JPS59163757A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS59163757A
JPS59163757A JP58036879A JP3687983A JPS59163757A JP S59163757 A JPS59163757 A JP S59163757A JP 58036879 A JP58036879 A JP 58036879A JP 3687983 A JP3687983 A JP 3687983A JP S59163757 A JPS59163757 A JP S59163757A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
alloy
electrode material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58036879A
Other languages
Japanese (ja)
Inventor
Yoshinori Toyoguchi
豊口 「よし」徳
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58036879A priority Critical patent/JPS59163757A/en
Publication of JPS59163757A publication Critical patent/JPS59163757A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a nonaqueous electrolyte secondary battery having a high energy density and a long charge-and-dischrge life and being excellently safe and reliable by causing lithium or the like to be absorbed by a negative electrode material during charging and causing the negative electrode material to discharge lithium ion or the like into electrolyte during discharging by using an alloy consisting of two or more metals chosen from among tin, bismuth, cadmium and lead as the negative electrode material. CONSTITUTION:An alloy consisting of two or more metals chosen from among Sn, Bi, Pb and Cd is used as a negative electrode material so that it absorbs alkali metal ion contained in electrolyte during charging and discharges the absorbed alkali metal ion during discharging. At least one metal chosen from among In, Ca, Hg, Sb, Zn and Ag may be added to make the above alloy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非水電解質二次電池用の負極の改良に係るもの
で、この改良の結果、高エネルギー密度で充放電寿命が
長く、安全性、信頼性に優れた充電可能な電池を提供す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the improvement of negative electrodes for non-aqueous electrolyte secondary batteries.As a result of this improvement, they have a high energy density, a long charge/discharge life, safety, and reliability. The present invention provides a rechargeable battery with excellent performance.

従来例の構成とその問題点 現在まで、リチウム、ナトリウムなどのアルカリ金属を
負極とする非水電解質二次電池としては、たとえば、二
硫化チタン(T I S 2 )をはじめ各種の層間化
合物などを正極活物質として用い、電解質としては、炭
酸グロビレン(以後PCと略す)などの有機溶媒に過塩
素酸リチウム(L I C11O4)  などを溶解し
た有機電解質を用いる電池の開発が活発に進められてき
た。この二次電池の特徴は、負極にリチウムを用いるこ
とにより、電池電圧が高くなり、高エネルギー密度の二
次電池となることである。
Structures of conventional examples and their problems Until now, non-aqueous electrolyte secondary batteries using alkali metals such as lithium and sodium as negative electrodes have been made using various intercalation compounds such as titanium disulfide (TIS2). The development of batteries that use organic electrolytes such as lithium perchlorate (L I C11O4) dissolved in organic solvents such as globylene carbonate (hereinafter abbreviated as PC), which are used as positive electrode active materials, has been actively developed. . A feature of this secondary battery is that by using lithium for the negative electrode, the battery voltage increases, resulting in a high energy density secondary battery.

しかし、この種の二次電池は、現在、また実用化されて
いない。その主な理由は、充放電回数(サイクル)の寿
命が短かく、また充放電に際しての充放電効率が低いた
めである。この原因は、リチウム負極の劣化によるとこ
ろが非常に大きい。
However, this type of secondary battery is currently not in practical use. The main reason for this is that the life of the number of charging and discharging times (cycles) is short and the charging and discharging efficiency during charging and discharging is low. This is largely due to deterioration of the lithium negative electrode.

すなわち、現在のリチウム負極は二・ノケルなどのスク
リーン状集電体に板状の金属リチウムを圧着したものが
主に用いられているが、放電時に金属リチウムは、電解
質中にリチウムイオンとして溶解する。しかしこれを充
電して、放電前のような板状のリチウムに析出させるこ
とは難しく、デンドライト状(樹枝状)のリチウムが発
生してこれが根元より折れて脱落したり、あるいは、小
球状(谷状)に析出したリチウムが集電体より脱離する
などの現象が起こる。このため充放電が不能の電池とな
ってしまう。また発生したデンドライト状の金属リチウ
ムが、正極、負極間を隔離しているセパレータを貫通し
て正極に接し短絡を起こし、電池の機能を失なわせるよ
うなことも度々生じる。
In other words, current lithium negative electrodes are mainly made by pressing a plate of metal lithium onto a screen-like current collector such as Ni-Nokel, but during discharge, the metal lithium dissolves into the electrolyte as lithium ions. . However, it is difficult to charge the lithium and deposit it into the plate-like lithium that it was before discharging, and dendrite-like lithium may be generated that breaks off from the base and falls off, or spherule-like (valley) lithium forms. Phenomena such as the lithium deposited on the lithium ions being desorbed from the current collector occur. This results in a battery that cannot be charged or discharged. Furthermore, the generated dendrite-like metallic lithium often penetrates the separator that separates the positive and negative electrodes and comes into contact with the positive electrode, causing a short circuit and causing the battery to lose its function.

このような負極の欠点を改良するための方法は従来から
各種試みられてい名。一般的には、負極集電体の材料を
替えて析出するリチウムとの密着性を良くしたり、ある
いは、電解質中にデンドライト発生防止の添加剤を加え
たりする方法が報告されている。しかしこれらの方法は
必ずしも効果的ではない。すなわち、集電体材料に関し
ては、集電体材料に直接析出するリチウムに有効である
が、更に充電(析出)を続けると析出リチウム上ヘリチ
ウム析出することになり、集電体材料の効果は消失する
0また添加剤に関しても、充放電サイクルの初期では有
効であるが、サイクルが進むと電池内での酸化還元反応
などにより分解踵その効果、がなくなるものが殆んどで
ある。
Various methods have been tried in the past to improve these drawbacks of negative electrodes. Generally, methods have been reported in which the material of the negative electrode current collector is changed to improve its adhesion to the precipitated lithium, or an additive to prevent the formation of dendrites is added to the electrolyte. However, these methods are not always effective. In other words, with regard to the current collector material, it is effective for lithium that is deposited directly on the current collector material, but if charging (precipitation) continues further, helium will be deposited on the precipitated lithium, and the effect of the current collector material will disappear. Also, most additives are effective at the beginning of the charge/discharge cycle, but as the cycle progresses, most of them lose their effectiveness due to oxidation-reduction reactions within the battery.

さらに最近は負極として、リチウムとの合金を用いるこ
とが提案されている。この例としては、リチウム−アル
ミニウム合金がよく知られている。
Furthermore, recently it has been proposed to use an alloy with lithium as a negative electrode. A well-known example of this is lithium-aluminum alloy.

この場合は、一応均一の合金が形成されるが、充放電を
くシ返すとその均一性を消失し、特にリチウム量を多く
すると電極が微粒化し崩壊するなどの欠点があった0ま
た、銀とアルカリ金属との固溶体を用いることも提案さ
れている(特開昭66−7386)。この場合は、アル
ミニウムとの合金のような崩壊はないとされているが、
十分に速く合金化するリチウムの量は少なく、金属状の
リチウムが合金化しないま\析出する場合があり、これ
を防ぐために多孔体の使用などを推奨している。したが
って、大電流の充電効果は悪く、またリチウム量の多い
合金は、充放電による微細化が徐々に加速され、サイク
ル寿命が急激に減少する。
In this case, a uniform alloy is formed, but this uniformity disappears when charging and discharging are repeated, and when the amount of lithium is increased, the electrode becomes atomized and collapses. It has also been proposed to use a solid solution of alkali metal and alkali metal (Japanese Patent Application Laid-open No. 7386/1986). In this case, it is said that there is no collapse like in alloys with aluminum, but
The amount of lithium that can be alloyed quickly enough is small, and metallic lithium may precipitate without being alloyed. To prevent this, the use of porous materials is recommended. Therefore, the charging effect of large currents is poor, and in alloys with a large amount of lithium, the micronization due to charging and discharging is gradually accelerated, and the cycle life is rapidly reduced.

この他にはリチウム−水銀合金を用いる考案(特開昭6
7−98978 )+リチウムー鉛合金を用いる考案(
特開昭57−141869 )がある0しかし、リチウ
ム−水銀合金の場合は、放電によシ、負極は液状粒子の
水銀となシミ離形状を保持しなくなる0また、リチウム
−鉛合金の場合は、電極の充放電による微細粉化は銀面
溶体以上であり、このため合金中の鉛量を80%位にす
ることが望ましいとされているが、これでは高エネルギ
ー密度電池を実現できない。以上のように非水電解質二
次電池用負極としては、実用上満足できるものは、まだ
見い出されないといえる。
In addition, the idea of using a lithium-mercury alloy (Japanese Patent Application Laid-open No. 6
7-98978) + invention using lithium-lead alloy (
However, in the case of a lithium-mercury alloy, due to discharge, the negative electrode becomes smeared with liquid particles of mercury and does not retain its separated shape.In addition, in the case of a lithium-lead alloy, The fineness of the powder due to charging and discharging of the electrode is higher than that of a silver surface solution, and therefore it is said that it is desirable to keep the amount of lead in the alloy at about 80%, but this does not make it possible to realize a high energy density battery. As described above, it can be said that a practically satisfactory negative electrode for non-aqueous electrolyte secondary batteries has not yet been found.

したがって、優れた負極としては、アルカリ金属の吸蔵
量が大きく、しかも放出や吸蔵速度の大なる材料の開発
が望まれている。
Therefore, as an excellent negative electrode, it is desired to develop a material that can store a large amount of alkali metal and has a high release and storage rate.

発明の目的 本発明は負極材料を特定することによシ、単位体積当り
の充放電量の多い、また充放電寿命の長い、良好な特性
を示す非水電解質二次電池を提供するものである。
Purpose of the Invention The present invention provides a non-aqueous electrolyte secondary battery that exhibits good characteristics such as a large charge/discharge capacity per unit volume and a long charge/discharge life by specifying a negative electrode material. .

発明の構成 本発明の2次電池は、スズ、ビスマス、カドミウム、鉛
の群から選ばれた少くとも2つの金属からなる合金を負
極材料に用いることを特徴とし、充電によシ負極材料に
用いた合金にリチウムを吸蔵せしめ、放電により電解質
中にリチウムを放出させるものである。
Structure of the Invention The secondary battery of the present invention is characterized in that an alloy consisting of at least two metals selected from the group of tin, bismuth, cadmium, and lead is used as the negative electrode material, Lithium is occluded in the alloy, and lithium is released into the electrolyte by discharge.

実施例の説明 前記のように本発明の二次電池においては負極材料合金
に充電によりリチウムを吸蔵させ、放電により電解質中
にリチウムを放出させるものであるので、充電により負
極材料合金とリチウムの合金ができることとなる。しか
し、本発明の実施例における負極材料とは、リチウムと
合金を作る以前の合金である。
Description of Examples As mentioned above, in the secondary battery of the present invention, lithium is occluded in the negative electrode material alloy by charging, and lithium is released into the electrolyte by discharging. will be possible. However, the negative electrode material in the embodiments of the present invention is an alloy that is not alloyed with lithium.

例えば重量係で70%のビスマスと30%のスズよりな
る合金を用いたときの充放電反応は、(1)式中、(B
i(70−5n(J)Lixは充電により生成した、ビ
スマス、スズ、リチウム合金を示しており、本発明で定
義した負極材料とは(1)式中ではBiQ’Q−3n(
7)のことである。
For example, when using an alloy consisting of 70% bismuth and 30% tin by weight, the charge/discharge reaction is expressed as (B
i(70-5n(J)Lix indicates bismuth, tin, lithium alloy produced by charging, and the negative electrode material defined in the present invention is BiQ'Q-3n(
7).

また、充放電の範囲としては、(1)式のように完全に
負極中よりリチウムがなくなるまで放電する必要はなく
、(に)式のように負極中に吸蔵されたリチウム量を変
えるようにして、充放電ができるこことは自明である。
In addition, as for the range of charging and discharging, it is not necessary to discharge until lithium is completely exhausted from the negative electrode as in equation (1), but it is necessary to change the amount of lithium occluded in the negative electrode as in equation (2). It is obvious that this is where charging and discharging can occur.

発明者らは、ビスマス、スズ、カドミウム、鉛の群より
選ばれた少くとも2つの金属からなる合金を負極材料と
して、アルカリ金属イオンを含む非水電解質中で充電を
行うことによシ、高率充電を行ってもアルカリ金属の析
出が起らずに負極材料中にアルカリ金属が吸蔵され、さ
らに放電を行うと高電流効率で吸蔵されたアルカリ金属
がアルカリ金属イオンとして電解質中に放出されること
を見い出した。また充放電をくり返し行っても負極材料
の微細粉化が起らず、良好な非水電解質二次電池の負極
特性を示すことがわかった。
The inventors have developed a high-performance battery using an alloy consisting of at least two metals selected from the group of bismuth, tin, cadmium, and lead as a negative electrode material, and charging in a non-aqueous electrolyte containing alkali metal ions. Even when charged at a high current efficiency, alkali metals are occluded in the negative electrode material without precipitation of alkali metals, and when further discharged, the occluded alkali metals are released into the electrolyte as alkali metal ions with high current efficiency. I discovered that. It was also found that the negative electrode material did not become finely pulverized even after repeated charging and discharging, and exhibited good negative electrode characteristics of a non-aqueous electrolyte secondary battery.

負極材料として、ビスマス、カドミウム、スズ、鉛の合
金と、これら金属単体を比較すると合金の方が良好な負
極特性を示した。合金の多くは微視的に見ると、各金属
成分や、金属間化合物などの多ぐの相からなっており、
均一なものではない。
When comparing an alloy of bismuth, cadmium, tin, and lead as a negative electrode material with these metals alone, the alloy showed better negative electrode characteristics. When viewed microscopically, most alloys consist of many phases such as various metal components and intermetallic compounds.
It's not uniform.

充電により吸蔵されたリチウムなどのアルカリ金属は合
金中の相の間の界面に沿って、早い速度で拡散してゆく
ためと考えられる。
This is thought to be because alkali metals such as lithium absorbed by charging diffuse at a high rate along the interface between phases in the alloy.

ビスマス、スズ、鉛、カド賽つムなどの金属からなる合
金に、さらにインジウム、カルノウム、銀、水銀、アン
チモン、亜鉛を加えることにより、負極材料としてより
充放電電気量が増加するなど、より良い性能を示すよう
になった。
By adding indium, carnoum, silver, mercury, antimony, and zinc to an alloy consisting of metals such as bismuth, tin, lead, and cadmium, it is possible to improve the negative electrode material by increasing the amount of charge and discharging electricity. started to show performance.

以下に具体的実施例を示す 第1図に示したセルを構成して、各種金属や合金の非水
電解質二次電池の負極の特性を調べた。
A cell shown in FIG. 1, a specific example of which is shown below, was constructed and the characteristics of the negative electrode of a non-aqueous electrolyte secondary battery made of various metals and alloys were investigated.

第1図中、Aは検討した金属2合金よりなる試験極、B
はTl52 よりなる正極、Cは照合電極としてのリチ
ウム板である。各々の電極のリードEA。
In Figure 1, A is a test electrode made of the two metal alloys studied, B is
C is a positive electrode made of Tl52, and C is a lithium plate as a reference electrode. Lead EA for each electrode.

EB、ECにはニッケル線を用いた。試験極Aは第2図
に示すように1 鳴×1Cm厚さ1馴の金属あるいは合
金DK、リードとしてニッケルリボンEAをとりつけた
Nickel wires were used for EB and EC. As shown in FIG. 2, the test electrode A was made of a metal or alloy DK of 1 ring x 1 cm thick and a nickel ribbon EA attached as a lead.

電解質Fには、1モル/lのL i C(J O4を溶
がしたPCを用いた。試験極Aの液槽Hと照合極Cの液
槽Gとは連通管工で接続されている。金属や合金の非水
電解質二次電池の負極としての特性を測定するために、
試験極Aの電位が、リチウム照合電極Cに対してOm 
Vになるまで5 m Aの定電流でカノード方向に充電
した。この条件では、試験極A上にリチウムは析出せず
、合金中に入る。
As the electrolyte F, PC in which 1 mol/l of L i C (J O4 was dissolved) was used.The liquid tank H of the test electrode A and the liquid tank G of the reference electrode C are connected by a communication pipe. .To measure the characteristics of metals and alloys as negative electrodes for non-aqueous electrolyte secondary batteries.
The potential of test electrode A is Om with respect to lithium reference electrode C.
The battery was charged toward the cathode with a constant current of 5 mA until the voltage reached V. Under these conditions, lithium does not precipitate on test electrode A but enters the alloy.

試験極Aの電位がOm Vに達した後、照合電極Cに対
して1.○■になるまで、5 m Aの定電流でアノー
ド方向に放電し、その後充電、放電を同じ条件で繰り返
した。表には、試験極Aに用いた合金金属の第1サイク
ルと第10サイクルにおける充電電気量、放電電気量、
および効率として放電電気量を充電電気量で除したもの
、サイクル特性として、第10サイクルの放電電気量を
第1サイクルの放電電気量で除したものを示す。充電電
気量、放電電気量、効率、サイクル特性の数値が犬であ
る程よい負極と言える。また表中に記号で示した試験極
Aの第10サイクルでの充電曲線を第3図に、放電曲線
を第4図に示す。
After the potential of test electrode A reaches Om V, 1. The battery was discharged toward the anode at a constant current of 5 mA until it became ○■, and then charging and discharging were repeated under the same conditions. The table shows the amount of electricity charged, the amount of electricity discharged in the first cycle and the 10th cycle of the alloy metal used for test electrode A,
The efficiency is the amount of discharged electricity divided by the amount of charged electricity, and the cycle characteristic is the amount of electricity discharged in the 10th cycle divided by the amount of electricity discharged in the first cycle. It can be said that the negative electrode has good values for charging amount of electricity, discharging amount of electricity, efficiency, and cycle characteristics. Further, the charging curve and the discharging curve at the 10th cycle of test electrode A, which are indicated by symbols in the table, are shown in FIG. 3 and FIG. 4, respectively.

(以下余 白) 以上の結果より、非水電解質二次電池用負極材料として
、従来より用いられて来たアルミニウム、鉛、銀、水銀
に比べ、ビスマス、カドミウム、スズ、鉛の群から選ん
だ少くとも2つの金属からなる合金、あるいは、この合
金にさらにインジウム、カルシウム、水銀、アンチモン
、亜鉛から少くとも1つを加えた合金を負極材料に用い
ることにより、より充放電電気量の多い、サイクル特性
の良好な二次電池を得ることができる。
(Left below) Based on the above results, compared to the conventionally used aluminum, lead, silver, and mercury, we selected bismuth, cadmium, tin, and lead as negative electrode materials for nonaqueous electrolyte secondary batteries. By using an alloy consisting of at least two metals, or an alloy in which at least one of indium, calcium, mercury, antimony, and zinc is added to this alloy as the negative electrode material, a cycle with a larger amount of charge and discharge electricity can be achieved. A secondary battery with good characteristics can be obtained.

負極材料に用いる合金の組成として、ビスマスカドミウ
ム合金、鉛−スズ合金の組成を変えて検討した。試験法
は実施例と同じ方法である。第5図、第6図には第10
サイクルでの放電電気量を組成に対してプロットした。
The composition of the alloy used for the negative electrode material was studied by changing the composition of a bismuth cadmium alloy and a lead-tin alloy. The test method is the same as in the examples. 10 in Figures 5 and 6.
The amount of electricity discharged during the cycle was plotted against the composition.

これより、合金組成としては、構成金属の重量パーセン
トがほぼ等しい時に負極としての性能は特に充放電電気
量に関して最高となることがわかった。
From this, it was found that when the weight percentages of the constituent metals are approximately equal in terms of alloy composition, the performance as a negative electrode is the best, especially in terms of the amount of charge and discharge electricity.

サラにビスマス、スズ、カドミウム、鉛のうちの3つの
金属からなる合金では、量の多い2成分の重量パーセン
トがほぼ等しい時に充放電電気量は大となり、3成分の
重量パーセントがほぼ等しい時に、最高になることがわ
かった。
In an alloy consisting of three metals, bismuth, tin, cadmium, and lead, the amount of electricity charged and discharged becomes large when the weight percentages of the two components with large amounts are approximately equal, and when the weight percentages of the three components are approximately equal, It turned out to be the best.

従来例において負極材料に水銀を用いると充放電電気量
が小さいのは、水銀の食塩電解におけるナトリウムアマ
ルガム中のナトリウムが0.2%程度しかないことと関
連しているかもしれない。
The small amount of charge and discharge electricity when mercury is used as the negative electrode material in the conventional example may be related to the fact that the sodium content in the sodium amalgam in mercury salt electrolysis is only about 0.2%.

なお、上記実施例では、負極電極材料にリチウムを吸蔵
、放出させる例を示した。リチウム以外にもナトリウム
やカリウムなどのアルカリ金属の吸蔵、放出を行わせる
負極を構成することも可能である。
In addition, in the above-mentioned example, an example was shown in which lithium was inserted into and released from the negative electrode material. It is also possible to construct a negative electrode that intercalates and desorbs alkali metals such as sodium and potassium in addition to lithium.

また電解質として、実施例に示したしlClO4を溶解
したPCだけでなく、L 13N (窒化リチウム)や
LiI(ヨウ化リチウム)のような固体電解質を用いた
場合でも、従来のアルミニウム、鉛。
In addition, as an electrolyte, not only PC in which lClO4 is dissolved as shown in the example, but also solid electrolytes such as L 13N (lithium nitride) and LiI (lithium iodide) can be used instead of conventional aluminum or lead.

水銀、銀に比べ、本発明のビスマス、カドミウム。Bismuth and cadmium of the present invention compared to mercury and silver.

スズ、鉛よりなる合金は優れた負極としての特性を示し
た。
An alloy consisting of tin and lead showed excellent properties as a negative electrode.

発明の効果 以上示したように、ビスマス、カドミウム、スズ、鉛の
群から選ばれた2つ以上の金属からなる合金を負極材料
とすることにより、充放電電気量の多い、サイクル特性
の良いすなわち充放電寿命の長い信頼性に優れた非水電
解質電池を得ることができる。
Effects of the Invention As shown above, by using an alloy consisting of two or more metals selected from the group of bismuth, cadmium, tin, and lead as the negative electrode material, a large amount of charge and discharge electricity and good cycle characteristics can be achieved. A highly reliable non-aqueous electrolyte battery with a long charge/discharge life can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は負極特性の検討に用いたセルの構成図、第2図
は試験槽の側面図、第3図および第4図は各々充電曲線
図と放電曲線図、第5図、第6図は合金の組成と放電電
気量の関係を示1図である。 A・・・・・試験極、B・・・・・正極、C・−・・・
・照合電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 04   B  /2  /l  2/第4図 #辷、  1θ−仕鰺 間 (V!!間ン手続補正書 昭和69年6 月 1口 特許庁長官殿 ■事件の表示 昭和58年特許願第 36879号 2発明の名称 非水電解質二次電池 3補正をする者 4田、との関係      特   許   出   
願  人任 所  大阪府門真市大字門′JA1006
番地名 称 (582)松下電器産業株式会社代2・6
       山   下   俊   彦4代理人 
〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 5桶正の対象 6、補正の内容 (1)明細壱裁13頁を別紙のように訂正します。 (閏 図面第6図を別紙のように訂正します。 5図 九   重量71.−ヤ、F   ″
Figure 1 is a block diagram of the cell used to study negative electrode characteristics, Figure 2 is a side view of the test tank, Figures 3 and 4 are charging and discharging curves, respectively, and Figures 5 and 6. FIG. 1 shows the relationship between alloy composition and amount of discharged electricity. A...Test electrode, B...Positive electrode, C...---
- Reference electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 04 B /2 /l 2/Figure 4 Patent Application No. 36879 2 Name of the invention Non-aqueous electrolyte secondary battery 3 Person making the amendment 4 Relationship with the company Patent issued
Appointment location Oaza Mon'JA1006, Kadoma City, Osaka Prefecture
Address name (582) Matsushita Electric Industrial Co., Ltd. 2/6
Toshihiko Yamashita 4 Agent
571 Address: 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture, Matsushita Electric Industrial Co., Ltd. Subject 6: Contents of the amendment (1) Page 13 of the Specification 1 will be corrected as shown in the attached sheet. (Leap Figure 6 of the drawing is corrected as shown in the attached sheet. 5 Figure 9 Weight 71.-Y, F''

Claims (2)

【特許請求の範囲】[Claims] (1)充電時に電解質中のアルカリ金属イオンを吸蔵し
、放電時に上記金属イオンを電解質中に放出する機能を
有し、負極電極材料としてSn、 Bi。 Pb、Cd0群から選ばれた少なくとも二つの金属質 からなる合金を用いたことを特徴とする非水電解。 二次電池。
(1) Sn and Bi have the function of storing alkali metal ions in the electrolyte during charging and releasing the metal ions into the electrolyte during discharging, and are used as negative electrode materials. Non-aqueous electrolysis characterized by using an alloy consisting of at least two metals selected from the group Pb and Cd0. Secondary battery.
(2)  In、 Ca、 Hg、 Sb、 Zn、 
Agのなかから選ばれた少なくとも一つの金属を負極材
料に添加したことを特徴とする特許請求の範囲第1項記
載の非水電解質二次電池。
(2) In, Ca, Hg, Sb, Zn,
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein at least one metal selected from Ag is added to the negative electrode material.
JP58036879A 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery Pending JPS59163757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58036879A JPS59163757A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58036879A JPS59163757A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS59163757A true JPS59163757A (en) 1984-09-14

Family

ID=12482062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58036879A Pending JPS59163757A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS59163757A (en)

Similar Documents

Publication Publication Date Title
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
JPH05101846A (en) Non-aqueous electrolytic secondary battery
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
EP0139756B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
US5122375A (en) Zinc electrode for alkaline batteries
JPH05135776A (en) Cylindrical alkaline battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPS63274058A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP5342188B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
JP5329066B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPS59163757A (en) Nonaqueous electrolyte secondary battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JPH0364987B2 (en)
JPS6089069A (en) Nonaqueous electrolyte battery
JPH0441471B2 (en)
JPH0421986B2 (en)
JPS59163758A (en) Nonaqueous electrolyte secondary battery
JPH0412585B2 (en)
EP0144429B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPS6086759A (en) Nonaqueous electrolyte secondary battery
JPS6188466A (en) Nonaqueous electrolyte secondary battery
JPS6049565A (en) Nonaqueous electrolyte secondary battery
JPS6084768A (en) Alkaline zinc storage battery
JPS59163756A (en) Nonaqueous electrolyte secondary battery