JPH088115B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JPH088115B2 JPH088115B2 JP58239193A JP23919383A JPH088115B2 JP H088115 B2 JPH088115 B2 JP H088115B2 JP 58239193 A JP58239193 A JP 58239193A JP 23919383 A JP23919383 A JP 23919383A JP H088115 B2 JPH088115 B2 JP H088115B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- negative electrode
- alloy
- battery
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/0459—Electrochemical doping, intercalation, occlusion or alloying
- H01M4/0461—Electrochemical alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は非水電解質2次電池に関するものである。TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.
従来例の構成とその問題点 現在まで、リチウム等のアルカリ金属を負極とする非
水電解質2次電池としては、たとえば、2硫化チタン
(TiS2)をはじめ各種の層間化合物などを正極活物質と
して用い、電解質としては、炭酸プロピレン(以下PCと
略す)などの有機溶媒に過塩素酸リチウム(LiCl4)な
どを溶解した有機電解質を用いる電池の開発が活発にす
すめられてきた。しかし、この種の2次電池は現在まだ
実用化されていない。その主な理由は、充放電回数(サ
イクル)の寿命が短く、特にデンドライトの発生などに
よる負極側の充放電に際しての充放電効率が低いためで
ある。Structure of Conventional Example and Its Problems Up to now, as a non-aqueous electrolyte secondary battery using an alkali metal such as lithium as a negative electrode, for example, titanium disulfide (TiS 2 ) and various interlayer compounds are used as a positive electrode active material. As an electrolyte, a battery using an organic electrolyte in which lithium perchlorate (LiCl 4 ) or the like is dissolved in an organic solvent such as propylene carbonate (hereinafter abbreviated as PC) has been actively developed. However, this type of secondary battery has not yet been put to practical use. The main reason for this is that the life of the number of charging / discharging cycles (cycles) is short, and in particular, the charging / discharging efficiency at the time of charging / discharging on the negative electrode side due to the generation of dendrites is low.
このような負極の欠点を改良するための方法は従来か
ら各種試みられている。一般的には、負極集電体の材料
を替えて析出するLiとの密着性を良くしたり、あるい
は、電解質中にデンドライト発生防止の添加剤を加えた
りする方法が報告されている。しかし、これらの方法で
上記の問題を完全に解決しうるほどの効果は得られてい
ない。Various methods have been hitherto attempted to improve such drawbacks of the negative electrode. In general, a method has been reported in which the material for the negative electrode current collector is changed to improve the adhesion with Li to be deposited, or an additive for preventing dendrite generation is added to the electrolyte. However, these methods have not been effective enough to completely solve the above problems.
さらに最近は、負極としてリチウムとの合金を用いる
ことが提案されている。この例としてはリチウム−アル
ミニウム合金が良く知られている。この場合は、一応均
一の合金を形成しうるが、充放電をくり返すとその均一
性が消失し、特にリチウムの含有量が多くなると電極が
微粒化し崩壊するなどの欠点があった。また銀とアルカ
リ金属との固溶体を用いることも提案されている(特開
昭56-7386号公報)。この場合は、アルミニウムとの合
金のような崩壊はないとされているが、十分に速く合金
化するリチウムの量は少なく、金属状のリチウムが合金
化しないままに析出する場合があり、これを防ぐため多
孔体の使用などを推奨している。したがって大電流の充
電効率は悪く、またリチウム量の多い合金は、充放電に
よる微細化が徐々に加速され、サイクル寿命が急激に減
少する。その他には、リチウム−水銀合金を用いる発明
(特開昭57-98978号公報)、リチウム−鉛合金を用いる
発明(特開昭57-141869号公報)がある。しかし、リチ
ウム−水銀合金の場合は、放電により、負極は液状の水
銀となるので、極板としての取扱いに問題がでてくる。
また、リチウム−鉛合金の場合は、電極の充放電による
微細粉化は銀固溶体以上であり、このため合金中の鉛量
を80wt%位にすることが望しいとされているが、これで
は高エネルギー密度電池を実現できない。More recently, it has been proposed to use an alloy with lithium as the negative electrode. A lithium-aluminum alloy is well known as an example of this. In this case, although a uniform alloy can be formed, the uniformity disappears when the charge and discharge are repeated, and there is a drawback that the electrode becomes finely divided and disintegrates particularly when the lithium content increases. It has also been proposed to use a solid solution of silver and an alkali metal (JP-A-56-7386). In this case, it is said that there is no disintegration like alloying with aluminum, but the amount of lithium that alloys sufficiently quickly is small, and metallic lithium may precipitate without alloying. To prevent this, the use of porous materials is recommended. Therefore, the charging efficiency of a large current is poor, and in an alloy containing a large amount of lithium, the miniaturization due to charge / discharge is gradually accelerated, and the cycle life is drastically reduced. Other than that, there is an invention using a lithium-mercury alloy (JP-A-57-98978) and an invention using a lithium-lead alloy (JP-A-57-141869). However, in the case of a lithium-mercury alloy, the negative electrode becomes liquid mercury due to discharge, which causes a problem in handling as an electrode plate.
Further, in the case of a lithium-lead alloy, fine pulverization due to charge and discharge of the electrode is more than silver solid solution, and therefore it is considered desirable to set the lead amount in the alloy to about 80 wt%. High energy density batteries cannot be realized.
以上のようにすぐれた負極としては、アルカリ金属の
吸蔵量が大きく、しかも放出や吸蔵速度の大なる負極材
料でかつ充放電のくり返しに対しても電極形状の安定し
たものの開発が望れていた。また、Sn,Bi,Cd,Pb等から
なる合金材料が負極材料として提案された。これらの材
料の特徴は、エネルギー密度が高く、かつ充放電の繰り
返しに対する微細粉化が起こらないところにある。しか
し、これらの合金材料は微細粉化こそ起らないが、リチ
ウムを吸蔵した状態では、非常に硬く加工性が悪いた
め、電池構成後にリチウムを吸蔵させるしか方法がない
という欠点がある。As described above, as an excellent negative electrode, it has been desired to develop a negative electrode material that has a large amount of alkali metal absorbed and has a large release and occlusion rate and that has a stable electrode shape against repeated charging and discharging. . Also, an alloy material composed of Sn, Bi, Cd, Pb, etc. has been proposed as a negative electrode material. The characteristics of these materials are that they have a high energy density and that they do not undergo pulverization due to repeated charging and discharging. However, although these alloy materials do not become finely pulverized, they have a drawback that there is no other way than to occlude lithium after the battery is constructed because it is extremely hard and has poor workability when occluding lithium.
発明の目的 本発明は、非水電解質2次電池用の負極に関するもの
で、高エネルギー密度で充放電特性および信頼性にすぐ
れた充放電可能な電池の負極を提供することを目的とす
る。Aspects of the invention The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery, and an object thereof is to provide a negative electrode of a chargeable / dischargeable battery having high energy density and excellent charge / discharge characteristics and reliability.
発明の構成 本発明は、アルカリ金属を電気化学的に吸蔵したり放
出したりする能力を有する金属または合金を負極材料と
して用いる場合の負極に関するものである。すなわち、
アルカリ金属を吸蔵したり放出したりする能力を有する
金属または合金を利用する負極に機械的強度を付加する
為、負極材料を微粉化し、四フッ化エチレン樹脂ととも
に練合し、圧延して負極とするものである。TECHNICAL FIELD The present invention relates to a negative electrode when a metal or alloy having an ability to electrochemically occlude or release an alkali metal is used as a negative electrode material. That is,
In order to add mechanical strength to a negative electrode that uses a metal or alloy that has the ability to insert and release an alkali metal, the negative electrode material is pulverized, kneaded with a tetrafluoroethylene resin, and rolled to form a negative electrode. To do.
これによって吸蔵放出反応をする材料を四フッ化エチ
レン樹脂の繊維質の中に分散させることにより、充放電
に伴う微粉化及び、アルカリ金属吸蔵後の負極自身の硬
化を防ごうとするものである。By dispersing the material that causes the occlusion / release reaction in the fibrous material of the tetrafluoroethylene resin by this, it is intended to prevent pulverization due to charge / discharge and curing of the negative electrode itself after occlusion of the alkali metal. .
実施例の説明 本発明に関する実施例として、Liと合金をつくりやす
いAl,Snを用いて、下記の如き検討を行なった。Alなら
びにSnは市販の粉末を用い、四フッ化エチレン樹脂は、
市販のポリファインパウダーを用いた。Description of Examples As examples of the present invention, the following studies were performed using Al and Sn that easily form an alloy with Li. Al and Sn use commercially available powder, tetrafluoroethylene resin,
A commercially available polyfine powder was used.
まず、AlとSnの粉末それぞれにAlに対しては10wt%,S
nに対しては5wt%となる四フッ化エチレン樹脂を加え練
合した。このようにして練合すると、柔いゴム粘土状の
塊となり、これをローラーで圧延することによって、フ
ィルム状の負極を試作した。また、ここで四フッ化エチ
レン樹脂量をAlに対して10wt%またSnに対して5wt%と
したのは、それ以下ではフィルム状にした時に強度がで
ないことと、それ以上ではフィルム自体の電導性が著し
く低下するためである。次に第1図に示すように、試作
した約0.2mm厚のフィルム状の負極材1をNiエキパンド
メタル2に圧着し、10×10mm2に切断しNiリボンのリー
ド3をつけて試験極とした。また、比較のために、Alと
Snについてそれぞれ金属のみの極板を第1図に示す試験
極と同じ寸法で粉末をプレスすることにより試作した。First, Al and Sn powders each contain 10 wt%
Tetrafluoride ethylene resin was added and kneaded in an amount of 5 wt% with respect to n. When kneaded in this way, a soft rubber-clay-like lump was formed, which was rolled by a roller to fabricate a negative electrode film. In addition, the reason why the amount of tetrafluoroethylene resin is 10 wt% with respect to Al and 5 wt% with respect to Sn is that if it is less than that, the strength is not high when formed into a film, and if it is more than that, the conductivity of the film itself This is due to the marked decrease in sex. Next, as shown in FIG. 1, a trial-made film-shaped negative electrode material 1 having a thickness of about 0.2 mm was pressure-bonded to the Ni expanded metal 2 and cut into 10 × 10 mm 2 and the Ni ribbon lead 3 was attached to the test electrode. And Also, for comparison, with Al
For Sn, electrode plates made of only metal were manufactured by pressing powder with the same size as the test electrode shown in FIG.
以上のような試験極に対して、充放電を施すために第
2図のようなガラスフィルタ4で仕切られたH型の試験
用セル5に試験極6とリチウム極7を入れ1Mの過塩素酸
リチウム(LiClO4)を溶解した炭酸プロピレン電解質8
中で1mAの定電流充放電を行なった。In order to charge and discharge the test electrode as described above, the test electrode 6 and the lithium electrode 7 are put in the H-shaped test cell 5 partitioned by the glass filter 4 as shown in FIG. Lithium oxide (LiClO 4 ) dissolved propylene carbonate electrolyte 8
A constant current of 1 mA was charged and discharged.
その結果、試験極のいずれもLiイオンの吸蔵とともに
変色しはじめ、少しずつ膨張していった。As a result, all of the test electrodes began to change color as the Li ions were occluded and gradually expanded.
そして、特にAl及びSnの金属単体のみで構成されてい
る試験極は、ある吸蔵量を越えると極板自身が崩れ、い
わゆる微粉化を起こした。Then, especially in the test electrode composed of only Al and Sn metals, the electrode plate itself collapsed when a certain storage amount was exceeded, and so-called pulverization occurred.
第3図は、Al金属極9,Sn金属極10,Al−四フッ化エチ
レン樹脂極11,Sn−四フッ化エチレン樹脂極12について
の定電流によるLiイオンの吸蔵にともなう試験極の電位
(金属Liの電位を基準)変化を示した図で、Al金属極で
は、80mAh,Sn金属極では100mAhの吸蔵量を越えたあたり
から、電位が不安定となりはじめ、ちょうどこのころか
ら極板も崩れはじめていた。FIG. 3 shows the potentials of the test electrodes associated with the absorption of Li ions by the constant current for the Al metal electrode 9, the Sn metal electrode 10, the Al-tetrafluoroethylene resin electrode 11 and the Sn-tetrafluoroethylene resin electrode 12. In the figure showing the change (based on the potential of metallic Li), the potential began to become unstable when the storage capacity exceeded 80 mAh for the Al metal electrode and 100 mAh for the Sn metal electrode, and the electrode plate also collapsed just around this time. I was starting.
しかし、四フッ化エチレン樹脂を用いて、フィルム状
の負極とした試験極は、電位が安定で極板の膨張は生じ
るものの極板自身の崩壊は起こらなかった。ただ樹脂の
分と分極のため電気容量が若干低くなった。特にAl粉は
四フッ化エチレン樹脂がSn粉より多く要ることなどか
ら、その吸蔵しうるLi量はSnの極板に比べて小さかっ
た。However, the test electrode using a tetrafluoroethylene resin as a film-shaped negative electrode had stable potential and expansion of the electrode plate, but the electrode plate itself did not collapse. However, due to the resin content and polarization, the electric capacity became slightly lower. In particular, since Al powder requires more tetrafluoroethylene resin than Sn powder, the amount of Li that can be occluded was smaller than that of Sn electrode plate.
しかし、極板の機械的強度を比較してみると、四フッ
化エチレン樹脂を含む極は、Alの場合もSnの場合もまっ
たく崩れることはなく、例えば、リチウムイオンを上記
の吸蔵条件(1mA定電流)で吸蔵させ、電位がほぼ0に
なるまで電流を流しても、第4図の(a)に示すように
膨張するだけでくずれることはないが、金属単体極の場
合、AlにおいてもSnにおいても、第4図(b)のように
崩れて脱落していった。However, when comparing the mechanical strength of the electrode plates, the electrode containing the tetrafluoroethylene resin did not collapse at all in the case of Al and Sn, for example, the lithium ion was stored under the above storage conditions (1 mA). Even if it is occluded with a constant current) and a current is passed until the potential becomes almost 0, it expands as shown in (a) of FIG. 4 and does not collapse, but in the case of a single metal electrode, also in Al Also in Sn, it collapsed and fell off as shown in FIG. 4 (b).
以上は、試験極に対してLiイオンの最初の吸蔵のみを
試みただけであるが、ここで実際の充放電を想定して、
第2図に示す試験セルを用い、試験極の電位をLi基準極
に対して0Vから1.0Vの範囲で1mAの充放電を行なった。
ただし、金属極に関しては吸蔵試験の時に0Vまで充電
(吸蔵)させると極板が崩れることがわかっているの
で、電位が不安定になる前に充電を止めるようにした。The above is only the first attempt to occlude Li ions in the test electrode, but here, assuming actual charging and discharging,
Using the test cell shown in FIG. 2, charging / discharging of 1 mA was performed at a test electrode potential of 0 V to 1.0 V with respect to the Li reference electrode.
However, regarding the metal electrode, it is known that the electrode plate collapses if it is charged (occluded) to 0 V during the occlusion test, so the charging was stopped before the potential became unstable.
しかし、実際に充放電を試みると、金属極はどんどん崩
れて容量が減っていき、結局Al極では、4〜7サイクル
目までにはすべて脱落し、Sn極でも10〜15サイクル目ま
でにはすべて脱落してしまった。そして、この極板脱落
によって生じた破片は、一部セル底部に溜っているもの
と微粉となって電解質中を漂っているものがあった。こ
のように脱落によって生じた物質は、Li-AlもしくはLi-
Sn合金という活性な物質であり、これが漂って正極と接
触するといわゆる電池の内部短絡を起こしてしまう。従
って、金属単体極を使うことは、2次電池という観点か
らはほぼ不可能といえる。次に金属に四フッ化エチレン
樹脂を混合して試作した本発明の試験極は、上記の充放
電を100サイクルまで行なったが、極板が崩れることは
まったくなく、電気容量は若干小さいが、第5図に示す
ように初期から100サイクル目までの充放電特性は非常
に安定していた。またこの試験において、対極のLi極は
著しいデンドライトの発生をするため、H型セルのLi極
側は定期的(5サイクル毎)に極板と電解液を入れ替え
た。However, when actually trying to charge and discharge, the metal electrode collapsed and the capacity decreased, and eventually the Al electrode fell off by the 4th to 7th cycles, and the Sn electrode also by the 10th to 15th cycles. All have fallen out. Then, some of the fragments generated by the dropping of the electrode plate were accumulated in the bottom of the cell and others were fine powder floating in the electrolyte. The substances produced by this loss are Li-Al or Li-
Sn alloy is an active substance, and if it floats and comes into contact with the positive electrode, it causes a so-called internal short circuit in the battery. Therefore, it can be said that it is almost impossible to use the metal single electrode from the viewpoint of the secondary battery. Next, the test electrode of the present invention produced by mixing a metal with a tetrafluoroethylene resin was subjected to the above charge and discharge up to 100 cycles, but the electrode plate did not collapse at all, and the electric capacity was slightly small, As shown in FIG. 5, the charge / discharge characteristics from the initial stage to the 100th cycle were very stable. Further, in this test, the Li electrode as the counter electrode remarkably generates dendrites, and therefore the electrode plate and the electrolytic solution were periodically (every 5 cycles) replaced on the Li electrode side of the H-type cell.
次に、金属単体ではなく、合金極について本発明を適
用した実施例を以下に示す。Next, an example in which the present invention is applied to an alloy electrode instead of a metal alone will be shown below.
最近報告されているすぐれた負極材料となりうる合金
極のうちSn85%,Cd15%のSn-Cd合金について検討を行な
ってみた。この合金を用いて、例えば第1図に示すよう
な試験極を試作し、SnやAlの金属単体極で試みたような
Liイオンの充放電を行なってみると、四フッ化エチレン
樹脂を加えなくとも、膨張するだけで、崩れることはま
ったくない。これが今までにないこの種の合金のすぐれ
た点である。しかし、この種の合金極には、Liイオンの
吸蔵に伴ない、本来合金自身が持っていた可とう性を失
ない、極板が硬くかつもろくなってしまうという性質が
ある。例えば合金板にLiイオンを吸蔵させた後、ハンマ
ーでたたくとLiを吸蔵させなければヒビさえ入らなかっ
たものが、粉々に粉砕されてしまうのである。このよう
な電極が硬くなるという性質は、通常電池を使用する場
合、その性能にあまり影響のないことではあるが、例え
ば、電池が外部から衝撃を受ける場合もあり、安全もし
くはきびしい信頼性という立場からはやはり望しくな
い。そこでSn85%,Cd15%のSn-Cd合金を微粉末にして、
四フッ化エチレン樹脂と混合して、前記検討と同様に極
板を試作した。また、Sn-Cd合金に対しては、四フッ化
エチレン樹脂を5wt%とするのが適量であった。このよ
うにして試作した四フッ化エチレン樹脂を含む極板と合
金のみの極板を比較するために、それぞれの極板を用い
て以下のようにボタン型電池を試作した。また本検討
は、信頼性の検討ということで正極には1次電池用のフ
ッ化黒鉛を用いた。第6図に示すように、検討用ボタン
型電池は、フッ化黒鉛の正極13と本発明の試験極14とポ
リプロピレン製のセパレータ15とからなり、ガスケット
16を介して、封口板17と電池ケース18によって、1MLiC
lO4を溶解した炭酸プロピレン電解質19とともに封口さ
れ完成電池とした。また、該試験極はこのままでは活物
質となるLiを含まないので、第7図のように電池を封口
する前に試験極20をあらかじめ封口板21に圧着したまま
Liイオンを含む電解質22中で金属リチウム23と接触させ
てLiイオンを吸蔵させた。Among the alloy electrodes that have recently been reported to be excellent negative electrode materials, we examined Sn-Cd alloys with 85% Sn and 15% Cd. Using this alloy, for example, a test electrode as shown in Fig. 1 was made as a prototype, and it was tried with a simple metal electrode such as Sn or Al.
When I charge and discharge Li ions, it expands without adding tetrafluoroethylene resin, and it never collapses. This is an unprecedented advantage of this type of alloy. However, this type of alloy electrode has the property that, due to the absorption of Li ions, the original flexibility of the alloy itself is not lost, and the electrode plate becomes hard and brittle. For example, if an alloy plate is made to absorb Li ions and then hit with a hammer, it will be shattered if it does not crack even if it does not absorb Li. The property that such an electrode becomes hard does not affect the performance of a battery when it is normally used.However, for example, the battery may be impacted from the outside, and it is safe or strict in reliability. After all, I do not want it. So, Sn-Cd alloy of Sn85%, Cd15% was made into fine powder,
By mixing with a tetrafluoroethylene resin, an electrode plate was prototyped in the same manner as in the above study. Further, with respect to the Sn-Cd alloy, the amount of tetrafluoroethylene resin was 5 wt% was suitable. In order to compare the electrode plate containing the tetrafluoroethylene resin thus prototyped with the alloy-only electrode plate, a button-type battery was prototyped as follows using each electrode plate. Further, in this study, since the reliability was examined, fluorinated graphite for a primary battery was used for the positive electrode. As shown in FIG. 6, the button-type battery for study comprises a fluorinated graphite positive electrode 13, a test electrode 14 of the present invention, and a polypropylene separator 15, and a gasket.
1MLiC via sealing plate 17 and battery case 18 via
A completed battery was obtained by sealing with propylene carbonate electrolyte 19 in which lO 4 was dissolved. In addition, since the test electrode does not contain Li as an active material as it is, the test electrode 20 is pre-bonded to the sealing plate 21 before sealing the battery as shown in FIG.
Lithium ions were occluded by bringing them into contact with metallic lithium 23 in an electrolyte 22 containing Li ions.
このようにして試作したボタン型電池を2mAの定電流
で放電させてみると、第8図のように四フッ化エチレン
樹脂を含まない合金のみの電池の放電特性曲線24に比べ
て四フッ化エチレン樹脂を含む電池の放電特性曲線25
は、若干分極が大きく、かつ放電容量(1.5V終止)も小
さかった。しかし、合金のみのすべての電池の放電特性
が必らずしも第8図の曲線24のようにならず、約30%の
割合で、第8図の破線で示したいくつかの曲線26に代表
されるような異常な特性を示した。そこで異常な放電を
示した不良電池を分解してみると合金極が割れており、
細く砕けた破片は、正極側にも運ばれていた。この不良
の原因は調査の結果、封口時のかしめ工程で加えられる
圧力が、試験極を壊してしまうためであることが判明し
た。そこで、さらに電池を試作した後合金極のみで構成
した電池である落下衝撃試験(1mの高さから、鉄板上に
落す)を施したところ、封口だけで発生した不良率は30
%であったが、落下試験を加えると不良率が75%まで上
ってしまった。以上のように、合金のみの極板は特性上
はすぐれているが衝撃に弱いという欠点があることがわ
かった。しかし四フッ化エチレン樹脂を適用した本発明
の試験極は、試作したすべての電池が第8図の放電曲線
24に等しい特性を示し、さらに落下試験を施しても不良
は発生しなかった。以上のように極板強度という観点か
らは、本発明の負極のような可とう性をもつ極板が望し
いといえる。When the button-type battery prototyped in this way was discharged at a constant current of 2 mA, it was compared with the discharge characteristic curve 24 of the battery only of the alloy not containing tetrafluoroethylene resin as shown in FIG. Discharge characteristic curve of batteries containing ethylene resin 25
Had slightly larger polarization, and the discharge capacity (1.5V termination) was also smaller. However, the discharge characteristics of all the batteries containing only alloy do not necessarily become like the curve 24 of FIG. 8, and at some 30%, some curves 26 shown by broken lines in FIG. It showed unusual characteristics as typified. Therefore, when disassembling a defective battery that showed abnormal discharge, the alloy electrode was cracked,
The finely broken pieces were also carried to the positive electrode side. As a result of the investigation, it was found that the cause of this defect was that the pressure applied in the caulking process at the time of sealing breaks the test electrode. Therefore, when a drop battery test (dropping on a steel plate from a height of 1 m), which is a battery composed only of alloy electrodes, was performed after the prototype of the battery, the defective rate of only the sealing was 30.
%, The defect rate increased to 75% when the drop test was added. As described above, it has been found that the electrode plate made of only the alloy has excellent characteristics, but has a drawback of being weak against impact. However, in the test electrode of the present invention to which the tetrafluoroethylene resin was applied, all the prototyped batteries had the discharge curves shown in FIG.
It exhibited a property equal to 24, and no defect occurred even when the drop test was performed. As described above, from the viewpoint of electrode plate strength, it can be said that an electrode plate having flexibility like the negative electrode of the present invention is desired.
また電池製造上の問題で、合金極はLi吸蔵とともに硬
くなるため、どうしても電池を構成した後にLi吸蔵をし
なければならないという不便さがあったが、本発明の負
極はLi吸蔵後においてもちょうどゴム粘土のような可と
う性のある材質なので加工性に富んでおり、上記不便さ
は解決できた。Further, due to a problem in battery production, the alloy electrode becomes harder as Li is occluded, so there is an inconvenience that Li must be occluded after the battery is constructed.However, the negative electrode of the present invention is just after occluding Li. Since it is a flexible material such as rubber clay, it has excellent workability and can solve the above inconvenience.
なお、従来より亜鉛負極を用いたアルカリ蓄電池にお
いて、粉末化亜鉛を樹脂で結着して極板とすることが知
られている。この場合の目的は、亜鉛の表面積を大にし
て、高率充放電を可能にしたり、真の面積が見かけ面積
に比べ著しく大きいことを利用してデンドライトの発生
を少なくすることであった。しかし深い充放電を行う
と、負極亜鉛のほとんどが溶解してしまうため、負極に
は樹脂ばかりが残り充電時には亜鉛の析出が均一でなく
デンドライトの発生は顕著であった。しかし本発明で
は、リチウムの吸蔵,放出を利用しているため、深い充
放電を行っても負極中に吸蔵されたリチウムの量が変る
のみで、負極材料であるAlやSn,Sn-Cd合金の量が変化す
るわけでなく負極面では常に均一に充放電が進行し、か
つデンドライトの発生はない。したがって亜鉛極の考え
方は、本発明の電極には適用できない。It has been conventionally known that, in an alkaline storage battery using a zinc negative electrode, powdered zinc is bound with a resin to form an electrode plate. The purpose in this case was to increase the surface area of zinc to enable high-rate charge / discharge, and to reduce the generation of dendrites by utilizing the fact that the true area is significantly larger than the apparent area. However, when deep charge / discharge is performed, most of the negative electrode zinc is dissolved, so that only the resin remains in the negative electrode and zinc deposition is not uniform during charging, and dendrite generation is remarkable. However, in the present invention, since the absorption and desorption of lithium are utilized, the amount of lithium occluded in the negative electrode only changes even when deep charging and discharging are performed, and Al or Sn, Sn-Cd alloy which is the negative electrode material is changed. Does not change, and charge and discharge always proceed uniformly on the negative electrode surface, and dendrites do not occur. Therefore, the idea of the zinc electrode cannot be applied to the electrode of the present invention.
発明の効果 以上のように本発明は高エネルギー密度で特に信頼性
にすぐれた電池を提供できるばかりでなく、製造におい
ても加工性が著しく向上する。EFFECTS OF THE INVENTION As described above, the present invention can not only provide a battery having high energy density and excellent reliability, but also significantly improve workability in manufacturing.
第1図は本発明の一実施例における試験極の外観図、第
2図は同H型試験用セルの構成図、第3図は試験極の充
電(吸蔵)時の電位変化特性図、第4図はLi吸蔵後の試
験極の状態を示す図、第5図は本発明の一実施例におけ
る負極の充放電曲線、第6図は本発明の一実施例のコイ
ン型電池の断面図、第7図は同コイン型電池の負極への
Li吸蔵の様子を示した図、第8図は同コイン型電池の放
電曲線である。 1……負極材、2……Niエキスパンドメタル、3……Ni
リボンリード、4……ガラスフィルタ、5……試験用セ
ル、6……試験極、7……リチウム極、8……炭酸プロ
ピレン電解質、9……Al金属板、10……Sn金属板、11…
…Al−四フッ化エチレン樹脂極、12……Sn−四フッ化エ
チレン樹脂極、13……正極、14,20……試験極、15……
セパレータ、16……ガスケット、17,21……封口板、18
……電池ケース、19,22……電解質、23……金属リチウ
ム。FIG. 1 is an external view of a test electrode in one embodiment of the present invention, FIG. 2 is a configuration diagram of the H-type test cell, and FIG. 3 is a potential change characteristic diagram during charging (storage) of the test electrode. FIG. 4 is a diagram showing the state of the test electrode after absorption of Li, FIG. 5 is a charge / discharge curve of the negative electrode in one embodiment of the present invention, and FIG. 6 is a cross-sectional view of a coin battery of one embodiment of the present invention. FIG. 7 shows the negative electrode of the coin type battery.
FIG. 8 is a discharge curve of the coin-type battery showing the state of occluding Li. 1 …… Negative electrode material, 2 …… Ni expanded metal, 3 …… Ni
Ribbon lead, 4 ... Glass filter, 5 ... Test cell, 6 ... Test electrode, 7 ... Lithium electrode, 8 ... Propylene carbonate electrolyte, 9 ... Al metal plate, 10 ... Sn metal plate, 11 …
… Al-tetrafluoroethylene resin electrode, 12 …… Sn-tetrafluoroethylene resin electrode, 13 …… positive electrode, 14,20 …… test electrode, 15 ……
Separator, 16 …… Gasket, 17,21 …… Seal plate, 18
…… Battery case, 19,22 …… Electrolyte, 23 …… Metallic lithium.
Claims (4)
と、充放電にともなってアルカリ金属イオンを吸蔵した
り放出したりする金属または合金を負極材料とする負極
を構成要素とし、前記負極は、微粉化した前記負極材料
と四フッ化エチレン樹脂を含むことを特徴とする非水電
解質2次電池。1. A positive electrode, an electrolyte containing an alkali metal ion, and a negative electrode whose negative electrode material is a metal or an alloy that occludes or releases an alkali metal ion during charge and discharge, and the negative electrode comprises: A non-aqueous electrolyte secondary battery comprising the pulverized negative electrode material and a tetrafluoroethylene resin.
一種の金属であることを特徴とする特許請求の範囲第1
項記載の非水電解質2次電池。2. The negative electrode material is at least one metal selected from Sn, Al, Mg, Pb and In.
The non-aqueous electrolyte secondary battery according to the item.
中から選ばれた少なくとも2つ以上の金属元素からなる
合金であることを特徴とする特許請求の範囲第1項記載
の非水電解質2次電池。3. The negative electrode material is an alloy comprising at least two metal elements selected from Sn, Bi, Pb, Cd, In, Sb, Zn and Ag. A non-aqueous electrolyte secondary battery according to claim 1.
とする特許請求の範囲第1項,第2項または第3項記載
の非水電解質2次電池。4. The non-aqueous electrolyte secondary battery according to claim 1, 2, or 3, wherein the alkali metal is lithium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58239193A JPH088115B2 (en) | 1983-12-19 | 1983-12-19 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58239193A JPH088115B2 (en) | 1983-12-19 | 1983-12-19 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60131776A JPS60131776A (en) | 1985-07-13 |
JPH088115B2 true JPH088115B2 (en) | 1996-01-29 |
Family
ID=17041099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58239193A Expired - Lifetime JPH088115B2 (en) | 1983-12-19 | 1983-12-19 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH088115B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62226563A (en) * | 1986-03-27 | 1987-10-05 | Fuji Elelctrochem Co Ltd | Nonaqueous electrolyte secondary battery |
JPS63264865A (en) * | 1987-04-22 | 1988-11-01 | Shin Kobe Electric Mach Co Ltd | Manufacture of negative electrode for secondary battery |
JPS63266765A (en) * | 1987-04-23 | 1988-11-02 | Shin Kobe Electric Mach Co Ltd | Nonaqueous secondary battery |
JPS63266764A (en) * | 1987-04-23 | 1988-11-02 | Shin Kobe Electric Mach Co Ltd | Negative electrode for secondary battery |
JP3619000B2 (en) * | 1997-01-28 | 2005-02-09 | キヤノン株式会社 | Electrode structure, secondary battery, and manufacturing method thereof |
JP2013065478A (en) * | 2011-09-19 | 2013-04-11 | Toyota Motor Corp | Method for manufacturing lithium ion secondary battery |
-
1983
- 1983-12-19 JP JP58239193A patent/JPH088115B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60131776A (en) | 1985-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59186274A (en) | Manufacture of nonaqueous electrolyte secondary battery | |
JPS62290072A (en) | Organic electrolyte secondary battery | |
US4851309A (en) | Rechargeable electrochemical apparatus and negative electrode thereof | |
JPH088115B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2847885B2 (en) | Lithium secondary battery | |
JP3212018B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0746606B2 (en) | Non-aqueous electrolyte secondary battery | |
JPS62113366A (en) | Nonaqueous electrolytic secondary battery | |
JP4250781B2 (en) | Lithium secondary battery | |
US4683182A (en) | Rechargeable electrochemical apparatus | |
JPH0441471B2 (en) | ||
JPH0773050B2 (en) | Organic electrolyte secondary battery | |
JPH01241756A (en) | Nonaqueous secondary cell | |
JPH0534787B2 (en) | ||
JPH0552038B2 (en) | ||
JPH0782838B2 (en) | Rechargeable negative electrode for electrochemical device | |
JPS60124357A (en) | Negative electrode of nonaqueous electrolyte secondary battery | |
JPH0349167A (en) | Nonaqueous secondary battery | |
JPH0821373B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH03147277A (en) | Nonaqueous electrolyte secondary battery | |
JPH0831452A (en) | Organic electrolyte secondary battery | |
JPH0364987B2 (en) | ||
JPS59163756A (en) | Nonaqueous electrolyte secondary battery | |
JPS62188179A (en) | Secondary battery | |
JPS62110272A (en) | Nonaqueous electrolyte secondary cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |