JPS6089069A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS6089069A
JPS6089069A JP58196317A JP19631783A JPS6089069A JP S6089069 A JPS6089069 A JP S6089069A JP 58196317 A JP58196317 A JP 58196317A JP 19631783 A JP19631783 A JP 19631783A JP S6089069 A JPS6089069 A JP S6089069A
Authority
JP
Japan
Prior art keywords
alloy
lithium
negative electrode
aluminum
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58196317A
Other languages
Japanese (ja)
Other versions
JPH0412587B2 (en
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Shiro Nankai
史朗 南海
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58196317A priority Critical patent/JPS6089069A/en
Publication of JPS6089069A publication Critical patent/JPS6089069A/en
Publication of JPH0412587B2 publication Critical patent/JPH0412587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase charge-discharge capacity per weight and improve cycle performance by using an alloy of Al and Zn, or an alloy obtained by adding Sn, Si, and Ag to the Al-Zn alloy as negative active material. CONSTITUTION:In a secondary battery using nonaqueous electrolyte containing alkali metal ion, an alloy of Al and Zn, preferably whose weight ratio of Al to Zn is 85:15 - 35:65, is used as negative material. By using this negative material, charge-discharge capacity per weight is increased and generation of fine electrode is prevented even after charge-discharge is repeated, and steady performance is obtained. Use of an alloy obtained by adding at least one of Si, Sn, and Ag to the Al-Zn alloy still increases battery performance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池に関するもので、特に充
電時にアルカリ金属を吸蔵し、放電時にアルカリ金属イ
オンを放出する機能を有する負極材料の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to non-aqueous electrolyte secondary batteries, and in particular to improvements in negative electrode materials that have the function of occluding alkali metals during charging and releasing alkali metal ions during discharge. Regarding.

従来例の構成とその問題点 現在まで、リチウム、ナトリウムなどのアルカリ金属を
負極とする非水電解質二次電池としては、たとえば、二
硫化チタン(TiS2)をはじめ各種の層間化合物など
を正極活物質として用い、電解質としては、炭酸プロピ
レンなどの有機溶媒に過塩素酸リチウムなどを溶解した
有機電解質を用いる電池の開発が活発に進められてきた
。この二次電池の特徴は、負極にリチウムを用いること
により、電池電圧が高くなり、高エネルギー密度の二次
電池となることである。
Conventional Structures and Problems Until now, non-aqueous electrolyte secondary batteries that use alkali metals such as lithium or sodium as negative electrodes have used various intercalation compounds such as titanium disulfide (TiS2) as positive electrode active materials. The development of batteries using an organic electrolyte in which lithium perchlorate or the like is dissolved in an organic solvent such as propylene carbonate has been actively pursued. A feature of this secondary battery is that by using lithium for the negative electrode, the battery voltage increases, resulting in a high energy density secondary battery.

しかし、この種の二次電池は、現在、まだ実用化されて
いない。その主々理由は、充放電回数の3 ページ 寿命が短く、また充放電に際しての充放電効率が低いた
めである。この原因は、リチウム負極の劣化によるとこ
ろが非常に太きい。すなわち、現在のリチウム負極はニ
ッケル力どのスクリーン状集電体に板状の金属リチウム
を圧着したものが主に用いられているが、放電時に金属
リチウムは、電解質中にリチウムイオンとして溶解する
。しかし、これを充電して、放電前のような板状のリチ
ウムに析出させることは難しく、デンドライト状(樹枝
状)のリチウムが発生してこれが根元より折れて脱落し
たシ、あるいは小球状(苔状)に析出したリチウムが集
電体より脱離するなどの現象が起こる。このため充放電
が不能の電池となってしまう。また発生したデンドライ
ト状の金属リチウムが、正極、負極間を隔離しているセ
パレータを貫通し、て正極に接し短絡を起こし、電池の
機能を失わせるようなことも度々生じる。
However, this type of secondary battery has not yet been put into practical use. The main reason for this is that the life span of 3 pages of charging and discharging is short, and the charging and discharging efficiency during charging and discharging is low. This is largely due to deterioration of the lithium negative electrode. That is, current lithium negative electrodes are mainly made by pressing a plate-shaped metallic lithium onto a screen-shaped current collector made of nickel, but the metallic lithium dissolves in the electrolyte as lithium ions during discharge. However, it is difficult to charge this and deposit it into the plate-like lithium that it was before discharging, and dendrite-like lithium is generated, which breaks off from the base and falls off, or in the form of small balls (moss). Phenomena such as the lithium deposited on the lithium ions being desorbed from the current collector occur. This results in a battery that cannot be charged or discharged. Furthermore, the generated dendrite-like metallic lithium often penetrates the separator that separates the positive and negative electrodes and comes into contact with the positive electrode, causing a short circuit and causing the battery to lose its function.

このよう力負極の欠点を改良するだめの方法は従来から
各種試みられている。一般的には、負極集電体の材料を
替えて析出するリチウムとの密着性を良くしたり、ある
いは電解質中にデンドライト発生防止の添加剤を加えた
シする方法が報告されている。しかし、これらの方法は
必ずしも効果的では々い。すなわち、集電体材料に関し
ては、集電体材料に直接析出するリチウムに有効である
が、□更に充電(析出)を続けると析出リチウム上へリ
チウムが析出することに々す、集電体材料の効果は消失
する。また添加剤に関しても、充放電サイクルの初期で
は有効であるが、サイクルが進むと電池内での酸化還元
反応などKより分解し、その効果がなくなるものが殆ん
どである。
Various attempts have been made to overcome these drawbacks of negative electrodes. Generally, methods have been reported in which the material of the negative electrode current collector is changed to improve its adhesion to the precipitated lithium, or an additive to prevent dendrite formation is added to the electrolyte. However, these methods are not always effective. In other words, as for the current collector material, it is effective for lithium that is deposited directly on the current collector material, but if the charging (precipitation) continues, lithium will be deposited on the precipitated lithium. The effect disappears. Furthermore, most additives are effective at the beginning of the charge/discharge cycle, but as the cycle progresses, they decompose due to K due to oxidation-reduction reactions within the battery and lose their effectiveness.

さらに負極として、リチウムとの合金を用いることが提
案されている。この例としては、リチウム−アルミニウ
ム合金がよく知られている。この場合は、一応均一の合
金が形成されるが、充放電をくり返すとその均一性を消
失し、特にリチウム量を多くすると電極が微粒化し崩壊
するなどの欠点があった。また、銀とアルカリ金属との
固溶体を用いることも提案されている(特開昭56−7
386 )。この場合は、アルミニウムとの合金61べ
゛ のような崩壊はないとされているが、十分に速く合金化
するリチウムの量は少なく、金属状のリチウムが合金化
しないまま析出する場合があり、これを防ぐために多孔
体の使用などを推奨している。
Furthermore, it has been proposed to use an alloy with lithium as a negative electrode. A well-known example of this is lithium-aluminum alloy. In this case, a somewhat uniform alloy is formed, but this uniformity disappears when charging and discharging are repeated, and especially when the amount of lithium is increased, the electrode becomes atomized and collapses. It has also been proposed to use a solid solution of silver and an alkali metal (JP-A-56-7
386). In this case, it is said that there is no collapse like in alloy 61 base with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium may precipitate without being alloyed. To prevent this, the use of porous materials is recommended.

したがって、大電流の充電効果は悪く、またリチウム量
の多い合金は、充放電による微細化が徐々に加速され、
サイクル寿命が急激に減少する。
Therefore, the charging effect of large current is poor, and for alloys with a large amount of lithium, the fineness due to charging and discharging is gradually accelerated,
Cycle life decreases rapidly.

この他にはリチウム−水銀合金を用いる考案(特開昭5
7−98978 )、リチウム−鉛合金を用いる考案(
特開昭57−141869 )がある。しかし、リチウ
ム−水銀合金の場合は、放電により、負極は液状粒子の
水銀となり電極形状を保持しなく力る。また、リチウム
−鉛合金の場合は、電極の充放電による微細粉化は鋏固
溶体以上である。
In addition, the idea of using a lithium-mercury alloy (Japanese Unexamined Patent Publication No. 5
7-98978), a device using lithium-lead alloy (
JP-A-57-141869). However, in the case of a lithium-mercury alloy, the negative electrode turns into liquid particles of mercury due to discharge and does not maintain its electrode shape. Further, in the case of a lithium-lead alloy, the fineness of the powder due to charging and discharging of the electrode is greater than that of a scissors solid solution.

最近、スズ、カドミウムなどからなる可融合金を負極材
料とすることが提案された。この可融合金を用いること
により、負極の微細粉化は起こらず安定した充放電を行
うことができる。しかし、この可融合金系では、スズ、
カドミウム、ビス76べ一:5 ス、鉛など原子量の大きい金属を用いるために、単位重
量当たりの充放電量は小さい。
Recently, it has been proposed to use fusible metals such as tin and cadmium as negative electrode materials. By using this fusible alloy, stable charging and discharging can be performed without causing the negative electrode to become finely pulverized. However, in this fusible metal system, tin,
Since metals with large atomic weights such as cadmium, bis76 base, and lead are used, the amount of charge and discharge per unit weight is small.

発明の目的 本発明は、単位重量当たりの充放電容量が大きく、かつ
充放電をくシ返しても電極の微細粉化が起こらず安定し
た性能を示す負極を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a negative electrode that has a large charge/discharge capacity per unit weight and exhibits stable performance without pulverization of the electrode even after repeated charging and discharging.

発明の構成 本発明の二次電池は、アルミニウムー亜鉛合金またはア
ルミニウムー亜鉛合金にケイ素、スズ。
Structure of the Invention The secondary battery of the present invention comprises an aluminum-zinc alloy or an aluminum-zinc alloy, silicon and tin.

銀の群から選んだ少なくとも一つを添加した合金を負極
材料に用いることを特徴とし、充電により負極材料に用
いた合金中にリチウムアルミニウム金属間化合物の形で
リチウムを吸蔵させ、放電により電解質中にリチウムイ
オンとして放出させるものである。
The feature is that an alloy to which at least one selected from the group of silver is added is used as the negative electrode material, and lithium is occluded in the form of a lithium-aluminum intermetallic compound in the alloy used as the negative electrode material by charging, and lithium is occluded in the electrolyte by discharging. It releases lithium ions as lithium ions.

前記のように本発明の二次電池においては、負極材料合
金に充電によりアルカリ金属、例えばリチウムを吸蔵さ
せ、放電により電解質中にリチウムを放出させるもので
あるので、充電にょシ負極7ノζ、2ノ 材料合金とリチウムの合金ができることと々る。
As described above, in the secondary battery of the present invention, the negative electrode material alloy is charged with an alkali metal such as lithium, and discharged into the electrolyte to release lithium. There are many things that can be done to create an alloy of two materials and lithium.

ここで、負極材料とは、リチウムと合金を作る以前の合
金である。
Here, the negative electrode material is an alloy before forming an alloy with lithium.

例えば、7 o、重量%のアルミニウムと30重量%(
7)亜鉛よりなる合金(A17o)−zn(3o)”]
を用いたときの充放電反応は次式のようになる。
For example, 7 o, wt% aluminum and 30 wt% (
7) Alloy made of zinc (A17o)-zn(3o)”]
The charge/discharge reaction when using is as shown in the following equation.

〔ム/(7o)−Zn(so))+xL1−1−xe式
中〔ムl(70)−Zn(so) )Lix ハ充電K
 J: り 生成したアルミニウムー亜鉛−リチウム合
金を示す。
[Mu/(7o)-Zn(so))+xL1-1-xe formula [Mu(70)-Zn(so)) Lix Ha charge K
J: indicates the produced aluminum-zinc-lithium alloy.

また、充放電の範囲としては、(1)式のように完全に
負極中よりリチウムがなくなるまで放電する必要はなく
、(2)式のように負極中に吸蔵されたリチウム量を変
えるようにして、充放電ができることは当然である。
In addition, as for the range of charging and discharging, it is not necessary to discharge until lithium is completely removed from the negative electrode as in equation (1), but it is necessary to change the amount of lithium occluded in the negative electrode as in equation (2). It goes without saying that it can be charged and discharged.

〔ム1(70)−Zn(30))Lix−1−yLi+
+ye発明者らは、アルミニウムー亜鉛合金を負極材料
として、リチウムイオンを含む電解質中で充放電を行っ
ても、電極の微細粉化は起こらず、また負極材料の単位
重量当たりの充放電量も大きいことを見い出しだ。
[Mu1(70)-Zn(30))Lix-1-yLi+
+yeThe inventors have found that even when an aluminum-zinc alloy is used as a negative electrode material and charged and discharged in an electrolyte containing lithium ions, the electrode does not become finely powdered, and the amount of charge and discharge per unit weight of the negative electrode material also decreases. The big thing is the headline.

アルミニウム単体を負極材料とした場合には、充放電の
くり返しにより微細粉化し、電極形状は保てなくなる。
When aluminum alone is used as a negative electrode material, repeated charging and discharging causes it to become finely powdered and the electrode shape cannot be maintained.

一方、亜鉛単体を負極材料とした場合には、充放電をく
り返しても電極の形状は安定であるが、充放電の電気量
は小さい。すなわち、アルミニウムー亜鉛合金とするこ
とにより、充放電をくシ返しても、亜鉛が存在すること
により微粉化が起こらず形状が安定し、アルミニウムの
存在により充放電電気量が大きくなったと考えられる。
On the other hand, when zinc alone is used as the negative electrode material, the shape of the electrode remains stable even after repeated charging and discharging, but the amount of electricity for charging and discharging is small. In other words, by using an aluminum-zinc alloy, even if charging and discharging are repeated, the presence of zinc prevents pulverization and the shape is stable, and the presence of aluminum increases the amount of electricity charged and discharged. .

つまり充放電を行う主活物質がアルミニウムは さらにアルミニウムー亜鉛合金に、ケイ素やスズ、銀を
添加した合金においては、充放電電気量はさらに大きく
なる。これらの金属を添加することKよシ合金中に多く
の相ができ、相の界面に沿9ページ って吸蔵されたリチウムの拡散が容易になるためと考え
られる。
In other words, when the main active material for charging and discharging is aluminum, and in the case of an aluminum-zinc alloy to which silicon, tin, or silver is added, the amount of electricity charged and discharged becomes even larger. It is thought that the addition of these metals creates many phases in the K alloy, making it easier for the lithium occluded to diffuse along the phase interface.

実施例の説明 第1図に示したセルを構成して、各種金属や合金の非水
電解質二次電池の負極としての特性を調べた。図中、1
は検討した金属または合金よりなる試験極、2はTiS
2よシなる正極、3は照合電極としてのリチウム板であ
る。各々の電極のリードにはニッケル線を用いた。試験
極1は大きさ1×1(7)、厚さ1Hの金属あるいは合
金に、リードとしてニッケルリボンをとりつけた。
Description of Examples The cell shown in FIG. 1 was constructed and its characteristics as a negative electrode of a non-aqueous electrolyte secondary battery made of various metals and alloys were investigated. In the figure, 1
is a test electrode made of the studied metal or alloy, 2 is TiS
2 is a positive electrode, and 3 is a lithium plate as a reference electrode. Nickel wire was used as a lead for each electrode. Test electrode 1 was a metal or alloy with a size of 1×1 (7) and a thickness of 1H, and a nickel ribbon was attached as a lead.

電解質4には、1モル/11のLieβ04を溶かした
炭酸プロピレンを用いた。試験極1の液槽6と照合極3
の液槽6とは連通管7で接続されている。
As electrolyte 4, propylene carbonate in which 1 mol/11 Lieβ04 was dissolved was used. Liquid tank 6 of test electrode 1 and reference electrode 3
It is connected to the liquid tank 6 through a communication pipe 7.

金属や合金の非水電解質二次電池の負極としての特性を
測定するために、試験極1の電位が、リチウム照合電極
3に対してomvになるまで511ム謝 試験極上にリチウムは析出せず、合金中に入る。
In order to measure the characteristics of a metal or alloy as a negative electrode for a non-aqueous electrolyte secondary battery, lithium is not deposited on the test electrode until the potential of the test electrode 1 becomes omv with respect to the lithium reference electrode 3. , into the alloy.

10ページ 試験極の電位がOmVに達した後、照合電極3に対して
1.OVK々るまで、6m人の定電流でアノード方向に
放電し、その後充電、放電を同じ条件で繰り返した。
Page 10 After the potential of the test electrode reaches OmV, 1. The battery was discharged toward the anode at a constant current of 6 m until OVK was reached, and then charging and discharging were repeated under the same conditions.

表には、試験極1に用いた合金または金属の第1サイク
ルと第10サイクルにおける負極材料の単位重量当たり
の充電電気量、放電電気量、および効率として放電電気
量を充電電気量で除したもの、サイクル特性として、第
10サイクルの放電電気量を第1サイクルの放電電気量
で除したものを示す。負極材料の単位重量当たりの充電
電気量、放電電気量、効率、サイクル特性の数値が大で
ある程よい負極と言える。
The table shows the amount of electricity charged per unit weight of the negative electrode material in the first and tenth cycles of the alloy or metal used for test electrode 1, the amount of electricity discharged, and the efficiency calculated by dividing the amount of electricity discharged by the amount of electricity charged. The cycle characteristic is calculated by dividing the amount of electricity discharged in the 10th cycle by the amount of electricity discharged in the first cycle. It can be said that the larger the numerical values of the amount of charged electricity, the amount of discharged electricity, the efficiency, and the cycle characteristics per unit weight of the negative electrode material are, the better the negative electrode is.

表の結果より、1水電解質二次電池用負極材料として、
従来用いられて来たアルミニウム、可融合金と比べ、本
発明のアルミニウムー亜鉛合金、この合金にさらにケイ
素、スズ、銀を添加した合金を負極材料に用いることに
より、より単位重量当たりの充放電電気量が大きく、サ
イクル特性の良好な二次電池を得ることができる。
From the results in the table, as a negative electrode material for monoaqueous electrolyte secondary batteries,
Compared to conventionally used aluminum and fusible alloys, by using the aluminum-zinc alloy of the present invention, an alloy in which silicon, tin, and silver are further added to this alloy, as a negative electrode material, the charge/discharge rate per unit weight is improved. A secondary battery with a large amount of electricity and good cycle characteristics can be obtained.

11 ページ 次に、負極材料に用いる合金の組成を検討した結果を説
明する。第2図は、アルミニウムー亜鉛合金中の亜鉛の
含量を変えた時の、負極材料の単位重量尚たりの第10
サイクルでの放電電気量をプロットしたものである。々
お、試験法は前記の例と同じである。これより合金の組
成は、アルミニウム/亜鉛の重量比が85/15から3
6/66の時に良好々負極特性を示すことがわかる。
Page 11 Next, the results of studying the composition of the alloy used for the negative electrode material will be explained. Figure 2 shows the 10% change in weight per unit weight of the negative electrode material when the content of zinc in the aluminum-zinc alloy is changed.
This is a plot of the amount of electricity discharged during the cycle. Again, the test method is the same as in the previous example. From this, the alloy composition has an aluminum/zinc weight ratio of 85/15 to 3.
It can be seen that good negative electrode characteristics are exhibited when the ratio is 6/66.

アルミニウムー亜鉛合金中の亜鉛が15重量%未満の時
には、充放電サイクルの進行とともに極板の微細粉化脱
落が顕著になった。まだ、66重量係を超えるとアルミ
ニウムの量が減ることになり充放電電気量は低下した。
When the zinc content in the aluminum-zinc alloy was less than 15% by weight, the electrode plate became finely powdered and fell off as the charge/discharge cycle progressed. However, when the weight ratio exceeds 66, the amount of aluminum decreases, and the amount of electricity charged and discharged decreases.

また、電解質として、実施例に示したような有機電解質
だけでなく、L ia N (窒化リチウム)やLiI
(ヨウ化リチウム)などの固体電解質を用いた場合にも
、本発明のアルミニウムー亜鉛合金は従来の負極材料に
比べ良好な特性を示した。
In addition, as an electrolyte, not only organic electrolytes as shown in the examples, but also LiaN (lithium nitride) and LiI
Even when a solid electrolyte such as (lithium iodide) was used, the aluminum-zinc alloy of the present invention showed better characteristics than conventional negative electrode materials.

発明の効果 以上のように、本発明によれば、単位重量当た13 ペ
ージ りの充放電電気量が犬きく、サイクル特性の優れた非水
電解質二次電池を得ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery with a high charge/discharge amount of electricity of 13 pages per unit weight and excellent cycle characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は負極特性の検討に用いたセルの構成図、第2図
は合金の組成と放電電気量の関係を示す図である。 1・・・・・・試験極、2・・・・・・正極、3・・・
・・・照合電極。
FIG. 1 is a diagram showing the configuration of a cell used for examining negative electrode characteristics, and FIG. 2 is a diagram showing the relationship between the composition of the alloy and the amount of discharged electricity. 1...Test electrode, 2...Positive electrode, 3...
...Reference electrode.

Claims (3)

【特許請求の範囲】[Claims] (1) アルカリ金属イオンを含む非水電解質と、再充
電可能な正極と、充電時にアルカリ金属を吸蔵し放電時
に電解質中ヘアルカリ金属イオンを放出する負極材料と
を備え、前記負極材料が、アルミニウムと亜鉛の合金か
らなることを特徴とする非水電解質二次電池。
(1) A non-aqueous electrolyte containing alkali metal ions, a rechargeable positive electrode, and a negative electrode material that occludes alkali metals during charging and releases alkaline metal ions in the electrolyte during discharge, wherein the negative electrode material is aluminum and A non-aqueous electrolyte secondary battery characterized by being made of a zinc alloy.
(2) 前記合金のアルミニウム/亜鉛の重量比が85
/15〜3E5/65の範囲にある特許請求の範囲第(
1)項記載の非水電解質二次電池。
(2) The aluminum/zinc weight ratio of the alloy is 85.
Claim No./15 to 3E5/65 (
1) The non-aqueous electrolyte secondary battery described in section 1).
(3) アルカリ金属イオンを含む非水電解質と、再充
電可能な正極と、充電時にアルカリ金属を吸蔵し放電時
にアルカリ金属イオンを電解質中に放出する負極材料と
を備え、前記負極材料が、スズ、ケイ素及び銀よりなる
群から選んだ少なくとも一種とアルミニウム及び亜鉛よ
り々る合金からなることを特徴とする非水電解質二次型
21°−ご 池。
(3) A non-aqueous electrolyte containing alkali metal ions, a rechargeable positive electrode, and a negative electrode material that occludes alkali metals during charging and releases alkali metal ions into the electrolyte during discharge, wherein the negative electrode material is made of tin. , at least one selected from the group consisting of silicon and silver, and an alloy of aluminum and zinc.
JP58196317A 1983-10-20 1983-10-20 Nonaqueous electrolyte battery Granted JPS6089069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58196317A JPS6089069A (en) 1983-10-20 1983-10-20 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196317A JPS6089069A (en) 1983-10-20 1983-10-20 Nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS6089069A true JPS6089069A (en) 1985-05-18
JPH0412587B2 JPH0412587B2 (en) 1992-03-05

Family

ID=16355800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196317A Granted JPS6089069A (en) 1983-10-20 1983-10-20 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS6089069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148247A (en) * 1999-11-19 2001-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and alloy for battery and its manufacturing method
KR100416140B1 (en) * 2001-09-27 2004-01-28 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
WO2011065504A1 (en) * 2009-11-27 2011-06-03 日産自動車株式会社 Si ALLOY NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRICAL DEVICE

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148247A (en) * 1999-11-19 2001-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and alloy for battery and its manufacturing method
KR100416140B1 (en) * 2001-09-27 2004-01-28 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
WO2011065504A1 (en) * 2009-11-27 2011-06-03 日産自動車株式会社 Si ALLOY NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRICAL DEVICE
JP5387690B2 (en) * 2009-11-27 2014-01-15 日産自動車株式会社 Si alloy negative electrode active material for electrical devices
RU2508579C2 (en) * 2009-11-27 2014-02-27 Ниссан Мотор Ко., Лтд. Active material of negative electrode based on silicone alloy for electric device
US9228249B2 (en) 2009-11-27 2016-01-05 Nissan Motor Co., Ltd. Si alloy negative electrode active material for electric device

Also Published As

Publication number Publication date
JPH0412587B2 (en) 1992-03-05

Similar Documents

Publication Publication Date Title
US5122375A (en) Zinc electrode for alkaline batteries
WO1984003591A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPS6089069A (en) Nonaqueous electrolyte battery
JPS6089068A (en) Nonaqueous electrolyte secondary battery
JPH10144313A (en) Alkaline secondary battery
JP3616941B2 (en) Zinc powder for batteries and alkaline zinc secondary battery using the same
JPH0364987B2 (en)
JPH0421986B2 (en)
JPS6086759A (en) Nonaqueous electrolyte secondary battery
JP3575578B2 (en) Alkaline secondary battery
JPH0412585B2 (en)
JPH0364988B2 (en)
EP0144429B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPS59163757A (en) Nonaqueous electrolyte secondary battery
JP3019402B2 (en) Non-aqueous electrolyte secondary battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS6049565A (en) Nonaqueous electrolyte secondary battery
JPH0711957B2 (en) Non-aqueous secondary battery
JPS634554A (en) Organic electrolyte secondary battery
JPS59163756A (en) Nonaqueous electrolyte secondary battery
JPH0794176A (en) Hydrogen storage electrode
JPH06124706A (en) Sealed nickel-zinc storage battery
JPH01241756A (en) Nonaqueous secondary cell
JPH0648625B2 (en) Non-aqueous electrolyte secondary battery