JPH0412585B2 - - Google Patents

Info

Publication number
JPH0412585B2
JPH0412585B2 JP58036882A JP3688283A JPH0412585B2 JP H0412585 B2 JPH0412585 B2 JP H0412585B2 JP 58036882 A JP58036882 A JP 58036882A JP 3688283 A JP3688283 A JP 3688283A JP H0412585 B2 JPH0412585 B2 JP H0412585B2
Authority
JP
Japan
Prior art keywords
lithium
alloy
negative electrode
bismuth
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58036882A
Other languages
Japanese (ja)
Other versions
JPS59163759A (en
Inventor
Yoshinori Toyoguchi
Junichi Yamaura
Tooru Matsui
Takashi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58036882A priority Critical patent/JPS59163759A/en
Publication of JPS59163759A publication Critical patent/JPS59163759A/en
Publication of JPH0412585B2 publication Critical patent/JPH0412585B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は非水電解質二次電池用の負極の改良に
係るもので、この改良の結果高エネルギー密度で
充放電寿命が長く、安全性、信頼性に優れた充電
可能な電池を提供するものである。 従来例の構成とその問題点 現在まで、リチウム、ナトリウムなどのアルカ
リ金属を負極する非水電解質二次電池としては、
たとえば、二硫化チタン(TiS2)をはじめ各種
の層間化合物などを正極活物質として用い、電解
質としては、炭酸プロピレン(以後PCと略す)
などの有機溶媒に過塩素酸リチウム(LiClO4
などを溶解した有機電解質を用いる電池の開発が
活発に進められてきた。この二次電池の特徴は、
負極にリチウムを用いることにより、電池電圧が
高くなり、高エネルギー密度の二次電池となるこ
とである。 しかし、この種の二次電池は、現在、まだ実用
化されていない。その主な理由は、充放電回数
(サイクル)の寿命が短かく、また充放電に際し
ての充放電効率が低いためである。この原因は、
リチウム負極の劣化によるところが非常に大き
い。すなわち、現在のリチウム負極はニツケルな
どのスクリーン状集電体に板状の金属リチウムを
圧着したものが主に用いられているが、放電時に
金属リチウムは、電解質中にリチウムイオンとし
て溶解する。しかし、これを充電して、放電前の
ような板状のリチウムに析出させることは難く、
デンドライト状(樹枝状)のリチウムが発生して
これが根元より折れて脱落したり、あるいは、小
球状(苔状)に析出したリチウムが集電体より脱
離するなどの現象が起こる。このため充放電が不
能の電池となつてしまう。また、発生したデンド
ライト状の金属リチウムが、正極、負極間を隔離
しているセパレータを貫通して正極に接し短絡を
起こし、電池の機能を失なわせるようなことも
度々生じる。 このような負極の欠点を改良するための方法は
従来から各種試みられている。一般的には、負極
集電体の材料を替えて析出するリチウムとの密着
性を良くしたり、あるいは、電解質中にデンドラ
イト発生防止の添加剤を加えたりする方法が報告
されている。しかしこれらの方法は必ずしも効果
的ではない。すなわち、集電体材料に関しては、
集電体材料に直接析出するリチウムに有効である
が、更に充電(析出)を続けると析出リチウム上
ヘリウムが析出することになり、集電体材料の効
果は消失する。また添加剤に関しても、充放電サ
イクルの初期では有効であるが、サイクルが進む
と電池内での酸化還元反応などにより分解し、そ
の効果がなくなるものが殆んどである。 さらに最近は負極として、リチウムとの合金を
用いることが提案されている。この例としては、
リチウム−アルミニウム合金がよく知られてい
る。この場合は、一応均一の合金が形成される
が、充放電をくり返すとその均一性を消失し、特
にリチウム量を多くすると電極が微粒化し崩壊す
るなどの欠点があつた。また、銀とアルカリ金属
との固溶体を用いることも提案されている(特開
昭56−7386)。この場合は、アルミニウムとの合
金のような崩壊はないとされているが、十分に速
く合金化するリチウムの量は少なく、金属状のリ
チウムが合金化しないまま析出する場合があり、
これを防ぐために多孔体の使用などを推奨してい
る。したがつて、大電流の充電効率は悪く、また
リチウム量の多い合金は、充放電により微細化が
徐々に加速され、サイクル寿命が急激に減少す
る。 この他にはリチウム−水銀合金を用いる考案
(特開昭57−98978)、リチウム−鉛合金を用いる
考案(特開昭57−141869)がある。しかし、リチ
ウム−水銀合金の場合は、放電により、負極は液
状粒子の水銀となり電極形状を保持しなくなる。
また、リチウム−鉛合金の場合は、電極の充放電
による微細粉化は、銀固溶体以上であり、このた
め合金中の鉛量を80%位にすることが望ましいと
されているが、これでは高エネルギー密度電池を
実現できない。以上のように非水電解質二次電池
用負極としては、実用上満足できるものは、まだ
見い出されていないといえる。 したがつて、優れた負極としては、アルカリ金
属の吸蔵量が大きく、しかも放出や吸蔵速度の大
なる負極材料の開発が望まれている。 発明の目的 本発明は負極材料を特定することにより、単位
体積当りの充放電量の多い、また充放電寿命の長
い、良好な特性を示す非水電解質二次電池を提供
するものである。 発明の構成 本発明の二次電池は、ビスマスまたはビスマス
を主成分とする合金を負極材料に用いることを特
徴とし、充電により負極材料に用いた金属や合金
中に、リチウムを吸蔵せしめ、放電により電解質
中にリチウムイオンを放出させるものである。 実施例の説明 前記のように本発明の二次電池においては、負
極材料合金に、充電によりリチウムを吸蔵させ、
放電により電解質中にリチウムイオンを放出させ
るものであるので、充電により、ビスマスとリチ
ウムの合金、またはビスマス合金とリチウムの合
金が出来る。しかし本発明で述べる負極材料と
は、リチウムとの合金を作る以前の金属ビスマス
やビスマス合金のことである。 例えば重量パーセントで70%のビスマスと30%
のスズよりなる合金を用いた時の充放電反応は(1)
式のようになる。 Bi(70)−Sn(30)+xLi++xe-充電 ―→ ←― 放電〔Bi(70)−Sn(30)〕Lix ……(1) 式中、〔Bi(70)−Sn(30)〕Lixは充電により生
成した、ビスマス、スズ、リチウム合金を示して
おり、本発明で定義した負極材料とは(1)式中では
Bi(70)−Sn(30)のことである。 また、充放電の範囲としては、(1)式のように完
全に負極中よりリチウムがなくなるまで放電する
必要なく、(2)式のように負極中に吸蔵されたリチ
ウム量を変えるようにして、充放電ができること
は当然である。 〔Bi(70)−Sn(30)〕Lix+yLi++ye-充電 ―→ ←― 放電〔Bi(70)−Sn(30)〕Lix+y ……(2) また(2)式においても負極材料がBi(70)−Sn
(30)であることは自明である。 またビスマスを主成分とする合金とは、合金中
最も重量が多い金属がビスマスである合金とす
る。 発明者らは、ビスマスやビスマスを主成分とす
る合金を負極材料として、アルカリ金属イオンを
含む非水電解質中で充電を行うことにより、高率
充電を行つてもアルカリ金属の析出が起らずに負
極材料中にアルカリ金属が吸蔵され、さらに放電
を行うと高電流効率で吸蔵されたアルカリ金属が
アルカリ金属イオンとして電解質中に放出される
ことを見い出した。また充放電をくり返し行つて
も負極材料の微細粉化が起らず、良好な非水電解
質二次電池の負極特性を示すことがわかつた。 負極材料として、金属ビスマスとビスマスを主
成分とする合金を比較すると合金の方が良好な負
極特性を示した。ビスマスを主成分とする合金の
他の成分として、鉛、カドミウム、スズ、インジ
ウムなどを加えて作つた合金の多くは、微視的に
見ると、各金属成分や、金属間化合物などの多く
の相からなつており、均一なものではない。充電
により吸蔵されたリチウムなどのアルカリ金属は
合金中の相と相の間の界面に沿つて、早い速度で
拡散してゆくと考えられ、高率充放電を行うとビ
スマスを主成分とする合金を用いる方が良好であ
つた。 第1図に示したセルを構成して、各種金属や合
金の非水電解質二次電池の負極の特性を調べた。
第1図中、Aは検討した金属、合金よりなる試験
極、BはTiS2よりなる正極、Cは照合電極とし
てのリチウム板である。各々の電極のリードEA
EB,ECにはニツケル線を用いた。試験極Aは第
2図に示すように、1cm×1cm厚さ1mmの金属あ
るいは合金Dに、リードとしてニツケルリボン
EAをとりつけた。電解質Fには、1モル/lの
LiClO4を溶かしたPCを用いた。試験極Aの液槽
Hと照合極Cの液槽Gとは連通管Iで接続されて
いる。金属や合金の非水電解質二次電池の負極と
しての特性を測定するために、試験極Aの電位
が、リチウム照合電極Cに対して0mVになるま
で10mAの定電流でカソード方向に充電した。こ
の条件では、試験極上にリチウムは析出せず、合
金中に入る。試験極Aの電位が0mVに達した後、
照合電極Cに対して1.0Vになるまで10mAの定電
流でアノード方向に放電し、その後充電、放電を
同じ条件で繰り返した。表には、試験極Aに用い
た合金、金属の第1サイクルと第10サイクルにお
ける充電電気量、放電電気量、および効率として
放電電気量を充電電気量で除したもの、サイクル
特性として、第10サイクルの放電電気量を第1サ
イクルの放電電気量で除したものを示す。充電電
気量、放電電気量、効率、サイクル特性の数値が
大である程よい負極と言える。また表中に記号で
示した試験極Aの第10サイクルでの充電曲線を第
3図に、放電曲線を第4図に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to the improvement of negative electrodes for non-aqueous electrolyte secondary batteries, and as a result of this improvement, rechargeable batteries with high energy density, long charging/discharging life, and excellent safety and reliability. It provides: Conventional configurations and their problems Until now, non-aqueous electrolyte secondary batteries using alkali metals such as lithium and sodium as negative electrodes have
For example, various interlayer compounds such as titanium disulfide (TiS 2 ) are used as the positive electrode active material, and propylene carbonate (hereinafter abbreviated as PC) is used as the electrolyte.
Lithium perchlorate (LiClO 4 ) in organic solvents such as
The development of batteries using organic electrolytes dissolved in such materials has been actively pursued. The characteristics of this secondary battery are:
By using lithium for the negative electrode, the battery voltage increases, resulting in a secondary battery with high energy density. However, this type of secondary battery has not yet been put into practical use. The main reason for this is that the life of the number of charging and discharging times (cycles) is short and the charging and discharging efficiency during charging and discharging is low. The cause of this is
This is largely due to the deterioration of the lithium negative electrode. That is, current lithium negative electrodes are mainly made by pressing a plate-shaped metallic lithium onto a screen-shaped current collector such as nickel, but the metallic lithium dissolves in the electrolyte as lithium ions during discharge. However, it is difficult to charge this and deposit it on the plate-shaped lithium as before discharging.
Phenomena occur such as dendrite-like (dendritic) lithium is generated and breaks off from the base and falls off, or small spherical (moss-like) lithium deposits are detached from the current collector. This results in a battery that cannot be charged or discharged. Furthermore, the generated dendrite-like metallic lithium often penetrates the separator that separates the positive and negative electrodes and comes into contact with the positive electrode, causing a short circuit and causing the battery to lose its functionality. Various methods have been tried in the past to improve these drawbacks of negative electrodes. Generally, methods have been reported in which the material of the negative electrode current collector is changed to improve its adhesion to the precipitated lithium, or an additive to prevent the formation of dendrites is added to the electrolyte. However, these methods are not always effective. That is, regarding the current collector material,
It is effective for lithium deposited directly on the current collector material, but if charging (precipitation) continues further, helium will be deposited on the precipitated lithium, and the effect of the current collector material will disappear. Furthermore, most additives are effective at the beginning of the charge/discharge cycle, but as the cycle progresses, they decompose due to oxidation-reduction reactions within the battery and lose their effectiveness. Furthermore, recently it has been proposed to use an alloy with lithium as a negative electrode. For example,
Lithium-aluminum alloys are well known. In this case, a somewhat uniform alloy is formed, but this uniformity disappears when charging and discharging are repeated, and especially when the amount of lithium is increased, the electrode becomes atomized and collapses. It has also been proposed to use a solid solution of silver and an alkali metal (Japanese Unexamined Patent Publication No. 7386-1986). In this case, it is said that there is no collapse like in alloying with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium may precipitate without being alloyed.
To prevent this, the use of porous materials is recommended. Therefore, charging efficiency at large currents is poor, and in alloys with a large amount of lithium, micronization is gradually accelerated by charging and discharging, resulting in a rapid decrease in cycle life. In addition, there are ideas using a lithium-mercury alloy (Japanese Patent Laid-Open No. 57-98978) and a idea using a lithium-lead alloy (Japanese Patent Laid-Open No. 57-141869). However, in the case of a lithium-mercury alloy, the negative electrode becomes liquid particle mercury due to discharge and no longer maintains its electrode shape.
In addition, in the case of lithium-lead alloys, the fineness due to charging and discharging of the electrode is greater than that of silver solid solution, and therefore it is said that it is desirable to keep the amount of lead in the alloy at around 80%. High energy density batteries cannot be realized. As described above, it can be said that a practically satisfactory negative electrode for non-aqueous electrolyte secondary batteries has not yet been found. Therefore, as an excellent negative electrode, it is desired to develop a negative electrode material that has a large amount of alkali metal occlusion and a high desorption and occlusion rate. OBJECTS OF THE INVENTION The present invention provides a non-aqueous electrolyte secondary battery that exhibits good characteristics such as a large charge/discharge amount per unit volume and a long charge/discharge life by specifying a negative electrode material. Structure of the Invention The secondary battery of the present invention is characterized in that bismuth or an alloy containing bismuth as a main component is used as a negative electrode material, and lithium is occluded in the metal or alloy used as the negative electrode material by charging, and by discharging. It releases lithium ions into the electrolyte. Description of Examples As described above, in the secondary battery of the present invention, lithium is occluded in the negative electrode material alloy by charging,
Since lithium ions are released into the electrolyte by discharging, an alloy of bismuth and lithium or an alloy of bismuth alloy and lithium is formed by charging. However, the negative electrode material described in the present invention refers to bismuth metal or bismuth alloy before forming an alloy with lithium. For example, 70% bismuth and 30% by weight
The charge-discharge reaction when using an alloy made of tin is (1)
It becomes like the expression. Bi(70)−Sn(30)+xLi + +xe -Charge ―→ ←― Discharge [Bi(70)−Sn(30)]Li x ……(1) In the formula, [Bi(70)−Sn(30) ]Li x indicates bismuth, tin, and lithium alloy produced by charging, and the negative electrode material defined in the present invention is
Bi(70)−Sn(30). In addition, as for the range of charging and discharging, it is not necessary to discharge until lithium completely disappears from the negative electrode as in equation (1), but it is necessary to change the amount of lithium occluded in the negative electrode as in equation (2). It goes without saying that it can be charged and discharged. [Bi(70)−Sn(30)]Li x +yLi + +ye -Charge ―→ ←― Discharge[Bi(70)−Sn(30)]Li x+y ...(2) Also in equation (2) Negative electrode material is Bi(70)-Sn
It is obvious that (30). Furthermore, an alloy whose main component is bismuth is an alloy in which the heaviest metal in the alloy is bismuth. The inventors have discovered that by using bismuth or an alloy mainly composed of bismuth as a negative electrode material and charging in a non-aqueous electrolyte containing alkali metal ions, no alkali metal precipitation occurs even during high rate charging. It was discovered that alkali metals are occluded in the negative electrode material, and that when further discharge is performed, the occluded alkali metals are released into the electrolyte as alkali metal ions with high current efficiency. It was also found that the negative electrode material did not become finely powdered even after repeated charging and discharging, and exhibited good negative electrode characteristics of a non-aqueous electrolyte secondary battery. When comparing bismuth metal and an alloy mainly composed of bismuth as negative electrode materials, the alloy showed better negative electrode characteristics. Many alloys made by adding lead, cadmium, tin, indium, etc. as other components to the alloy whose main component is bismuth, when viewed microscopically, contain many components such as each metal component and intermetallic compounds. It consists of phases and is not uniform. Alkali metals such as lithium absorbed by charging are thought to diffuse at a high rate along the interface between phases in the alloy, and when high-rate charging and discharging is performed, alloys with bismuth as the main component It was better to use The cell shown in FIG. 1 was constructed and the characteristics of the negative electrode of a non-aqueous electrolyte secondary battery made of various metals and alloys were investigated.
In FIG. 1, A is a test electrode made of the studied metal or alloy, B is a positive electrode made of TiS2 , and C is a lithium plate as a reference electrode. Lead E A of each electrode,
Nickel wires were used for E B and E C. As shown in Figure 2, the test electrode A is a metal or alloy D with a size of 1 cm x 1 cm and a thickness of 1 mm, with a nickel ribbon as a lead.
I installed E A. Electrolyte F contains 1 mol/l
PC in which LiClO 4 was dissolved was used. The liquid tank H of the test electrode A and the liquid tank G of the reference electrode C are connected by a communication pipe I. In order to measure the characteristics of a metal or alloy nonaqueous electrolyte secondary battery as a negative electrode, test electrode A was charged in the cathode direction with a constant current of 10 mA until the potential of test electrode A became 0 mV with respect to lithium reference electrode C. Under these conditions, lithium does not precipitate on the test electrode but enters the alloy. After the potential of test electrode A reaches 0mV,
It was discharged toward the anode at a constant current of 10 mA until the voltage reached 1.0 V with respect to reference electrode C, and then charging and discharging were repeated under the same conditions. The table shows the amount of electricity charged and the amount of electricity discharged in the first and tenth cycles of the alloy and metal used in test electrode A, the efficiency calculated by dividing the amount of electricity discharged by the amount of electricity charged, and the cycle characteristics of the It shows the amount of electricity discharged in 10 cycles divided by the amount of electricity discharged in the first cycle. It can be said that the larger the numerical values of the amount of charging electricity, the amount of discharging electricity, the efficiency, and the cycle characteristics are, the better the negative electrode is. Further, the charging curve and the discharging curve at the 10th cycle of test electrode A, which are indicated by symbols in the table, are shown in FIG. 3 and FIG. 4, respectively.

【表】【table】

【表】 以上の結果より、非水電解質二次電池用負極材
料として、従来より用いられて来たアルミニウ
ム、鉛、銀、水銀に比べ、ビスマスあるいはビス
マスを主成分とする合金が良好であることがわか
つた。 またビスマスとビスマス合金を比較すると合金
の方が良好な特性を示している。表中には、ビス
マス合金を作るのに使用した他の成分である金属
単体の負極特性をも示した。これより、各成分の
金属単体より合金を用いた方が性能が向上してい
た。また表に示したようにビスマス−カドミウム
合金で示すように、他の成分量が増加する程、性
能は向上する傾向が見られた。 負極材料として水銀を用いた場合、充放電電気
量が小さいのは、水銀の食塩電解におけるナトリ
ウムアマルガム中のナトリウムが0.2%程度しか
ないことと関連しているかもしれない。 なお、上記実施例では、負極電極材料にリチウ
ムを吸蔵、放出させる例を示した。リチウム以外
にもナトリウムやカリウムなどのアルカリ金属の
吸蔵、放出を行わせる負極を構成することも可能
である。 また電解質として、実施例に示したLiClO4
溶解したPCだけでなく、Li3N(窒化リチウム)
やLiI(ヨウ化リチウム)のような固体電解質を用
た場合でも、従来のアルミニウム、鉛、銀、水銀
に比べ本発明のビスマスまたはビスマスを主成分
とする合金を負極材料とする方が優れた特性が得
られた。 発明の効果 以上に説明したように本発明の、ビスマス、ま
たは主成分をビスマスとする合金を負極材料とす
ることにより、充放電電気量の多い、サイクル特
性の良い、すなわち充放電寿命の長い信頼性に優
れた非水電解質電池を得ることができる。
[Table] From the above results, bismuth or an alloy mainly composed of bismuth is better as a negative electrode material for nonaqueous electrolyte secondary batteries than the conventionally used aluminum, lead, silver, and mercury. I understood. Furthermore, when comparing bismuth and bismuth alloy, the alloy shows better properties. The table also shows the negative electrode properties of the other metals used to make the bismuth alloy. This shows that the performance was better when using an alloy than when using individual metals of each component. Furthermore, as shown in the table, as shown in the bismuth-cadmium alloy, there was a tendency for the performance to improve as the amount of other components increased. When mercury is used as the negative electrode material, the small amount of charge and discharge electricity may be related to the fact that the sodium content of the sodium amalgam in mercury salt electrolysis is only about 0.2%. In addition, in the above-mentioned example, an example was shown in which lithium was inserted into and released from the negative electrode material. It is also possible to construct a negative electrode that intercalates and desorbs alkali metals such as sodium and potassium in addition to lithium. Furthermore, as an electrolyte, not only PC in which LiClO 4 is dissolved as shown in the example, but also Li 3 N (lithium nitride) can be used.
Even when a solid electrolyte such as LiI (lithium iodide) is used, it is better to use the bismuth or bismuth-based alloy of the present invention as a negative electrode material than conventional aluminum, lead, silver, or mercury. Characteristics were obtained. Effects of the Invention As explained above, by using bismuth or an alloy containing bismuth as the main component of the present invention as a negative electrode material, it is possible to achieve a high charge/discharge amount, good cycle characteristics, and a long charge/discharge life. A non-aqueous electrolyte battery with excellent properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は負極特性の検討に用いたセルの構成
図、第2図は試験極の側面図、第3図および第4
図は各々充電曲線図と放電曲線図である。 A……試験極、B……正極、C……照合電極。
Figure 1 is a block diagram of the cell used for examining the negative electrode characteristics, Figure 2 is a side view of the test electrode, Figures 3 and 4.
The figures are a charging curve diagram and a discharging curve diagram, respectively. A...test electrode, B...positive electrode, C...verification electrode.

Claims (1)

【特許請求の範囲】 1 充電時に電解質中のアルカリ金属イオンを吸
蔵し、放電時に前記金属イオンを電解質中に放出
する機能を有し、負極材料として金属ビスマス、
または、ビスマスを主成分とする合金を用いるこ
とを特徴とする非水電解質二次電池。 2 負極材料は主成分をビスマスとする合金であ
り、添加成分としてカドミウム、鉛、スズ、イン
ジウムのうち少くとも一つを用いることを特徴と
する特許請求の範囲第1項記載の非水電解質二次
電池。
[Claims] 1. It has the function of occluding alkali metal ions in the electrolyte during charging and releasing the metal ions into the electrolyte during discharging, and contains metal bismuth,
Alternatively, a non-aqueous electrolyte secondary battery characterized by using an alloy containing bismuth as a main component. 2. The non-aqueous electrolyte 2 according to claim 1, wherein the negative electrode material is an alloy containing bismuth as a main component, and at least one of cadmium, lead, tin, and indium is used as an additive component. Next battery.
JP58036882A 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery Granted JPS59163759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58036882A JPS59163759A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58036882A JPS59163759A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS59163759A JPS59163759A (en) 1984-09-14
JPH0412585B2 true JPH0412585B2 (en) 1992-03-05

Family

ID=12482141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58036882A Granted JPS59163759A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS59163759A (en)

Also Published As

Publication number Publication date
JPS59163759A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
US4844996A (en) Lithium cell
EP0139756B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPH0364987B2 (en)
JPH0412587B2 (en)
JPH0441471B2 (en)
JPH0421986B2 (en)
JPH0412585B2 (en)
JPH0364988B2 (en)
JPH10144313A (en) Alkaline secondary battery
JPH09204930A (en) Nickel hydrogen storage battery
JPH07142090A (en) Lithium secondary battery electrolyte containing additive
JPH0412586B2 (en)
JPS59163757A (en) Nonaqueous electrolyte secondary battery
US4683182A (en) Rechargeable electrochemical apparatus
JPS62113366A (en) Nonaqueous electrolytic secondary battery
JPS6049565A (en) Nonaqueous electrolyte secondary battery
JPS59163756A (en) Nonaqueous electrolyte secondary battery
JP2858374B2 (en) Non-aqueous electrolyte secondary battery
JPS6084768A (en) Alkaline zinc storage battery
JPS634554A (en) Organic electrolyte secondary battery
JPH10308237A (en) Lithium secondary battery
JPH0234433B2 (en)