode structure using said electrode material, lithium secondary cell using said electrode structure, and method for manufacturing said electrode structure and said lithium secondary cell
EP1973183B1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery
US20020037457A1 (en) Lithium battery having evenly coated negative electrode and method of manufacture thereof
JP4270109B2 (en) battery
WO2002041416A2 (en) Coated lithium electrodes
WO2004006360A2 (en) Coated lithium electrodes
JPH08153541A (en) Lithium secondary battery
JP2000067852A (en) Lithium secondary battery
JPS6166369A (en) Lithium secondary battery
JP4877475B2 (en) Negative electrode and battery
JPS63266764A (en) Negative electrode for secondary battery
JP2000173587A (en) Non-aqueous electrolyte secondary battery
JP2004349005A (en) Negative electrode and battery using it
JPS63264865A (en) Manufacture of negative electrode for secondary battery
JPS62213064A (en) Lithium-alloy negative electrode and its manufacture
KR101113350B1 (en) Negative electrode and the battery using it
JPH08329929A (en) Lithium secondary battery
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JPS63266765A (en) Nonaqueous secondary battery
JP2006059714A (en) Negative electrode and battery
JP2006059712A (en) Negative electrode and battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JPH08106920A (en) Lithium secondary battery