JPH0412587B2 - - Google Patents

Info

Publication number
JPH0412587B2
JPH0412587B2 JP58196317A JP19631783A JPH0412587B2 JP H0412587 B2 JPH0412587 B2 JP H0412587B2 JP 58196317 A JP58196317 A JP 58196317A JP 19631783 A JP19631783 A JP 19631783A JP H0412587 B2 JPH0412587 B2 JP H0412587B2
Authority
JP
Japan
Prior art keywords
lithium
alloy
negative electrode
aluminum
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58196317A
Other languages
Japanese (ja)
Other versions
JPS6089069A (en
Inventor
Yoshinori Toyoguchi
Shiro Nankai
Junichi Yamaura
Tooru Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58196317A priority Critical patent/JPS6089069A/en
Publication of JPS6089069A publication Critical patent/JPS6089069A/en
Publication of JPH0412587B2 publication Critical patent/JPH0412587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、非水電解質二次電池に関するもの
で、特に充電時にアルカリ金属を吸蔵し、放電時
にアルカリ金属イオンを放出する機能を有する負
極材料の改良に関する。 従来例の構成とその問題点 現在まで、リチウム、ナトリウムなどのアルカ
リ金属を負極とする非水電解質二次電池として
は、たとえば、二硫化チタン(TiS2)をはじめ
各種の層間化合物などを正極活物質として用い、
電解質としては、炭酸プロピレンなどの有機溶媒
に過塩素酸リチウムなどを溶解した有機電解質を
用いる電池の開発が活発に進められてきた。この
二次電池の特徴は、負極にリチウムを用いること
により、電池電圧が高くなり、高エネルギー密度
の二次電池となることである。 しかし、この種の二次電池は、現在、まだ実用
化されていない。その主な理由は、充放電回数の
寿命が短く、また充放電に際しての充放電効率が
低いためである。この原因は、リチウム負極の劣
化によるところが非常に大きい。すなわち、現在
のリチウム負極はニツケルなどのスクリーン状集
電体に板状の金属リチウムを圧着したものが主に
用いられているが、放電時に金属リチウムは、電
解質中にリチウムイオンとして溶解する。しか
し、これを充電して、放電前のような板状のリチ
ウムに析出させることは難しく、デンドライト状
(樹枝状)のリチウムが発生してこれが根元より
折れて脱落したり、あるいは小球状(苔状)に析
出したリチウムが集電体より脱離するなどの現象
が起こる。このため充放電が不能の電池となつて
しまう。また発生したデンドライト状の金属リチ
ウムが、正極、負極間を隔離しているセパレータ
を貫通して正極に接し短絡を起こし、電池の機能
を失わせるようなことも度々生じる。 このような負極の欠点を改良するための方法は
従来から各種試みられている。一般的には、負極
集電体の材料を替えて析出するリチウムとの密着
性を良くしたり、あるいは電解質中にデンドライ
ト発生防止の添加剤を加えたりする方法が報告さ
れている。しかし、これらの方法は必ずしも効果
的ではない。すなわち、集電体材料に関しては、
集電体材料に直接析出するリチウムに有効である
が、更に充電(析出)を続けると析出リチウム上
へリチウムが析出することになり、集電体材料の
効果は消失する。また添加剤に関しても、充放電
サイクルの初期では有効であるが、サイクルが進
むと電池内での酸化還元反応などにより分解し、
その効果がなくなるものが殆んどである。 さらに負極として、リチウムとの合金を用いる
ことが提案されている。この例としては、リチウ
ム−アルミニウム合金がよく知られている。この
場合は、一応均一の合金が形成されるが、充放電
をくり返すとその均一性を消失し、特にリチウム
量を多くすると電極が微粒化し崩壊するなどの欠
点があつた。また、銀とアルカリ金属との固溶体
を用いることも提案されている(特開昭56−
7386)。この場合は、アルミニウムとの合金のよ
うな崩壊はないとされているが、十分に速く合金
化するリチウムの量は少なく、金属状のリチウム
が合金化しないまま析出する場合があり、これを
防ぐために多孔体の使用などを推奨している。し
たがつて、大電流の充電効果は悪く、またリチウ
ム量の多い合金は、充放電による微細化が徐々に
加速され、サイクル寿命が急激に減少する。 この他にはリチウム−水銀合金を用いる考案
(特開昭57−98978)、リチウム−鉛合金を用いる
考案(特開昭57−141869)がある。しかし、リチ
ウム−水銀合金の場合は、放電により、負極は液
状粒子の水銀となり電極形状を保持しなくなる。
また、リチウム−鉛合金の場合は、電極の充放電
による微細粉化は銀固溶体以上である。 最近、スズ、カドミウムなどからなる可融合金
を負極材料とすることが提案された。この可融合
金を用いることにより、負極の微細粉化は起こら
ず安定した充放電を行うことができる。しかし、
この可融合金系では、スズ、カドミウム、ビスマ
ス、鉛など原子量の大きい金属を用いるために、
単位重量当たりの充放電量は小さい。 発明の目的 本発明は、単位重量当たりの充放電容量が大き
く、かつ充放電をくり返しても電極の微細粉化が
起こらず安定した性能を示す負極を提供すること
を目的とする。 発明の構成 本発明の二次電池は、アルミニウム−亜鉛合金
またはアルミニウム−亜鉛合金にケイ素、スズ、
銀の群から選んだ少なくとも一つを添加した合金
を負極材料に用いることを特徴とし、充電により
負極材料に用いた合金中にリチウムアルミニウム
金属間化合物の形でリチウムを吸蔵させ、放電に
より電解質中にリチウムイオンとして放出させる
ものである。 前記のように本発明の二次電池においては、負
極材料合金に充電によりアルカリ金属、例えばリ
チウムを吸蔵させ、放電により電解質中にリチウ
ムを放出させるものであるので、充電により負極
材料合金とリチウムの合金ができることとなる。
ここで、負極材料とは、リチウムと合金を作る以
前の合金である。 例えば、70重量%のアルミニウムと30重量%の
亜鉛よりなる合金〔Al(70)−Zn(30)〕を用いた
ときの充放電反応は次式のようになる。 〔Al(70)−Zn(30)〕+xLi++xe充電 ―→ ←― 放電〔Al(70)−Zn(30)〕Lix ……(1) 式中〔Al(70)−Zn(30)〕Lixは充電により生成
したアルミニウム−亜鉛−リチウム合金を示す。 また、充放電の範囲としては、(1)式のように完
全に負極中よりリチウムがなくなるまで放電する
必要はなく、(2)式のように負極中に吸蔵されたリ
チウム量を変えるようにして、充放電ができるこ
とは当然である。 〔Al(70)−Zn(30)〕Lix+yLi++ye充電 ―→ ←― 放電〔Al(70)−Zn(30)〕Lix+y ……(2) 発明者らは、アルミニウム−亜鉛合金を負極材
料として、リチウムイオンを含む電解質中で充放
電を行つても、電極の微細粉化は起こらず、また
負極材料の単位重量当たりの充放電量も大きいこ
とを見い出した。 アルミニウム単体を負極材料とした場合には、
充放電のくり返しにより微細粉化し、電極形状は
保てなくなる。一方、亜鉛単体を負極材料とした
場合には、充放電をくり返しても電極の形状は安
定であるが、充放電の電気量は小さい。すなわ
ち、アルミニウム−亜鉛合金とすることにより、
充放電をくり返しても、亜鉛が存在することによ
り微粉化が起こらず形状が安定し、アルミニウム
の存在により充放電電気量が大きくなつたと考え
られる。つまり充放電を行う主活物質がアルミニ
ウムで、亜鉛は結着剤の働きをしていると考えら
れる。 さらにアルミニウム−亜鉛合金に、ケイ素やス
ズ、銀を添加した合金においては、充放電電気量
はさらに大きくなる。これらの金属を添加するこ
とにより合金中に多くの相ができ、相の界面に沿
つて吸蔵されたリチウムの拡散が容易になるため
と考えられる。 実施例の説明 第1図に示したセルを構成して、各種金属や合
金の非水電解質二次電池の負極としての特性を調
べた。図中、1は検討した金属または合金よりな
る試験極、2はTiS2よりなる正極、3は照合電
極としてのリチウム板である。各々の電極のリー
ドにはニツケル線を用いた。試験極1は大きさ1
×1cm、厚さ1mmの金属あるいは合金に、リード
としてニツケルリボンをとりつけた。 電解質4には、1モル/のLiClO4を溶かし
た炭酸プロピレンを用いた。試験極1の液槽5と
照合極3の液槽6とは連通管7に接続されてい
る。 金属や合金の非水電解質二次電池の負極として
の特性を測定するために、試験極1の電位が、リ
チウム照合電極3に対して0mVになるまで5mA
の定電流でカソード方向に充電した。この条件で
は、試験極上にリチウムは析出せず、合金中に入
る。試験極の電位が0mVに達した後、照合電極
3に対して1.0Vになるまで、5mAの定電流でア
ノード方向に放電し、その後充電、放電を同じ条
件で繰り返した。 表には、試験極1に用いた合金または金属の第
1サイクルと第10サイクルにおける負極材料の単
位重量当たりの充電電気量、放電電気量、および
効率として放電電気量を充電電気量で除したも
の、サイクル特性として、第10サイクルの放電電
気量を第1サイクルの放電電気量で除したものを
示す。負極材料の単位重量当たりの充電電気量、
放電電気量、効率、サイクル特性の数値が大であ
る程よい負極と言える。 表の結果より、非水電解質二次電池用負極材料
として、従来用いられて来たアルミニウム、可融
合金と比べ、本発明のアルミニウム−亜鉛合金、
この合金さらにケイ素、スズ、銀を添加した合金
を負極材料に用いることにより、より単位重量当
たりの充放電電気量が大きく、サイクル特性の良
好な二次電池を得ることができる。
INDUSTRIAL APPLICATION FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and in particular to an improvement in a negative electrode material that has the function of occluding alkali metal during charging and releasing alkali metal ions during discharging. Conventional configurations and their problems Until now, non-aqueous electrolyte secondary batteries that use alkali metals such as lithium or sodium as negative electrodes have used various intercalation compounds such as titanium disulfide (TiS 2 ) as positive electrode active materials. used as a substance,
Batteries using organic electrolytes such as lithium perchlorate dissolved in organic solvents such as propylene carbonate have been actively developed. A feature of this secondary battery is that by using lithium for the negative electrode, the battery voltage increases, resulting in a high energy density secondary battery. However, this type of secondary battery has not yet been put into practical use. The main reason for this is that the lifespan of charging and discharging is short and the charging and discharging efficiency during charging and discharging is low. This is largely due to deterioration of the lithium negative electrode. That is, current lithium negative electrodes are mainly made by pressing a plate-shaped metallic lithium onto a screen-shaped current collector such as nickel, but the metallic lithium dissolves in the electrolyte as lithium ions during discharge. However, it is difficult to charge the lithium and deposit it into the plate-like lithium that it was before discharging, resulting in dendrite-like lithium that breaks off from the base and falls off, or spherule-like (moss-like) lithium. Phenomena such as the lithium deposited on the lithium ions being desorbed from the current collector occur. This results in a battery that cannot be charged or discharged. Furthermore, the generated dendrite-like metallic lithium often penetrates the separator that separates the positive and negative electrodes and comes into contact with the positive electrode, causing a short circuit and causing the battery to lose its function. Various methods have been tried in the past to improve these drawbacks of negative electrodes. Generally, methods have been reported in which the material of the negative electrode current collector is changed to improve its adhesion to the precipitated lithium, or an additive to prevent dendrite formation is added to the electrolyte. However, these methods are not always effective. That is, regarding the current collector material,
It is effective for lithium deposited directly on the current collector material, but if charging (deposition) continues further, lithium will be deposited on the precipitated lithium, and the effect of the current collector material will disappear. Additionally, additives are effective at the beginning of the charge/discharge cycle, but as the cycle progresses, they decompose due to oxidation-reduction reactions within the battery.
In most cases, the effect disappears. Furthermore, it has been proposed to use an alloy with lithium as a negative electrode. A well-known example of this is lithium-aluminum alloy. In this case, a somewhat uniform alloy is formed, but this uniformity disappears when charging and discharging are repeated, and especially when the amount of lithium is increased, the electrode becomes atomized and collapses. It has also been proposed to use a solid solution of silver and an alkali metal (Japanese Unexamined Patent Publication No. 1986-
7386). In this case, it is said that there is no collapse like in alloying with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium may precipitate without being alloyed. The use of porous materials is recommended to prevent this. Therefore, the charging effect of large currents is poor, and in alloys with a large amount of lithium, the micronization due to charging and discharging is gradually accelerated, and the cycle life is rapidly reduced. In addition, there are ideas using a lithium-mercury alloy (Japanese Patent Laid-Open No. 57-98978) and a idea using a lithium-lead alloy (Japanese Patent Laid-Open No. 57-141869). However, in the case of a lithium-mercury alloy, the negative electrode becomes liquid particle mercury due to discharge and no longer maintains its electrode shape.
Furthermore, in the case of a lithium-lead alloy, the fineness of the powder due to charging and discharging of the electrode is greater than that of a silver solid solution. Recently, it has been proposed to use fusible metals such as tin and cadmium as negative electrode materials. By using this fusible alloy, stable charging and discharging can be performed without causing the negative electrode to become finely pulverized. but,
This fusible metal system uses metals with large atomic weights such as tin, cadmium, bismuth, and lead.
The amount of charge and discharge per unit weight is small. OBJECTS OF THE INVENTION It is an object of the present invention to provide a negative electrode that has a large charge/discharge capacity per unit weight and exhibits stable performance without causing pulverization of the electrode even after repeated charging and discharging. Structure of the Invention The secondary battery of the present invention includes an aluminum-zinc alloy or an aluminum-zinc alloy containing silicon, tin,
The feature is that an alloy to which at least one selected from the group of silver is added is used as the negative electrode material, and lithium is occluded in the form of a lithium-aluminum intermetallic compound in the alloy used as the negative electrode material by charging, and lithium is occluded in the electrolyte by discharging. It releases lithium ions as lithium ions. As mentioned above, in the secondary battery of the present invention, the negative electrode material alloy is charged to occlude an alkali metal, such as lithium, and discharged to release lithium into the electrolyte. This results in the formation of an alloy.
Here, the negative electrode material is an alloy before forming an alloy with lithium. For example, when an alloy [Al(70)-Zn(30)] consisting of 70% by weight of aluminum and 30% by weight of zinc is used, the charge/discharge reaction is as shown in the following equation. [Al (70) − Zn (30)] + xLi + + xe Charge ―→ ←― Discharge [Al (70) − Zn (30)] Li x ...... (1) In the formula [Al (70) − Zn (30) ] Li x indicates an aluminum-zinc-lithium alloy produced by charging. In addition, as for the range of charging and discharging, it is not necessary to discharge until lithium is completely removed from the negative electrode as in equation (1), but it is necessary to change the amount of lithium occluded in the negative electrode as in equation (2). It goes without saying that it can be charged and discharged. [Al(70)-Zn(30)]Li x +yLi + +ye Charge -→ ←- Discharge [Al(70)-Zn(30)]Li x+y ...(2) The inventors discovered that aluminum-zinc It was discovered that even when the alloy is used as a negative electrode material and charged and discharged in an electrolyte containing lithium ions, the electrode does not become finely pulverized, and the amount of charge and discharge per unit weight of the negative electrode material is large. When aluminum alone is used as the negative electrode material,
Due to repeated charging and discharging, it becomes fine powder and the electrode shape cannot be maintained. On the other hand, when zinc alone is used as the negative electrode material, the shape of the electrode remains stable even after repeated charging and discharging, but the amount of electricity for charging and discharging is small. That is, by using an aluminum-zinc alloy,
It is thought that even after repeated charging and discharging, the presence of zinc prevents pulverization and stabilizes the shape, and the presence of aluminum increases the amount of electricity charged and discharged. In other words, it is thought that the main active material that performs charging and discharging is aluminum, and zinc acts as a binder. Furthermore, in an aluminum-zinc alloy to which silicon, tin, or silver is added, the amount of electricity charged and discharged becomes even larger. This is thought to be because the addition of these metals creates many phases in the alloy, making it easier for the lithium occluded to diffuse along the phase interfaces. Description of Examples The cell shown in FIG. 1 was constructed and its characteristics as a negative electrode of a non-aqueous electrolyte secondary battery made of various metals and alloys were investigated. In the figure, 1 is a test electrode made of the studied metal or alloy, 2 is a positive electrode made of TiS2 , and 3 is a lithium plate as a reference electrode. Nickel wire was used as the lead for each electrode. Test electrode 1 has size 1
A nickel ribbon was attached as a lead to a metal or alloy with a size of 1 cm and a thickness of 1 mm. As electrolyte 4, propylene carbonate in which 1 mol/LiClO 4 was dissolved was used. The liquid tank 5 of the test electrode 1 and the liquid tank 6 of the reference electrode 3 are connected to a communication pipe 7. In order to measure the characteristics of a non-aqueous electrolyte secondary battery made of metal or alloy as a negative electrode, the voltage of 5 mA is applied until the potential of the test electrode 1 becomes 0 mV with respect to the lithium reference electrode 3.
The battery was charged in the cathode direction with a constant current of . Under these conditions, lithium does not precipitate on the test electrode but enters the alloy. After the potential of the test electrode reached 0 mV, it was discharged toward the anode at a constant current of 5 mA until it reached 1.0 V with respect to the reference electrode 3, and then charging and discharging were repeated under the same conditions. The table shows the amount of electricity charged per unit weight of the negative electrode material in the first and tenth cycles of the alloy or metal used for test electrode 1, the amount of electricity discharged, and the efficiency calculated by dividing the amount of electricity discharged by the amount of charged electricity. The cycle characteristics are calculated by dividing the amount of electricity discharged in the 10th cycle by the amount of electricity discharged in the first cycle. Amount of electricity charged per unit weight of negative electrode material,
It can be said that the larger the numerical values of discharge electricity amount, efficiency, and cycle characteristics are, the better the negative electrode is. From the results in the table, it can be seen that the aluminum-zinc alloy of the present invention, as a negative electrode material for non-aqueous electrolyte secondary batteries, compared with conventionally used aluminum and fusible alloys.
By using this alloy to which silicon, tin, and silver are added as a negative electrode material, it is possible to obtain a secondary battery that has a larger amount of charge/discharge electricity per unit weight and has good cycle characteristics.

【表】【table】

【表】 次に、負極材料に用いる合金の組成を検討した
結果を説明する。第2図は、アルミニウム−亜鉛
合金中の亜鉛の含量を変えた時の、負極材料の単
位重量当たりの第10サイクルでの放電電気量をプ
ロツトしたものである。なお、試験法は前記の例
と同じである。これより合金の組成は、アルミニ
ウム/亜鉛の重量比が85/15から35/65の時に良
好な負極特性を示すことがわかる。 アルミニウム−亜鉛合金中の亜鉛が15重量%未
満の時には、充放電サイクルの進行とともに極板
の微細粉化脱落が顕著になつた。また、65重量%
を超えるとアルミニウムの量が減ることになり充
放電電気量は低下した。 また、電解質として、実施例に示したような有
機電解質だけでなく、Li3N(窒化リチウム)や
LiI(ヨウ化リチウム)などの固体電解質を用いた
場合にも、本発明のアルミニウム−亜鉛合金は従
来の負極材料に比べ良好な特性を示した。 発明の効果 以上のように、本発明によれば、単位重量当た
りの充放電電気量が大きく、サイクル特性の優れ
た非水電解質二次電池を得ることができる。
[Table] Next, the results of examining the composition of the alloy used for the negative electrode material will be explained. FIG. 2 is a plot of the amount of electricity discharged in the 10th cycle per unit weight of negative electrode material when the content of zinc in the aluminum-zinc alloy was varied. Note that the test method is the same as in the above example. This shows that the alloy composition exhibits good negative electrode properties when the aluminum/zinc weight ratio is from 85/15 to 35/65. When the zinc content in the aluminum-zinc alloy was less than 15% by weight, as the charge/discharge cycle progressed, the electrode plates became finely powdered and fell off. Also, 65% by weight
When the amount of electricity exceeds 100%, the amount of aluminum decreases and the amount of electricity charged and discharged decreases. In addition, as an electrolyte, in addition to the organic electrolyte shown in the example, Li 3 N (lithium nitride) and
Even when a solid electrolyte such as LiI (lithium iodide) was used, the aluminum-zinc alloy of the present invention showed better characteristics than conventional negative electrode materials. Effects of the Invention As described above, according to the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery with a large amount of charge/discharge electricity per unit weight and excellent cycle characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は負極特性の検討に用いたセルの構成
図、第2図は合金の組成と放電電気量の関係を示
す図である。 1……試験極、2……正極、3……照合電極。
FIG. 1 is a diagram showing the configuration of a cell used for examining negative electrode characteristics, and FIG. 2 is a diagram showing the relationship between the composition of the alloy and the amount of discharged electricity. 1... Test electrode, 2... Positive electrode, 3... Reference electrode.

Claims (1)

【特許請求の範囲】 1 アルカリ金属イオンを含む非水電解質と、再
充電可能な正極と、充電時にアルカリ金属を吸蔵
し放電時に電解質中へアルカリ金属イオンを放出
する負極材料とを備え、前記負極材料が、アルミ
ニウムと亜鉛の合金からなることを特徴とする非
水電解質二次電池。 2 前記合金のアルミニウム/亜鉛の重量比が
85/15〜35/65の範囲にある特許請求の範囲第1
項記載の非水電解質二次電池。 3 アルカリ金属イオンを含む非水電解質と、再
充電可能な正極と、充電時にアルカリ金属を吸蔵
し放電時にアルカリ金属イオンを電解質中に放出
する負極材料とを備え、前記負極材料が、スズ、
ケイ素及び銀よりなる群から選んだ少なくとも一
種とアルミニウム及び亜鉛よりなる合金からなる
ことを特徴とする非水電解質二次電池。
[Scope of Claims] 1. A non-aqueous electrolyte containing alkali metal ions, a rechargeable positive electrode, and a negative electrode material that occludes alkali metals during charging and releases alkali metal ions into the electrolyte during discharge, A non-aqueous electrolyte secondary battery characterized in that the material is an alloy of aluminum and zinc. 2 The aluminum/zinc weight ratio of the alloy is
Claim 1 falling within the range of 85/15 to 35/65
The non-aqueous electrolyte secondary battery described in . 3 A nonaqueous electrolyte containing alkali metal ions, a rechargeable positive electrode, and a negative electrode material that occludes alkali metals during charging and releases alkali metal ions into the electrolyte during discharge, the negative electrode material comprising tin,
A non-aqueous electrolyte secondary battery comprising an alloy of at least one selected from the group consisting of silicon and silver and aluminum and zinc.
JP58196317A 1983-10-20 1983-10-20 Nonaqueous electrolyte battery Granted JPS6089069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58196317A JPS6089069A (en) 1983-10-20 1983-10-20 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196317A JPS6089069A (en) 1983-10-20 1983-10-20 Nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS6089069A JPS6089069A (en) 1985-05-18
JPH0412587B2 true JPH0412587B2 (en) 1992-03-05

Family

ID=16355800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196317A Granted JPS6089069A (en) 1983-10-20 1983-10-20 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS6089069A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465756B2 (en) * 1999-11-19 2010-05-19 パナソニック株式会社 Non-aqueous electrolyte secondary battery, alloy for the battery, and manufacturing method thereof
KR100416140B1 (en) * 2001-09-27 2004-01-28 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
CN102511093B (en) * 2009-11-27 2015-04-15 日产自动车株式会社 Si alloy negative electrode active material for electrical device

Also Published As

Publication number Publication date
JPS6089069A (en) 1985-05-18

Similar Documents

Publication Publication Date Title
JP3846661B2 (en) Lithium secondary battery
JP3669646B2 (en) Nonaqueous electrolyte secondary battery
CA1161495A (en) Rechargeable nonaqueous silver alloy anode cell
US4844996A (en) Lithium cell
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
WO1984003591A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPH0412587B2 (en)
JPH0441471B2 (en)
JP3152307B2 (en) Lithium secondary battery
JPH0364987B2 (en)
JPH0412586B2 (en)
JPH0421986B2 (en)
JPH0412585B2 (en)
JPH0364988B2 (en)
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JP3028622B2 (en) Method for producing hydrogen storage electrode and metal oxide-hydrogen storage battery
JP3019402B2 (en) Non-aqueous electrolyte secondary battery
JPH08321302A (en) Hydrogen storage electrode
JPH10125317A (en) Monaqueous electrolyte secondary battery
JP2858374B2 (en) Non-aqueous electrolyte secondary battery
JPS59163757A (en) Nonaqueous electrolyte secondary battery
JP3019356B2 (en) Non-aqueous electrolyte secondary battery
JPS6049565A (en) Nonaqueous electrolyte secondary battery