JPS6049565A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS6049565A
JPS6049565A JP58158329A JP15832983A JPS6049565A JP S6049565 A JPS6049565 A JP S6049565A JP 58158329 A JP58158329 A JP 58158329A JP 15832983 A JP15832983 A JP 15832983A JP S6049565 A JPS6049565 A JP S6049565A
Authority
JP
Japan
Prior art keywords
alloy
cadmium
negative electrode
lead
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58158329A
Other languages
Japanese (ja)
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58158329A priority Critical patent/JPS6049565A/en
Priority to PCT/JP1984/000088 priority patent/WO1984003591A1/en
Priority to EP84901015A priority patent/EP0144429B1/en
Priority to US06/935,169 priority patent/US4851309A/en
Priority to DE8484901017T priority patent/DE3483234D1/en
Priority to PCT/JP1984/000086 priority patent/WO1984003590A1/en
Priority to EP84901017A priority patent/EP0139756B1/en
Priority to DE8484901015T priority patent/DE3483244D1/en
Priority to US06/873,093 priority patent/US4683182A/en
Publication of JPS6049565A publication Critical patent/JPS6049565A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase charge-discharge capacity and life by using alloy of at least one of tin and lead with cadmium as a negative electrode of a secondary battery. CONSTITUTION:A secondary battery is formed using nonaqueous electrolyte, a positive electrode having charge-discharge reversibility, and a negative electrode comprising alloy which stores and releases alkali metal ion existing in electrolyte. The negative electrode alloy contains at least one of tin and lead, and 5- 50wt% cadmium, and moreover contains 20wt% or less at least one of bismuth, indium, and zinc if necessary. By using this negative electrode, a nonaqueous secondary battery having large charge-discharge capactiy per volume and long charge-discharge cycle life is provided because deterioration of the negative electrode caused formation of fine powder is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次型71i2、特にその負極の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement of a nonaqueous electrolyte secondary type 71i2, particularly its negative electrode.

従来例の構成とその問題点 現在まで、リチウム、ナトリウムなどのアルカリ金属全
負極とする非水電解質二次電池としては、たとえば、二
硫化チタン(Ti52) ’fcはじめ各種の層間化合
物など全正極活物質として用い、電解質としては、炭酸
プロピレンなどの有機溶媒に過塩素酸リチウムなどを溶
解した有機電解質を用いる電池の開発が活発に進められ
てきた。この二次電池の特徴は、負極にアルカリ金属を
用いることにより、電池電圧が高く、高エネルギー密度
となることである。
Conventional Structures and Problems Until now, non-aqueous electrolyte secondary batteries that use all alkali metal negative electrodes such as lithium or sodium have used all-positive electrodes such as titanium disulfide (Ti52) 'FC and various intercalation compounds. Batteries have been actively developed using an organic electrolyte prepared by dissolving lithium perchlorate in an organic solvent such as propylene carbonate. A feature of this secondary battery is that by using an alkali metal for the negative electrode, the battery voltage is high and the energy density is high.

しかし、この種の二次電池は、現在1だ実用化されてい
ない。その主な理由は、光放電回数(→ノーイクル)の
寿命が短く、また光放電に際しての充放電効率が低いた
めである。この原因は、負極の劣化によるところが非常
に太きい。すなわち、現在のリチウム負極はニッケルな
どのスクリーン状集電体に板状の金属リチウムを圧着し
たものが主に用いられているが、放電時に金属リチウム
は、電解質中にリチウムイオンとして溶解する。しかし
、これを光電して、放電前のような板状のリチウムに析
出させることは難しく、デンドライト状(樹枝状)のリ
チウムが発生してこれが根元より折れて脱落したり、あ
るいは、小球状(谷状)に析出したリチウムが集電体よ
り脱離したシするなどの現象が起こる。このため充放?
しが不能の電池となってしまう。また、発生したデンド
ライト状の金属リチウムが、正極、負極間を隔離してし
るセパレータ全貫通して、正極に接し短絡を起こし、電
池の機能を失わせるようなことも度々生じる。
However, this type of secondary battery has not yet been put into practical use. The main reason for this is that the life of the number of photodischarges (→no cycle) is short and the charging/discharging efficiency during photodischarge is low. This is largely due to deterioration of the negative electrode. That is, current lithium negative electrodes are mainly used in which plate-shaped metallic lithium is pressed onto a screen-shaped current collector made of nickel or the like, but metallic lithium dissolves in the electrolyte as lithium ions during discharge. However, it is difficult to photoelectrically deposit this onto plate-shaped lithium as it was before discharge, and dendrite-like lithium may be generated that breaks off from the base and falls off, or it may break off from the base and fall off. Phenomena such as lithium deposited in valleys (valleys) detaching from the current collector occur. Is it charged for this reason?
The battery becomes inoperable. Furthermore, it often happens that the dendrite-like metal lithium that is generated completely penetrates the separator that separates the positive and negative electrodes and comes into contact with the positive electrode, causing a short circuit and causing the battery to lose its function.

このような負極の欠点を改良するための方法は従来から
各種試みられている。一般的には、負極集電体の材料を
替えて析出するリチウムとの密着性を良くしたり、ある
いは、電解質中にデンドライト発生防止の添加剤を加え
たシする方法が報告されている。しかし、これらの方法
は必ずしも効果的ではない。すなわち、集電体材料に関
しては、集電体材料に直接析出するリチウl、に有効で
あるが、更に光電(析出)を続けると析出リチウム上ヘ
リチウム全析出することになり、集電体材料の効果は消
失する。また添加剤に関しても、光放電サイクルの初期
では有効であるが、サイクルが進むと電池内での酸化還
元反応などにより分解し、その効果がなくなるものが殆
んどである。
Various methods have been tried in the past to improve these drawbacks of negative electrodes. Generally, methods have been reported in which the material of the negative electrode current collector is changed to improve its adhesion to the precipitated lithium, or an additive to prevent dendrite formation is added to the electrolyte. However, these methods are not always effective. In other words, with regard to the current collector material, it is effective against lithium, which is deposited directly on the current collector material, but if photoelectricity (deposition) is continued further, helium will be completely deposited on the precipitated lithium, and the current collector material will be The effect disappears. Furthermore, most additives are effective at the beginning of the photodischarge cycle, but as the cycle progresses, they decompose due to oxidation-reduction reactions within the battery and lose their effectiveness.

さらに最近は負極として、リチウムとの合金を用いるこ
とが提案されている。この例としては、リチウム−アル
ミニウム合金がよく知られている。
Furthermore, recently it has been proposed to use an alloy with lithium as a negative electrode. A well-known example of this is lithium-aluminum alloy.

この場合は、一応均一の合金が形成されるが、充放電を
繰り返すとその均一性を消失し、特にリチウム量を多く
すると電極が微粒化し崩壊するなどの欠点があった。ま
た、銀とアルカリ金属との固溶体を用いることも提案さ
れている(特開昭56−7386 )。この場合は、ア
ルミニウムとの合金のような崩壊はないとされているが
、十分に速く合金化するリチウムの量は少なく、金属状
のリチウムが合金化しないまま析出する場合があり、こ
れを防ぐために多孔体の使用など全推奨し7ている。し
たがって、大電流の充電効率は悪く、またリチウム量の
多い合金は、充放電による微細化が徐々に加速され、サ
イクル寿命が急激に減少する。
In this case, a somewhat uniform alloy is formed, but this uniformity disappears when charging and discharging are repeated, and when the amount of lithium is increased in particular, the electrode becomes atomized and collapses. It has also been proposed to use a solid solution of silver and an alkali metal (Japanese Unexamined Patent Publication No. 7386/1986). In this case, it is said that there is no collapse like in alloying with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium may precipitate without being alloyed. The use of porous materials is recommended in order to prevent Therefore, charging efficiency at large currents is poor, and in alloys with a large amount of lithium, micronization due to charging and discharging is gradually accelerated, resulting in a rapid decrease in cycle life.

この他にぽ、リチウム−水銀合金金用いる考案(特開昭
57−98978)、リチウム−鉛合金を用いる考案(
特開昭57−141869 )がある。しかし、リチウ
ム−水銀合金の場合は、放電により、負極は液状粒子の
水銀となり電極形状全保持しなくなる。また、リチウム
−鉛合金の場合は、電極の光放電による微細粉化シ:1
銀固溶体以上であり、このため合金中の鉛量′fc80
重量%位にすることが望ましいとされているが、これで
は高エネルギー密度電池全実現できない。
In addition, there are other ideas such as using a lithium-mercury alloy (Japanese Patent Application Laid-Open No. 57-98978) and using a lithium-lead alloy (
JP-A-57-141869). However, in the case of a lithium-mercury alloy, the negative electrode becomes liquid particles of mercury due to discharge, and the electrode shape is no longer maintained. In addition, in the case of lithium-lead alloy, fine powderization by photodischarge of the electrode: 1
It is more than a silver solid solution, and therefore the amount of lead in the alloy 'fc80
Although it is said that it is desirable to reduce the amount by weight, this makes it impossible to realize high energy density batteries.

さらに、リチウム−スズ合金、リチウム−スズ−鉛合金
を用いることも考えられる。これらの合金を用いた場合
にも、充電忙より合金中へ入るリチウム量を増してゆく
と、合金の微細化が起こり、電極としての形J$、を保
持しえないさ以上のように非水電解質負極としては、実
用上満足できるものは、まだ見い出さハていないといえ
る。
Furthermore, it is also possible to use a lithium-tin alloy or a lithium-tin-lead alloy. Even when these alloys are used, as the amount of lithium that enters the alloy increases during charging, the alloy becomes finer and cannot maintain its shape as an electrode. It can be said that a practically satisfactory water electrolyte negative electrode has not yet been found.

したがって優れた負極として、アルカリ金属の吸蔵量が
大きく、しかも微細化などの起こらない極板形状を保持
しうる負極の開発が望まれている。
Therefore, it is desired to develop an excellent negative electrode that has a large amount of alkali metal occlusion and that can maintain the shape of the electrode plate without becoming fine.

発明の目的 本発明は、負極を改良することにより、単位体積当たり
の光放電量が大きく、しかも微細化が起こらず光放電寿
命の長い良好な特性を示す非水電解質二次電池を提供す
ることを目的とする。
OBJECT OF THE INVENTION The present invention provides a non-aqueous electrolyte secondary battery that exhibits a large amount of photodischarge per unit volume by improving the negative electrode, and exhibits good characteristics such as no miniaturization and a long photodischarge life. With the goal.

発明の構成 本発明の非水電解質二次電池は、アルカリ金属イオンを
含む非水電解質と、光放電の可逆性を有する正極と、充
電時に電解質中のアルカリ金属イオンを吸蔵し、放電時
に1″lrJ記アルカリ金属イオンを電解質中に放出す
る機能を有する合金からなる負極金儲え、前記合金が、
スズ及び鉛よりなる群から選んだ少なくとも1種を96
〜60重量%、カドミウムi50〜”R@96含む合金
であることを特徴とするものである。
Structure of the Invention The non-aqueous electrolyte secondary battery of the present invention includes a non-aqueous electrolyte containing alkali metal ions, a positive electrode having reversibility of photodischarge, and occluding alkali metal ions in the electrolyte during charging, and occluding the alkali metal ions in the electrolyte during discharging. A negative electrode made of an alloy having the function of releasing alkali metal ions into the electrolyte, the alloy comprising:
96 at least one selected from the group consisting of tin and lead
The alloy is characterized by containing ~60% by weight of cadmium i50~''R@96.

電解質中のアルカリ金属イオンとしてリチウムイオンを
用いた時、本発明の二次電池においては、負極合金は充
電によりリチウムを吸蔵し、放電によシミ解質中にリチ
ウムイオンケ放出させるので、充電により、負極にはリ
チウムの合金ができることになる。
When lithium ions are used as alkali metal ions in the electrolyte, in the secondary battery of the present invention, the negative electrode alloy occludes lithium during charging and releases lithium ions into the solute during discharging. , a lithium alloy is formed at the negative electrode.

例えば80重量96の鉛と20重fIi96のカドミウ
ムよりなる合金[Pb (80)−Cd(20)lf、
(用イア’(ときの光放電反応は次式のようになる。
For example, an alloy consisting of lead of 80 wt.96 and cadmium of 20 wt.fIi96 [Pb(80)-Cd(20)lf,
(The photodischarge reaction at the time is as follows.

[Pb(so) −Cd(2o)]−]1−xLi+−
1−xe式中Pb(8o)−Cd(20)]Lizは、
充電により生成した鉛−カドミウム−リチウム合金を示
す。
[Pb(so)-Cd(2o)]-]1-xLi+-
1-xe in the formula Pb(8o)-Cd(20)] Liz is
This shows a lead-cadmium-lithium alloy produced by charging.

また、光放電の′範囲としては、1式のように、負極合
金に吸蔵したリチウム全完全に放出するまで放電する必
要はなく、2式のように、負極に吸蔵されたリチウム量
を変えるようにして光放電してもよい。
In addition, as for the range of photodischarge, it is not necessary to discharge until all of the lithium occluded in the negative electrode alloy is completely released, as in Equation 1. It may be used for photodischarge.

[Pb(80)−Cd(20) 〕Lix −1−yL
i++ye本発明は、スズ及び鉛よりなる群から選んた
少なくとも1種とカドミウムの合金全負甲に用いると、
アルカリ金属イオンを含む非水電解質中で高率で充電し
てもアルカリ金属の析出が起こらずに負極合金中にアル
カリ金属が吸蔵され、さらに放電すると高電流効率で吸
蔵されたアルカリ金属がアルカリ金属イオンとして電解
質中に放出されることを見い出したことに基づくもので
ある。
[Pb(80)-Cd(20)]Lix-1-yL
i++yeThe present invention provides that when an alloy of at least one member selected from the group consisting of tin and lead and cadmium is used for a complete armor,
Even when charged at a high rate in a nonaqueous electrolyte containing alkali metal ions, the alkali metal is occluded in the negative electrode alloy without precipitation of the alkali metal, and upon further discharging, the occluded alkali metal becomes alkali metal with high current efficiency. This is based on the discovery that ions are released into electrolytes.

従来のスズまたは鉛の単体またはスズ−鉛合金全負極に
用いた場合は、低率で充放電を行い、充放電量全長くし
たとき、負極の微細化が起こり、形状全保持しえなくな
り、充放電全数サイクル繰り返したたけで光放電H1,
の急激な低下が起こる。
When conventional tin or lead alone or tin-lead alloy negative electrodes are used, when charging and discharging are performed at a low rate and the full charge/discharge amount is extended, the negative electrode becomes finer and cannot maintain its shape completely. Photodischarge H1 after repeated charging and discharging cycles
A sudden drop in occurs.

しかし、スズ、鉛、−;トたはスズと鉛の合金にカドミ
ウムを5重量%以上加えた合金を負極に用いた際には、
負極の微細化は起こらず、光放電サイクルを繰り返して
も安定した特性を示す。1だ、充放電量も、カドミウム
ケ加えることにより増加する。この光放電量の増加は、
カドミウムを加えることにより、合金中の各金属成分や
金属間化合物よりなる多くの相の間の界面に沿って速い
速度でアルカリ金属が拡散するようにな2)ためと考え
られる。
However, when tin, lead, -, or an alloy of tin and lead with 5% or more of cadmium added to the negative electrode,
The negative electrode does not become finer and exhibits stable characteristics even after repeated photodischarge cycles. 1. The amount of charge and discharge also increases by adding cadmium. This increase in the amount of photodischarge is
This is thought to be due to the fact that the addition of cadmium causes the alkali metal to diffuse at a high rate along the interfaces between the various metal components in the alloy and the many phases consisting of intermetallic compounds2).

実施例の説明 第1図に示したセルを構成して、各種金属や合金の非水
電解質中での負極の特性を調べた。
DESCRIPTION OF EXAMPLES The cell shown in FIG. 1 was constructed and the characteristics of the negative electrode of various metals and alloys in non-aqueous electrolytes were investigated.

第1図において、1は検討した金属また合金よりなる試
験極、2はTi、S2を活物質とする正極、3は照合電
極としてのリチウム板である。電極1゜2.3のリード
4.6.6にはニッケル金用いた。
In FIG. 1, 1 is a test electrode made of the metal or alloy studied, 2 is a positive electrode made of Ti and S2 as active materials, and 3 is a lithium plate as a reference electrode. Nickel gold was used for the lead 4.6.6 of the electrode 1°2.3.

試験極1は第2図に示すように、大きさ1CrIL×1
cIrL、厚さ1 mmの金属あるいは合金1aに、リ
ードとしてニッケルリボン4全一部埋め込んでとりつけ
た。
The test electrode 1 has a size of 1 CrIL x 1 as shown in Figure 2.
The nickel ribbon 4 was entirely embedded and attached as a lead in cIrL, a metal or alloy 1a having a thickness of 1 mm.

電解質7には1モル/βのLiClO4を溶かしたグロ
ピレンカーボネートを用いた。8は液絡橋である。
As electrolyte 7, glopylene carbonate in which 1 mol/β LiClO4 was dissolved was used. 8 is a liquid junction bridge.

金属や合金の非水電解質二次電池の負極としての特性を
測定するために、試験極1の電位が、リチウム照合電極
3に対して。mVになるまで1mAの定電流でカソード
方向に光電した。この条件では、試験極上にリチウムは
析出(Jず、合金中に入る。試験極1の電位がOmVに
達した後、照合電極3に対して1.OV[なるまで1 
mAの定電流でアノード方向に放電し、その後充電、放
′IM、i同じ条件で繰り返した。表には、試験極1に
用いた合金、金属の第1サイクルと第16サイクルにお
ける光電電気量、放電電気量、および効率として放電電
気量金兄電電気量で除したもの、サイクル特性として第
16サイクルの放電電気取全第1サイの クツ−電電気量で除したものケ示す。充電電気量。
In order to measure the characteristics of a metal or alloy non-aqueous electrolyte secondary battery as a negative electrode, the potential of the test electrode 1 is set to 100% with respect to the lithium reference electrode 3. Photovoltage was applied toward the cathode at a constant current of 1 mA until the voltage reached mV. Under these conditions, lithium precipitates on the test electrode (J) and enters the alloy. After the potential of the test electrode 1 reaches OmV,
It was discharged toward the anode with a constant current of mA, and then charging and discharging were repeated under the same conditions. The table shows the amount of photoelectricity and amount of discharged electricity in the 1st and 16th cycles of the alloy and metal used in test electrode 1, the efficiency divided by the amount of discharged electricity divided by the amount of electricity, and the cycle characteristics. Shown is the total discharge electricity for 16 cycles divided by the amount of electricity in the first cycle. Charge electricity amount.

放電電気量、効率、サイクル特性の数値が太きい程よい
負極と言える。
It can be said that the larger the numerical values of the amount of discharged electricity, efficiency, and cycle characteristics are, the better the negative electrode is.

以下余白 以上の結果より、非水電解質二次電池用負極として、従
来より用いられて来たアルミニウム、鉛、銀、水銀、ス
ズ−鉛合金に比べ、スズ及び鉛よりなる群から選んだ少
なくとも1種とカドミウムを含む合金を用いることによ
り良好な特性が得られることかわかる。表には合金ケ作
るのに使用した成分である金属単体の負極特性をも示し
た。これより各成分の金属単体音用いるより合金を用い
た方が性能は向上することがわかる。
From the results shown in the margins below, we found that at least one selected from the group consisting of tin and lead is more effective as a negative electrode for non-aqueous electrolyte secondary batteries than the conventionally used aluminum, lead, silver, mercury, and tin-lead alloys. It can be seen that good properties can be obtained by using an alloy containing seeds and cadmium. The table also shows the negative electrode properties of the metals used to make the alloy. From this, it can be seen that the performance is better when using an alloy than when using individual metals of each component.

スズ−鉛合金全負極に用いた時には、第1サイクルの光
放電量は太きいが、表に示した」:うに低率で光放電を
繰り返すと合金中へのリチウムの吸蔵量が大きなり負極
の微細化による脱落のために。
When used in a tin-lead alloy negative electrode, the amount of photodischarge in the first cycle was large, but as shown in the table: When photodischarge is repeated at a low rate, the amount of lithium absorbed in the alloy increases, resulting in a negative electrode. due to shedding due to micronization.

ハ 第16ザイクルでの光放電量は著しく低下していること
がわかる。この現象は、カドミウム含量が6重量96未
満の合金にも現われた。
It can be seen that the amount of photodischarge in the 16th cycle is significantly reduced. This phenomenon also appeared in alloys with a cadmium content of less than 6wt.96.

第3図は本発明のスズ−カドミウム合金、鉛−カドミウ
ム合金、スズー鉛−カドミウム合金(た内 だし、スズ灯船の重量fd1対1)中のカドミウム△ の含量を変えた合金を用いて、前記と同様の実験全した
時の第16ザイクルの放電量をプロットしたものである
。これよりカドミウムの含量は6〜60重量%、スズま
たは鉛、!:、たはスズ・鉛の量は96〜60重量%が
適当であることがわかる。
Figure 3 shows the tin-cadmium alloy, lead-cadmium alloy, and tin-lead-cadmium alloy of the present invention (inside, the weight of the tin lightship is 1:1), with the content of cadmium △ being changed. This is a plot of the discharge amount in the 16th cycle when all experiments similar to the above were carried out. From this, the content of cadmium is 6-60% by weight, tin or lead,! It can be seen that the appropriate amount of tin and lead is 96 to 60% by weight.

第3図のように1 mAの低率充放電では鉛−カドミウ
ム合金が良好である。しかし、3〜5mA程度の高率光
放電を行うと光放電量は低下する。
As shown in FIG. 3, the lead-cadmium alloy is suitable for low rate charging and discharging at 1 mA. However, when high-rate photodischarge of about 3 to 5 mA is performed, the amount of photodischarge decreases.

高率光放電での光放電り上は、鉛−スズ−カドミウム合
金〉スズ−カドミウム合金> 鉛h M ミI/ ム合
金の順になる。
The order of photodischarge in high rate photodischarge is: lead-tin-cadmium alloy>tin-cadmium alloy>lead hMmiI/mu alloy.

また、これらの合金にビスマス、インジウム及び亜鉛よ
りなる群から選んだ金属音20重量96以下の範囲で含
イイさぜると、充放’+l:F;:はさらに向上した。
Furthermore, when these alloys were mixed with a metal selected from the group consisting of bismuth, indium, and zinc in a range of 20% by weight or less, the charge/discharge ratio was further improved.

これら金1@ヲ加えることにJ:!J、合金合金相間の
界面におけるリチウムの拡散がさらに容易になったため
であると思われる。
To add these gold 1 @ J:! J, alloy This seems to be due to easier diffusion of lithium at the interface between the alloy phases.

スズ−カドミウム合金、鉛−カドミウム合金、スズー鉛
−カドミウム合金を、コストの面から比較すると、鉛量
の多い程有利になる。
When comparing tin-cadmium alloy, lead-cadmium alloy, and tin-lead-cadmium alloy from the viewpoint of cost, the larger the amount of lead, the more advantageous it becomes.

上記実施例では、負極にリチウム全吸蔵、放出させろ例
を示したが、リチウム以外にもナトリウムやカリウムな
どのアルカリ金属の吸蔵、放出を行わせることもできる
In the above embodiment, an example was shown in which the negative electrode completely intercalates and desorbs lithium, but in addition to lithium, alkali metals such as sodium and potassium can also be intercalated and desorbed.

また電解質としては実施例に示したような有機電解質た
けでなく、Li5N(窒化リチウム)やLiI (ヨウ
化リチウム)のような固体電解質を用いた場合でも、従
来のアルミニウム、鉛、水銀。
In addition, the electrolyte is not limited to the organic electrolyte shown in the examples, but even when solid electrolytes such as Li5N (lithium nitride) and LiI (lithium iodide) are used, conventional aluminum, lead, and mercury can be used.

銀、スズ−鉛合金に比べ良好な特性を/J(シた。It has better properties than silver and tin-lead alloys.

発明の効果 以」二のように、本発明にまれを1丁、充放′iIl量
が大きく、充放電寿命の長い信頼性に蹴れた非水電解質
二次電池を得ることができる。
Effects of the Invention As described in Section 2, the present invention makes it possible to obtain a highly reliable non-aqueous electrolyte secondary battery with a large charge/discharge amount and a long charge/discharge life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は負極特性の検討に用いたセルの構成図、第2図
は試験極の縦断面図、第3図は合金中のカドミウム含量
と放電量との関係を示す図である。 1・・・・・・試験極、2・・・・・・正極、3・・・
・・・照合電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 4余中thりy゛;ウス4量(吏f’/ρン手続補正書 昭和69年 7月 27日 中 特許庁長官殿 ■事件の表示 昭和68年特許願第168329u 2発明の名称 非水電解質二次電池 3補正をする者 事件との関係 特 許 出 願 人 住 所 大阪府門真市太字門真]Oo6番地名 称 (
582)松下電器産業株式会社代表者 山 下 俊 彦 4代理人 〒571 住 所 大阪府門真市大字門真1006番地松下電器産
業株式会社内 5補正の対象 6、補正の内容 0)明細書第14頁第10行と第11行との間にシ返し
た時の第15ザイクルでの放電電気量と、合金中のカド
ミウム含量の関係を示す。1だ、第6図は第16サイク
ルの放電電気量を第1サイクルの放電電気量で除したサ
イクル特性を・合金中のカドミウム含量に対してプロッ
トしたものである。 合金中のカドミウム量としては、第6図のサイクル特性
より一16重量(yo以上がより好ましいことがわかる
。放電電気量を大きくするための合金組成としては、高
率充放電を行う場合と、低率充放電の場合とは異なる。 低率充放電の場合の方が充放電電気量が犬であることと
、周知のようにカドミウムは公害物質であることを考え
ると、66重量%以下好−f L、 < kll、40
重量%以下が望ましい。」 (2)同第14頁第16行と第17行との間に次の文を
挿入します。 [第6図はカドミウム含量を20重量%としだ鉛−カド
ミウム−インジウム合金について、6mA で充放電を
繰り返したときの第16サイクルの放電電気量を示す。 第7図はカドミウムを20重量%とした鉛〜カドミウム
ー亜鉛合金、第8図はカドミウムを20重祉ツ6、スズ
灯船の重量比を1対1とした鉛−スズ−カドミウム−ビ
スマス合金についての第16サイクルの放電電気量を示
す。 以上のように、高率充放電の場合には、インジウムやビ
スマス、、i鉛を加え、多成分系の合金とした場合の方
が充放電電気量の増加が顕著となる。 インジウムは多くする程二性能は向上する傾向にあるが
高価であり、ビスマス、亜鉛は量を多くすると、合金が
硬くなり、作業性の低下につながるので、いずれも20
重!’it T%、以下にするのが良い。」 (3)同第16頁第16〜16行の「第3図・・・・・
・である。」を次のように訂正します。 「第3図及び第4図は合金中のカドミウム含量と放電電
気量との関係を示す図、第6図は合金中のカドミウム含
量とサイクル特性との関係を示す図、第6図は鉛−カド
ミウム−インジウム合金のインジウム含量と放電電気量
の関係を示す図、第7図はスズ−カドミウム−亜鉛合金
の亜鉛含量と放電電気量の関係を示す図、第8図は鉛−
スズ−カドミウム−ビスマス合金のビスマス含量と放電
電気m、の関係を示す図である。」(4)別紙の図面第
4図、第5図、第6図、第7図及び第8図を追加し1す
。 第4図 争を事シカドミウム會量 (支l〃〕 第5図 替金X中のカドミウムef(重量)4〕第6図 Pf、−Cd−In8−号車のイソワウ4含11゛(皇
Iヒl)第7図 δn−Ca −Zn4’tl’dalt (4t:量〃
)第8図 Pb−3n−Cd−13iA’4ゝψのと゛ズマス合I
 (重is)手続補正書 1事件の表示 昭和68年特許願第158329号 2発明の名称 非水電解質二次電池 3補正をする者 事件との関係 特 許 出 願 大 佐 所 大阪府門真市大字門真1006番地名 称 (
582)松下電(i;(産業株式会社代表者 山 下 
俊 彦 4代理人 〒571 住 所 大阪府門真市大字門真1006番地松下電器産
業株式会社内 6、補正の内容 (1)明細書の特許請求の範囲の欄を別紙のように訂正
します。 (2)明細書第6頁第16〜16行の「を96〜・・・
・・・重量%」を「とカドミウムを」と訂正します。 (3)同第6頁第17行末尾に次の文を挿入し壕す。 「前記合金のカドミウムの適当な含量は6〜60重量%
である。」 2、特許請求の範囲 (1) アルカリ金属イオンを含む非水電解質と、充放
電の可逆性を有する正極と、充電時に電解質中のアルカ
リ金属イオンを吸蔵し、放電時に前記アルカリ金属イオ
ンを電解質中に放出する機能を有する合金からなる負極
とを備え、前記合金が、スズおよび鉛よりなる!ffか
ら選んだ少なくとも1種とカドミウムを含む合金である
ことを特徴とする非水電解質二次電池。 (2)前記合金のカドミウム含量が6〜50重量%であ
る特許請求の範囲第1項記載の非水電解質二次電池。 (3)前記合金が、ビスマス、インジウトおよび亜鉛よ
りなる群から選んだ少なくとも1種を2゜重量%以下の
範囲で含む特許請求の範囲第1項記載の非水電解質二次
電池。
FIG. 1 is a block diagram of a cell used for examining negative electrode characteristics, FIG. 2 is a longitudinal cross-sectional view of a test electrode, and FIG. 3 is a diagram showing the relationship between the cadmium content in the alloy and the amount of discharge. 1...Test electrode, 2...Positive electrode, 3...
...Reference electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Indication of the case 1988 Patent Application No. 168329u 2 Name of the invention Non-aqueous electrolyte secondary battery 3 Relationship with the case of person making an amendment Patent application Personal address Bold Kadoma, Kadoma City, Osaka Prefecture] Oo6 Address Name (
582) Matsushita Electric Industrial Co., Ltd. Representative Toshihiko Yamashita 4 Agent 571 Address 1006 Oaza Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 5 Subject of amendment 6 Contents of amendment 0) Specification page 14 The relationship between the amount of discharged electricity in the 15th cycle when switching between the 10th line and the 11th line and the cadmium content in the alloy is shown. Figure 6 shows the cycle characteristics obtained by dividing the amount of electricity discharged in the 16th cycle by the amount of electricity discharged in the first cycle, plotted against the cadmium content in the alloy. From the cycle characteristics shown in Figure 6, it can be seen that the amount of cadmium in the alloy is more preferably 116 wt (yo) or more.The alloy composition for increasing the amount of discharged electricity is when performing high rate charging and discharging. This is different from the case of low rate charge/discharge. Considering that the amount of electricity charged and discharged is smaller in the case of low rate charge/discharge, and as it is well known that cadmium is a pollutant, 66% by weight or less is preferable. −f L, < kll, 40
It is desirable that the amount is less than % by weight. (2) Insert the following sentence between page 14, line 16 and line 17. [Figure 6 shows the amount of electricity discharged in the 16th cycle when charging and discharging were repeated at 6 mA for a lead-cadmium-indium alloy with a cadmium content of 20% by weight. Figure 7 shows a lead-cadmium-zinc alloy with 20% cadmium by weight, and Figure 8 shows a lead-tin-cadmium-bismuth alloy with 20% cadmium and 6% cadmium in a tin lightship weight ratio of 1:1. The amount of discharged electricity in the 16th cycle is shown. As described above, in the case of high rate charging and discharging, when indium, bismuth, or i-lead is added to form a multi-component alloy, the amount of electricity charged and discharged increases more markedly. The performance tends to improve as the amount of indium increases, but it is expensive, and increasing the amount of bismuth and zinc makes the alloy hard and reduces workability.
Heavy! 'it T%, it is better to set it below. (3) "Figure 3..." on page 16, lines 16-16.
・It is. ” is corrected as follows. "Figures 3 and 4 are diagrams showing the relationship between the cadmium content in the alloy and the amount of discharged electricity, Figure 6 is a diagram showing the relationship between the cadmium content in the alloy and the cycle characteristics, and Figure 6 is a diagram showing the relationship between the cadmium content in the alloy and the amount of discharged electricity. Figure 7 is a diagram showing the relationship between the indium content of a cadmium-indium alloy and the amount of discharged electricity, Figure 7 is a diagram showing the relationship between the zinc content of a tin-cadmium-zinc alloy and the amount of discharged electricity, and Figure 8 is a diagram showing the relationship between the zinc content and the amount of discharged electricity in a tin-cadmium-zinc alloy.
FIG. 3 is a diagram showing the relationship between bismuth content and discharge electricity m of a tin-cadmium-bismuth alloy. (4) Added attached drawings Figures 4, 5, 6, 7, and 8. Figure 4 shows the weight of cadmium (weight) in Figure 5. Cadmium ef (weight) in car X Figure 6. Hill) Fig. 7 δn-Ca -Zn4'tl'dalt (4t: amount
) Fig. 8 Pb-3n-Cd-13iA'4ゝψ's mass combination I
(Major IS) Procedural Amendment 1 Display of the case 1988 Patent Application No. 158329 2 Name of the invention Non-aqueous electrolyte secondary battery 3 Person making the amendment Relationship to the case Patent application Office Oaza Kadoma, Kadoma City, Osaka Prefecture 1006 address name (
582) Matsushita Electric (i; (Sangyo Co., Ltd. Representative Yamashita)
Toshihiko 4 Agent 571 Address 6, Matsushita Electric Industrial Co., Ltd., 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture Contents of Amendment (1) The scope of claims column of the specification will be corrected as shown in the attached sheet. (2) Page 6 of the specification, lines 16-16, “96-...
...Weight %" is corrected to "and cadmium." (3) Insert the following sentence at the end of page 6, line 17. “A suitable content of cadmium in the alloy is 6-60% by weight.
It is. 2. Claims (1) A non-aqueous electrolyte containing alkali metal ions, a positive electrode having reversibility of charging and discharging, which absorbs alkali metal ions in the electrolyte during charging, and stores the alkali metal ions in the electrolyte during discharge. and a negative electrode made of an alloy that has the function of releasing into the air, the alloy being made of tin and lead! A non-aqueous electrolyte secondary battery characterized in that it is an alloy containing at least one member selected from FF and cadmium. (2) The nonaqueous electrolyte secondary battery according to claim 1, wherein the alloy has a cadmium content of 6 to 50% by weight. (3) The non-aqueous electrolyte secondary battery according to claim 1, wherein the alloy contains at least one selected from the group consisting of bismuth, indium, and zinc in an amount of 2% by weight or less.

Claims (1)

【特許請求の範囲】[Claims] (1) アルカリ金属イオンを含む非水電解質と、光放
電の可逆性を有する正極と、光電11!iに電解質中の
アルカリ金属イオンを吸蔵し、放電時に前記アルカリ金
属イオンをミツ1/(式中に放出する機能を有する合金
からなる負極と全備え、前記合金が、スズおよび鉛よシ
なる群から選んた少なくとも1種を96〜60重損、9
6、カドミウム全50〜5重量%含む合金であることを
![テ徴とする非水電解質二次電池。 ?)前記合金が、ビスマス、インジウムおよび亜鉛より
なる群から選んだ少なくとも1種を2゜重量%以下の範
囲で含む特許請求の範囲第1項記載の非水電解質二次電
池。
(1) A nonaqueous electrolyte containing alkali metal ions, a positive electrode with reversibility of photodischarge, and photoelectricity 11! a negative electrode made of an alloy having the function of storing alkali metal ions in the electrolyte and releasing the alkali metal ions during discharge, wherein the alloy is a group consisting of tin and lead; 96 to 60 serious damage to at least one type selected from 9
6. It is an alloy containing 50 to 5% by weight of cadmium! [Non-aqueous electrolyte secondary battery with characteristics. ? 2.) The non-aqueous electrolyte secondary battery according to claim 1, wherein the alloy contains at least 2% by weight of at least one selected from the group consisting of bismuth, indium, and zinc.
JP58158329A 1983-03-07 1983-08-29 Nonaqueous electrolyte secondary battery Pending JPS6049565A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP58158329A JPS6049565A (en) 1983-08-29 1983-08-29 Nonaqueous electrolyte secondary battery
PCT/JP1984/000088 WO1984003591A1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
EP84901015A EP0144429B1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
US06/935,169 US4851309A (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative electrode thereof
DE8484901017T DE3483234D1 (en) 1983-03-07 1984-03-06 RECHARGEABLE ELECTROCHEMICAL DEVICE AND NEGATIVE POLE HERE.
PCT/JP1984/000086 WO1984003590A1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
EP84901017A EP0139756B1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
DE8484901015T DE3483244D1 (en) 1983-03-07 1984-03-06 RECHARGEABLE ELECTROCHEMICAL DEVICE AND NEGATIVE POLE THEREOF.
US06/873,093 US4683182A (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158329A JPS6049565A (en) 1983-08-29 1983-08-29 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS6049565A true JPS6049565A (en) 1985-03-18

Family

ID=15669257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158329A Pending JPS6049565A (en) 1983-03-07 1983-08-29 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6049565A (en)

Similar Documents

Publication Publication Date Title
JP3358478B2 (en) Organic electrolyte secondary battery
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JPH0744043B2 (en) Lithium secondary battery
WO1984003591A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPS60220574A (en) Chargeable electrochemical apparatus
JP2604282B2 (en) Alkaline storage battery
JP3152307B2 (en) Lithium secondary battery
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPS6049565A (en) Nonaqueous electrolyte secondary battery
JP3289261B2 (en) Negative electrode for secondary battery
JPH11297352A (en) Alkaline storage battery
JPS6089068A (en) Nonaqueous electrolyte secondary battery
JPH0412587B2 (en)
JPH0364987B2 (en)
JPH10144313A (en) Alkaline secondary battery
JPH09204930A (en) Nickel hydrogen storage battery
JPH0364988B2 (en)
JPH0421986B2 (en)
JPH0412585B2 (en)
JPS62113366A (en) Nonaqueous electrolytic secondary battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
US4683182A (en) Rechargeable electrochemical apparatus
JPH0412586B2 (en)
JPS59163757A (en) Nonaqueous electrolyte secondary battery
JPS634554A (en) Organic electrolyte secondary battery