JPH0364987B2 - - Google Patents

Info

Publication number
JPH0364987B2
JPH0364987B2 JP3687783A JP3687783A JPH0364987B2 JP H0364987 B2 JPH0364987 B2 JP H0364987B2 JP 3687783 A JP3687783 A JP 3687783A JP 3687783 A JP3687783 A JP 3687783A JP H0364987 B2 JPH0364987 B2 JP H0364987B2
Authority
JP
Japan
Prior art keywords
alloy
lithium
negative electrode
tin
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3687783A
Other languages
Japanese (ja)
Other versions
JPS59163755A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3687783A priority Critical patent/JPS59163755A/en
Priority to US06/873,093 priority patent/US4683182A/en
Priority to PCT/JP1984/000086 priority patent/WO1984003590A1/en
Priority to EP84901015A priority patent/EP0144429B1/en
Priority to DE8484901015T priority patent/DE3483244D1/en
Publication of JPS59163755A publication Critical patent/JPS59163755A/en
Publication of JPH0364987B2 publication Critical patent/JPH0364987B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、非水電解質二次電池用の負極の改良
に係るもので、この改良の結果、高エネルギー密
度で充放電寿命が長く、安全性、信頼性に優れた
充電可能な電池を提供するものである。 従来例の構成とその問題点 現在まで、リチウム、ナトリウムなどのアルカ
リ金属を負極とする非水電解質二次電池として
は、たとえば、二硫化チタン(TiS2)をはじめ
各種の層間化合物などを正極活物質として用い、
電解質としては、炭酸プロピレン(以後PCと略
す)などの有機溶媒に過塩素酸リチウム
(LiClO4)などを溶解した有機電解質を用いる電
池の開発が活撥に進められてきた。この二次電池
の特徴は、負極にリチウムを用いることにより、
電池電圧が高くなり、高エネルギー密度の二次電
池となることである。 しかし、この種の二次電池は、現在、まだ実用
化されていない。その主な理由は、充放電回数
(サイクル)の寿命が短かく、また充放電に際し
ての充放電効率が低いためである。この原因は、
リチウム負極の劣化によるところが非常に大き
い。すなわち、現在のリチウム負極はニツケルな
どのスクリーン状集電体に板状の金属リチウムを
圧着したものが主に用いられているが、放電時に
金属リチウムは、電解質中にリチウムイオンとし
て溶解する。しかし、これを充電して、放電前の
ような板状のリチウムに析出させることは難し
く、デンドライト状(樹枝状)のリチウムが発生
してこれが根元より折れて脱落したり、あるい
は、小球状(苔状)に析出したリチウムが集電体
より脱離するなどの現象が起こる。このため充放
電が不能の電池となつてしまう。また、発生した
デンドライト状の金属リチウムが、正極、負極間
を隔離しているセパレータを貫通して、正極に接
し短絡を起こし、電池の機能を失なわせるような
ことも度々生じる。 このような負極の欠点を改良するための方法は
従来から各種試みられている。一般的には、負極
集電体の材料を替えて析出するリチウムとの密着
性を良くしたり、あるいは、電解質中にデンドラ
イト発生防止の添加剤を加えたりする方法が報告
されている。しかし、これらの方法は必ずしも効
果的ではない。すなわち、集電体材料に関して
は、集電体材料に直接析出するリチウムに有効で
あるが、更に充電(析出)を続けると析出リチウ
ム上へリチウムを析出することになり、集電体材
料の効果は消失する。また添加剤に関しても、充
放電サイクルの初期では有効であるが、サイクル
が進むと電池内での酸化還元反応などにより分解
し、その効果がなくなるものが殆んどである。さ
らに最近は負極として、リチウムとの合金を用い
ることが提案されている。この例としては、リチ
ウム−アルミニウム合金がよく知られている。こ
の場合は、一応均一の合金が形成されるが、充放
電をくり返すとその均一性を消失し、特にリチウ
ム量を多くすると電極が微粒化し崩壊するなどの
欠点があつた。また、銀とアルカリ金属との固溶
体を用いることも提案されている(特開昭56−
7386)。この場合は、アルミニウムとの合金のよ
うな崩壊はないとされているが、十分に速く合金
化するリチウムの量は少なく、金属状のリチウム
が合金化しないまゝ析出する場合があり、これを
防ぐために多孔体の使用などを推奨している。し
たがつて、大電流の充電効率は悪く、またリチウ
ム量の多い合金は、充放電による微細化が徐々に
加速され、サイクル寿命が急激に減少する。 この他には、リチウム−水銀合金を用いる考案
(特開昭57−98978)、リチウム−鉛合金を用いる
考案(特開昭57−141869)がある。しかし、リチ
ウム−水銀合金の場合は、放電により、負極は液
状粒子の水銀となり電極形状を保持しなくなる。
また、リチウム−鉛合金の場合は、電極の充放電
による微細粉化は銀固溶体以上であり、このため
合金中の鉛量を80%位にすることが望ましいとさ
れているが、これでは高エネルギー密度電池を実
現できない。以上のように非水電解質二次電池溶
負極としては、実用上満足できるものは、まだ見
い出されていないといえる。 したがつて、優れた負極としては、アルカリ金
属の吸蔵量が大きく、しかも放出や吸蔵速度の大
なる負極材料の開発が望まれている。 発明の目的 本発明は、負極材料を特定することにより、単
位体積当りの充放電量の多い、また充放電寿命の
長い、良好な特性を示す非水電解質二次電池用負
極を提供するものである。 発明の構成 本発明は、アルカリ金属イオンを含む非水電解
質と、可逆性正極と、充電時に電解質中のアルカ
リ金属イオンを吸蔵し、放電時に前記金属イオン
を電解質中へ放出する機能を有する合金からなる
負極とを備える非水電解質二次電池において、前
記負極の合金として、スズを主成分とする合金を
用いるものである。さらに詳しくは、スズを主成
分とし、他の成分としてビスマス、カドミウム及
びインジウムよりなる群から選んだ少なくとも1
種を含む合金、またはさらに鉛を加えた合金を用
いることを特徴とする。 実施例の説明 前記のように本発明の二次電池においては、負
極材料合金に、充電によりリチウムを吸蔵させ、
放電により電解質中にリチウムイオンを放出させ
るものであるので、したがつて充電により、スズ
合金とリチウムの合金が出来ることになる。本発
明で述べる負極材料とは、リチウムとの合金を作
る以前のスズ合金のことである。 例えば重量パーセントで70%のスズと30%のビ
スマスよりなる合金を用いた時の充放電反応は(1)
式のようになる。 Sn(70)−Bi(30)+xLi++xe-充電 ―――→ ←――― 放電〔Sn(70)−Bi(30)〕Lix ……(1) 式中、〔Sn(70)−Bi(30)〕Lixは充電により生
成した、スズ、ビスマス、リチウム合金を示して
おり、本発明で定義した負極材料とは(1)式中では
Sn(70)−Bi(30)のことである。 また、充放電の範囲としては、(1)式のように完
全に負極中よりリチウムがなくなるまで放電する
必要はなく、(2)式のように負極中に吸蔵されたリ
チウム 〔Sn(70)−Bi(30)〕Lix+yLi++ye-充電 ―――→ ←――― 放電〔Sn(70)−Bi(30)〕Lix+y ……(2) 量を変えるようにして、充放電ができることは当
然である。また(2)式においても負極材料がSn
(70)−Bi(30)であることは自明である。 また、スズを主成分とする合金とは、合金中最
も重量が多い金属がスズである合金とする。 発明者らは、スズを主成分とする合金を負極材
料として、アルカリ金属イオンを含む非水電解質
中で充電を行うことにより、高率充電を行つても
アルカリ金属の析出が起らずに負極材料中にアル
カリ金属が吸蔵され、さらに放電を行うと高電流
効率で吸蔵されたアルカリ金属がアルカリ金属イ
オンとして電解質中に放出されることを見い出し
た。また充放電をくり返し行つても負極材料の微
細粉化が起らず、良好な非水電解質二次電池の負
極特性を示すことがわかつた。 負極材料として、金属スズとスズを主成分とす
る合金を比較すると合金の方が良好な負極特性を
示した。スズを主成分とする合金の他の成分とし
て、鉛、カドミウム、ビスマス、インジウムなど
を加えて作つた合金の多くは、微視的に見ると、
各金属成分や、金属間化合物などの多くの相から
なつており、均一なものではない。充電により吸
蔵されたリチウムなどのアルカリ金属は合金中の
相と相の間の界面に沿つて、早い速度で拡散して
ゆくと考えられ、高率充放電を行うとスズを主成
分とする合金を用いる方が良好であつた。合金の
うちでは、実施例で示すようにスズ鉛合金が最も
特性が悪かつた。しかし、このスズ鉛合金にカド
ミウムやビスマス、インジウムなどの他の成分を
加えて3元系以上の合金とした場合には、優れた
特性を示した。このことからも、合金中のアルカ
リ金属の拡散には、相と相との間の界面が重要な
役割を果していることがわかる。以下に実施例を
示す。 第1図に示したセルを構成して、各種金属や合
金の非水電解質二次電池の負極の特性を調べた。
第1図中、Aは検討した金属、合金よりなる試験
極、BはTiS2よりなる正極、Cは照合電極とし
てのリチウム板である。各々の電極のリードEA
EB、ECにはニツケル線を用いた。試験板Aは第
2図に示すように、1cm×1cm厚さ1mmの金属あ
るいは合金Dに、リードとしてニツケルリボン
EAをとりつけた。電解質には、1モル/の
LiClO4を溶かしたPCを用いた。 金属や合金の非水電解質二次電池の負極として
の特性を測定するために、試験板Aの電位が、リ
チウム照合電極Cに対してOmVになるまで5m
Aの定電流でカソード方向に充電した。この条件
では、試験極上にリチウムは析出せず、合金中に
入る。試験極Aの電位がOmVに達した後、照合
電極Cに対して1.0Vになるまで5mAの定電流
でアノード方向に放電し、その後充電、放電を同
じ条件で繰り返した。表には、試験極Aに用いた
合金、金属の第1サイクルと第10サイクルにおけ
る充電電気量、放電電気量、および効率として放
電電気量を充電電気量で除したもの、サイクル特
性として第10サイクルの放電電気量を第1サイク
ルの放電電気量で除したものを示す。充電電気
量、放電電気量、効率、サイクル特性の数値が大
である程よい負極と言える。また表中に記号で示
した試験極の第10サイクルでの充電曲線を第3図
に、放電曲線を第4図に示す。
Industrial Application Field The present invention relates to the improvement of negative electrodes for non-aqueous electrolyte secondary batteries.As a result of this improvement, charging is possible with high energy density, long charging/discharging life, and excellent safety and reliability. The aim is to provide a battery that is Conventional configurations and their problems Until now, non-aqueous electrolyte secondary batteries that use alkali metals such as lithium or sodium as negative electrodes have used various intercalation compounds such as titanium disulfide (TiS 2 ) as positive electrode active materials. used as a substance,
Batteries using organic electrolytes such as lithium perchlorate (LiClO 4 ) dissolved in organic solvents such as propylene carbonate (hereinafter abbreviated as PC) have been actively developed. The feature of this secondary battery is that by using lithium for the negative electrode,
The battery voltage increases, resulting in a secondary battery with high energy density. However, this type of secondary battery has not yet been put into practical use. The main reason for this is that the life of the number of charging and discharging times (cycles) is short and the charging and discharging efficiency during charging and discharging is low. The cause of this is
This is largely due to the deterioration of the lithium negative electrode. That is, current lithium negative electrodes are mainly made by pressing a plate-shaped metallic lithium onto a screen-shaped current collector such as nickel, but the metallic lithium dissolves in the electrolyte as lithium ions during discharge. However, it is difficult to charge this and deposit it into the plate-shaped lithium that it was before discharging, and dendrite-like (dendritic) lithium may be generated that breaks off from the base and falls off, or it may break off from the base and fall off. Phenomena such as lithium deposited in a moss-like form detaching from the current collector occur. This results in a battery that cannot be charged or discharged. Furthermore, the generated dendrite-like metallic lithium often penetrates the separator that separates the positive and negative electrodes and comes into contact with the positive electrode, causing a short circuit and causing the battery to lose its functionality. Various methods have been tried in the past to improve these drawbacks of negative electrodes. Generally, methods have been reported in which the material of the negative electrode current collector is changed to improve its adhesion to the precipitated lithium, or an additive to prevent the formation of dendrites is added to the electrolyte. However, these methods are not always effective. In other words, with regard to the current collector material, it is effective for lithium that is deposited directly on the current collector material, but if the charging (deposition) continues, lithium will be deposited on the precipitated lithium, and the effect of the current collector material will be reduced. disappears. Furthermore, most additives are effective at the beginning of the charge/discharge cycle, but as the cycle progresses, they decompose due to oxidation-reduction reactions within the battery and lose their effectiveness. Furthermore, recently it has been proposed to use an alloy with lithium as a negative electrode. A well-known example of this is lithium-aluminum alloy. In this case, a somewhat uniform alloy is formed, but this uniformity disappears when charging and discharging are repeated, and especially when the amount of lithium is increased, the electrode becomes atomized and collapses. It has also been proposed to use a solid solution of silver and an alkali metal (Japanese Unexamined Patent Publication No. 1986-
7386). In this case, it is said that there is no collapse like in alloying with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium may precipitate without being alloyed. To prevent this, the use of porous materials is recommended. Therefore, charging efficiency at large currents is poor, and alloys with a large amount of lithium gradually accelerate micronization due to charging and discharging, resulting in a rapid decrease in cycle life. In addition, there are ideas using a lithium-mercury alloy (Japanese Patent Laid-Open No. 57-98978) and a idea using a lithium-lead alloy (Japanese Patent Laid-Open No. 57-141869). However, in the case of a lithium-mercury alloy, the negative electrode becomes liquid particle mercury due to discharge and no longer maintains its electrode shape.
In addition, in the case of lithium-lead alloys, the fineness due to charging and discharging of the electrode is greater than that of silver solid solution, and therefore it is said that it is desirable to keep the amount of lead in the alloy at around 80%, but this is too high. Energy density batteries cannot be realized. As described above, it can be said that a practically satisfactory negative electrode for non-aqueous electrolyte secondary batteries has not yet been found. Therefore, as an excellent negative electrode, it is desired to develop a negative electrode material that has a large amount of alkali metal occlusion and a high desorption and occlusion rate. Purpose of the Invention The present invention provides a negative electrode for a non-aqueous electrolyte secondary battery that exhibits good characteristics such as a large charge/discharge capacity per unit volume and a long charge/discharge life by specifying a negative electrode material. be. Structure of the Invention The present invention comprises a non-aqueous electrolyte containing alkali metal ions, a reversible positive electrode, and an alloy that has the function of occluding alkali metal ions in the electrolyte during charging and releasing the metal ions into the electrolyte during discharging. In the non-aqueous electrolyte secondary battery comprising a negative electrode, an alloy containing tin as a main component is used as an alloy of the negative electrode. More specifically, the main component is tin, and at least one other component selected from the group consisting of bismuth, cadmium, and indium.
It is characterized by the use of an alloy containing seeds or an alloy further containing lead. Description of Examples As described above, in the secondary battery of the present invention, lithium is occluded in the negative electrode material alloy by charging,
Since lithium ions are released into the electrolyte by discharging, an alloy of tin alloy and lithium is formed by charging. The negative electrode material described in the present invention is a tin alloy before forming an alloy with lithium. For example, when using an alloy consisting of 70% tin and 30% bismuth by weight, the charge/discharge reaction is (1)
It becomes like the expression. Sn(70)−Bi(30)+xLi + +xe -Charge―― → ←――― Discharge [Sn(70)−Bi(30)]Li x ……(1) In the formula, [Sn(70)− Bi(30)]Li x indicates a tin, bismuth, and lithium alloy produced by charging, and the negative electrode material defined in the present invention is
It refers to Sn(70)−Bi(30). In addition, as for the range of charging and discharging, it is not necessary to discharge until lithium completely disappears from the negative electrode as shown in equation (1), and it is not necessary to discharge until lithium is completely removed from the negative electrode as shown in equation (2). −Bi(30)〕Li x +yLi + +ye -Charge―― → ←――― Discharge[Sn(70)−Bi(30)]Li x+y ...(2) Charge by changing the amount. It goes without saying that discharge can occur. Also, in equation (2), the negative electrode material is Sn.
It is obvious that (70)−Bi(30). Further, an alloy whose main component is tin is an alloy in which the heaviest metal in the alloy is tin. The inventors have discovered that by using a tin-based alloy as the negative electrode material and charging it in a non-aqueous electrolyte containing alkali metal ions, the negative electrode can be formed without alkali metal precipitation even during high-rate charging. It was discovered that alkali metals are occluded in the material, and when further discharge is performed, the occluded alkali metals are released into the electrolyte as alkali metal ions with high current efficiency. It was also found that the negative electrode material did not become finely powdered even after repeated charging and discharging, and exhibited good negative electrode characteristics of a non-aqueous electrolyte secondary battery. When comparing metallic tin and an alloy mainly composed of tin as negative electrode materials, the alloy showed better negative electrode characteristics. When viewed microscopically, many alloys made by adding lead, cadmium, bismuth, indium, etc. as other components to the alloy whose main component is tin.
It is composed of many phases such as various metal components and intermetallic compounds, and is not uniform. Alkali metals such as lithium absorbed by charging are thought to diffuse at a high rate along the interface between phases in the alloy, and when high-rate charging and discharging is performed, alloys with tin as the main component It was better to use Among the alloys, the tin-lead alloy had the worst characteristics as shown in the examples. However, when other components such as cadmium, bismuth, and indium were added to this tin-lead alloy to form a ternary or higher alloy, it showed excellent properties. This also shows that the interface between the phases plays an important role in the diffusion of the alkali metal in the alloy. Examples are shown below. The cell shown in FIG. 1 was constructed and the characteristics of the negative electrode of a non-aqueous electrolyte secondary battery made of various metals and alloys were investigated.
In FIG. 1, A is a test electrode made of the studied metal or alloy, B is a positive electrode made of TiS2 , and C is a lithium plate as a reference electrode. Lead E A of each electrode,
Nickel wires were used for E B and E C. As shown in Figure 2, the test plate A is a metal or alloy D with a size of 1 cm x 1 cm and a thickness of 1 mm, with a nickel ribbon as a lead.
I installed E A. The electrolyte contains 1 mol/
PC in which LiClO 4 was dissolved was used. In order to measure the characteristics of a metal or alloy non-aqueous electrolyte secondary battery as a negative electrode, test plate A was heated for 5 m until the potential of test plate A became OmV with respect to lithium reference electrode C.
It was charged in the cathode direction with a constant current of A. Under these conditions, lithium does not precipitate on the test electrode but enters the alloy. After the potential of test electrode A reached OmV, it was discharged toward the anode at a constant current of 5 mA until it reached 1.0 V with respect to reference electrode C, and then charging and discharging were repeated under the same conditions. The table shows the amount of electricity charged and the amount of electricity discharged in the first and 10th cycles of the alloy and metal used in test electrode A, the efficiency calculated by dividing the amount of electricity discharged by the amount of electricity charged, and the cycle characteristics of the 10th cycle. The amount of electricity discharged in the cycle is divided by the amount of electricity discharged in the first cycle. It can be said that the larger the numerical values of the amount of charging electricity, the amount of discharging electricity, the efficiency, and the cycle characteristics are, the better the negative electrode is. Further, FIG. 3 shows the charging curve and FIG. 4 shows the discharging curve at the 10th cycle of the test electrode indicated by the symbol in the table.

【表】 以上の結果より、非水電解質二次電池用負極材
料として、従来より用いられて来たアルミニウ
ム、鉛、銀、水銀に比べ、本発明のスズを主成分
とする合金が良好であることがわかる。 またスズとスズ合金を比較すると合金の方が良
好な特性を示している。表中には、スズ合金を作
るのに使用した他の成分である金属単体の負極特
性をも示した。これより、各成分の金属単体より
合金を用いた方が性能が向上していた。また表に
示したようにスズ−ビスマス合金で示すように、
他の成分量が増加する程、性能は向上する傾向が
見られた。 なお、負極材料として水銀を用いた場合、充放
電電気量が小さいのは、水銀の食塩電解における
ナトリウムアマルガム中のナトリウムが0.2%程
度しかないことと関連しているかもしれない。 上記実施例では、負極電極材料にリチウムを吸
蔵、放出させる例を示した。リチウム以外にもナ
トリウムやカリウムなどのアルカリ金属の吸蔵、
放出を行わせる負極を構成することも可能であ
る。 また電解質として、実施例に示したLiOlO4
溶解したPCだけでなく、Li3N(窒化リチウム)
やLiI(ヨウ化リチウム)のような固体電解質を用
いた場合でも、従来のアルミニウム、鉛、銀、水
銀に比べ本発明のスズを主成分とする合金を負極
材料とする方が優れた特性が得られた。 発明の効果 以上のように主成分をスズとする合金を負極材
料とすることにより、充放電電気量の多い、サイ
クル特性の良い、すなわち充放電寿命の長い信頼
性に優れた非水電解質電池を得ることができる。
[Table] From the above results, the tin-based alloy of the present invention is better as a negative electrode material for nonaqueous electrolyte secondary batteries than the conventionally used aluminum, lead, silver, and mercury. I understand that. Furthermore, when comparing tin and tin alloys, the alloys show better properties. The table also shows the negative electrode properties of the other metals used to make the tin alloy. This shows that the performance was better when using an alloy than when using individual metals of each component. Also, as shown in the table, as shown in the tin-bismuth alloy,
There was a tendency for performance to improve as the amount of other components increased. Note that when mercury is used as the negative electrode material, the small amount of charge and discharge electricity may be related to the fact that the sodium content of the sodium amalgam in mercury salt electrolysis is only about 0.2%. In the above embodiment, an example was shown in which lithium was inserted into and released from the negative electrode material. In addition to lithium, occlusion of alkali metals such as sodium and potassium,
It is also possible to construct a negative electrode that allows emission to take place. In addition, as an electrolyte, not only PC in which LiOlO 4 is dissolved as shown in the example, but also Li 3 N (lithium nitride) can be used.
Even when a solid electrolyte such as LiI (lithium iodide) is used, the negative electrode material made of the tin-based alloy of the present invention has superior properties compared to conventional aluminum, lead, silver, and mercury. Obtained. Effects of the Invention As described above, by using an alloy containing tin as the main component as the negative electrode material, a highly reliable non-aqueous electrolyte battery with a large charge/discharge capacity, good cycle characteristics, and a long charge/discharge life can be created. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は負極特性の検討に用いたセルの構成
図、第2図は試験極の側面図、第3図および第4
図は充電曲線図と放電曲線図である。 A……試験極、B……正極、C……照合電極。
Figure 1 is a block diagram of the cell used for examining the negative electrode characteristics, Figure 2 is a side view of the test electrode, Figures 3 and 4.
The figure shows a charging curve diagram and a discharging curve diagram. A...test electrode, B...positive electrode, C...verification electrode.

Claims (1)

【特許請求の範囲】 1 充電時に電解質中のアルカリ金属イオンを吸
蔵し、放電時に前記金属イオンを電解質中に放出
する機能を有する合金負極を備え、前記合金が、
スズを主成分とし、他の成分としてビスマス、カ
ドミウム及びインジウムよりなる群から選んだ少
なくとも1種を含む合金である非水電解質二次電
池。 2 充電時に電解質中のアルカリ金属イオンを吸
蔵し、放電時に前記金属イオンを放出する機能を
有する合金負極を備え、前記合金が、スズを主成
分とし、他の成分としてビスマス、カドミウム及
びインジウムよりなる群から選んだ少なくとも1
種と鉛を含む合金である非水電解質二次電池。
[Scope of Claims] 1. An alloy negative electrode having a function of occluding alkali metal ions in an electrolyte during charging and releasing the metal ions into the electrolyte during discharging, the alloy comprising:
A nonaqueous electrolyte secondary battery that is an alloy containing tin as a main component and at least one selected from the group consisting of bismuth, cadmium, and indium as another component. 2. Equipped with an alloy negative electrode that has the function of occluding alkali metal ions in the electrolyte during charging and releasing the metal ions during discharge, and the alloy is composed of tin as a main component and bismuth, cadmium, and indium as other components. at least one selected from the group
A nonaqueous electrolyte secondary battery that is an alloy containing seeds and lead.
JP3687783A 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery Granted JPS59163755A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3687783A JPS59163755A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery
US06/873,093 US4683182A (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus
PCT/JP1984/000086 WO1984003590A1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
EP84901015A EP0144429B1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
DE8484901015T DE3483244D1 (en) 1983-03-07 1984-03-06 RECHARGEABLE ELECTROCHEMICAL DEVICE AND NEGATIVE POLE THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3687783A JPS59163755A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS59163755A JPS59163755A (en) 1984-09-14
JPH0364987B2 true JPH0364987B2 (en) 1991-10-09

Family

ID=12482008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3687783A Granted JPS59163755A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS59163755A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203944B1 (en) * 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
JP3738293B2 (en) * 1999-08-25 2006-01-25 兵庫県 Negative electrode for lithium secondary battery and lithium secondary battery using the same

Also Published As

Publication number Publication date
JPS59163755A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
US4844996A (en) Lithium cell
EP0139756B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
US5122375A (en) Zinc electrode for alkaline batteries
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
US3617384A (en) Zinc alkaline secondary cell
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JP5329066B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
JP3152307B2 (en) Lithium secondary battery
JPH0364987B2 (en)
JPH0441471B2 (en)
JPH0412587B2 (en)
JPH0421986B2 (en)
JPH0364988B2 (en)
JPH0412585B2 (en)
JPH10144313A (en) Alkaline secondary battery
JPS59163757A (en) Nonaqueous electrolyte secondary battery
EP0144429B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH0412586B2 (en)
JPS59163756A (en) Nonaqueous electrolyte secondary battery
JPS6049565A (en) Nonaqueous electrolyte secondary battery
JPH0711957B2 (en) Non-aqueous secondary battery
JPS6084768A (en) Alkaline zinc storage battery