JPH07142090A - Lithium secondary battery electrolyte containing additive - Google Patents

Lithium secondary battery electrolyte containing additive

Info

Publication number
JPH07142090A
JPH07142090A JP5289553A JP28955393A JPH07142090A JP H07142090 A JPH07142090 A JP H07142090A JP 5289553 A JP5289553 A JP 5289553A JP 28955393 A JP28955393 A JP 28955393A JP H07142090 A JPH07142090 A JP H07142090A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
electrolytic solution
additive
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5289553A
Other languages
Japanese (ja)
Inventor
Yoshiharu Matsuda
好晴 松田
Masayuki Morita
昌行 森田
Masaji Ishikawa
正司 石川
Yasushi Goto
康史 後藤
Kazuyuki Adachi
和之 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP5289553A priority Critical patent/JPH07142090A/en
Publication of JPH07142090A publication Critical patent/JPH07142090A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide an electrolyte for a lithium secondary battery containing an additive for enhancing charge/discharge reversibility of a metallic lithium negative electrode. CONSTITUTION:A compound comprising a cation of metal capable of alloying with lithium and an iodide anion is contained as an additive in a range of 10ppm to 2000ppm in an electrolyte prepared by dissolving a lithium salt in a nonaqueous solvent. Metallic lithium is used in a negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属リチウム負極を有
するリチウム二次電池の電解液の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an electrolytic solution for a lithium secondary battery having a metallic lithium negative electrode.

【0002】[0002]

【従来の技術】金属リチウムを負極として用いたリチウ
ム二次電池は、エネルギー密度が非常に高いという優れ
た利点を有する。この種の電池は各種家庭用電気機器、
コンピュータのメモリーバックアップ用電源、またさら
には自動車等の動力用電源として利用が検討されてお
り、広範囲な分野での利用が期待されているものであ
る。
2. Description of the Related Art A lithium secondary battery using metallic lithium as a negative electrode has an excellent advantage that it has a very high energy density. This kind of battery is used for various household electric appliances,
It is being considered for use as a power source for computer memory backup, and also as a power source for motive power of automobiles and the like, and is expected to be used in a wide range of fields.

【0003】しかしながら、このような負極に金属リチ
ウムを用いたリチウム二次電池は、充放電サイクルにお
ける金属リチウムの溶解、析出の可逆性の低さが主な障
害になり、充分な性能を持つ電池は得られていない。す
なわち、充電時に負極上にリチウムがデンドライト状に
析出し、その結果リチウム電極の一部が脱離したり電池
が内部短絡を起こすことにより、電池の繰り返し寿命が
低下してしまうことが指摘されている。
However, in the lithium secondary battery using metallic lithium as the negative electrode, the reversibility of dissolution and precipitation of metallic lithium during charge / discharge cycles is a major obstacle, and the battery has sufficient performance. Has not been obtained. That is, it has been pointed out that lithium is deposited in a dendrite form on the negative electrode during charging, and as a result, a part of the lithium electrode is detached or the battery causes an internal short circuit, resulting in a decrease in the repeated life of the battery. .

【0004】この種のリチウム二次電池の電解液には,
有機溶媒を用いることが不可欠であるが要求される主な
条件としては、高いイオン伝導度を持つこと、化学的、
電気化学的に安定であること、電極反応の可逆性を損な
わないことが挙げられる。一般的には電解液として非プ
ロント性の有機溶媒であるプロピレンカーボネート、エ
チレンカーボネートなどを主に含む有機溶媒系にリチウ
ム塩を溶解させたものがよく用いられる。しかしなが
ら、これらの電解液をそのまま用いても前述のリチウム
金属の充放電サイクル特性を向上させるのには充分とは
いえず、金属リチウム負極の充放電反応の可逆性を損な
わないことを特徴とする電解液系を開発することは、電
池の特性を向上させるための重要な課題と現在考えられ
ている。
The electrolyte of this type of lithium secondary battery includes
It is essential to use an organic solvent, but the main conditions required are high ionic conductivity, chemical,
They are electrochemically stable and do not impair the reversibility of the electrode reaction. Generally, as the electrolytic solution, a solution prepared by dissolving a lithium salt in an organic solvent system mainly containing propylene carbonate, ethylene carbonate and the like which are non-pront organic solvents is often used. However, even if these electrolytes are used as they are, they cannot be said to be sufficient to improve the charge-discharge cycle characteristics of the above-mentioned lithium metal, and are characterized by not impairing the reversibility of the charge-discharge reaction of the metal lithium negative electrode. Developing an electrolyte system is currently considered to be an important issue for improving battery characteristics.

【0005】一方、このような困難な状況を打破するた
めに、金属リチウムをそのまま負極として用いるのでな
く、リチウムを炭素質材料にドープさせたり、他の金属
と合金化させたものを負極として用いるリチウム二次電
池の開発が現在盛んに行われている。これらの電池は、
負極のサイクル寿命をかなり改善しており、実用的な二
次電池も開発される至っている。
On the other hand, in order to break through such a difficult situation, metallic lithium is not used as a negative electrode as it is, but a carbonaceous material doped with lithium or alloyed with another metal is used as a negative electrode. Currently, lithium secondary batteries are being actively developed. These batteries are
The cycle life of the negative electrode has been improved considerably, and practical secondary batteries have been developed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の電池は負極に金属リチウムそのものを用いていないと
いう宿命として、負極の重量あたりの理論容量が金属リ
チウムそのものからなる負極に比べ、かなり低いという
欠点がある。このような状況から依然として負極に金属
リチウムを用いた二次電池の開発が進められており、リ
チウムの負荷の充放電可逆性を高めることができる電解
液の開発が望まれている。
However, the fate that these batteries do not use metallic lithium itself in the negative electrode is that the theoretical capacity per weight of the negative electrode is considerably lower than that of the negative electrode composed of metallic lithium itself. is there. Under such circumstances, the development of secondary batteries using metallic lithium for the negative electrode is still in progress, and the development of an electrolytic solution capable of enhancing the charge-discharge reversibility of the lithium load is desired.

【0007】そこで本発明が解決すべき課題は、この様
な背景から、金属リチウム負極の充放電可逆性を向上さ
せるための添加剤を含んだ電解液を提供することにあ
る。
Therefore, the problem to be solved by the present invention is to provide an electrolytic solution containing an additive for improving the charge-discharge reversibility of a metal lithium negative electrode from such a background.

【0008】[0008]

【課題を解決するための手段】本発明では、電解液溶媒
にリチウムと合金化する金属の陽イオンと,ヨウ化物陰
イオンからなる化合物を添加剤として含有させることに
より、金属リチウム負極の充放電サイクル特性が向上す
ることを見いだした。このリチウム二次電池用電解液
は、リチウム塩が非水溶媒に溶解してなる電解液におい
て、添加剤としてこれら金属ヨウ化物を電解液に対して
10ppmから2000pmmの範囲で含有することを
特徴とするものである。
In the present invention, the charge and discharge of a metal lithium negative electrode is made possible by adding a compound consisting of a cation of a metal alloying with lithium and a compound of an iodide anion to an electrolyte solution solvent as an additive. It has been found that the cycle characteristics are improved. The electrolytic solution for a lithium secondary battery is characterized in that, in an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent, these metal iodides as additives are contained in the range of 10 ppm to 2000 pmm with respect to the electrolytic solution. To do.

【0009】上記の電解液に使用する有機溶媒としては
特に限定されるものではないが、例えばプロピレンカー
ボネートなどの高誘電率溶媒を単独で用いるか、あるい
はプロピレンカーボネート、エチレンカーボネートなど
の高誘電率溶媒に、1,2−ジメトキシエタン、ジエチ
ルカーボネート、またはジメチルカーボネートなどの低
粘度溶媒を体積百分率で10%から90%混合したもの
が使用できる。
The organic solvent used in the above-mentioned electrolytic solution is not particularly limited, but for example, a high dielectric constant solvent such as propylene carbonate is used alone, or a high dielectric constant solvent such as propylene carbonate or ethylene carbonate. In addition, a low-viscosity solvent such as 1,2-dimethoxyethane, diethyl carbonate, or dimethyl carbonate mixed in a volume percentage of 10% to 90% can be used.

【0010】一方リチウム塩としては、過塩素酸リチウ
ム、六フッ化リン酸リチウム、トリフルオロメタンスル
ホン酸リチウム、または四フッ化ホウ酸リチウム、など
であり、これらのうち、いずれかを0.5モル濃度から
1.5モル濃度の範囲で電解液に溶解させて用いること
ができる。ここで用いるリチウム塩は1.0モル濃度が
最も好ましい。
On the other hand, examples of the lithium salt include lithium perchlorate, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium tetrafluoroborate, and the like, and 0.5 mol of any of these is used. It can be used by dissolving it in an electrolytic solution in the range of concentration to 1.5 molar. The lithium salt used here is most preferably 1.0 molar.

【0011】さらに添加剤として、リチウムと合金化す
る金属の陽イオンと、ヨウ化物陰イオンからなる化合物
を、電解液に対して10ppmから2000ppmの範
囲で溶解させたものをリチウム二次電池用電解液とす
る。用いる添加剤は例えばヨウ化アルミニウム、ヨウ化
スズ、などが好ましく、これを電解液に対して100p
pmとするのが最も好ましい。
Further, as an additive, a compound comprising a cation of a metal alloying with lithium and an iodide anion is dissolved in an electrolyte solution within a range of 10 ppm to 2000 ppm, and the resulting electrolyte for a lithium secondary battery. Use as liquid. The additive used is preferably aluminum iodide, tin iodide, etc.
Most preferably, it is pm.

【0012】[0012]

【作用】本発明による添加剤を含有させた有機電解液を
用いて,リチウム金属負極の電気化学的な析出、溶解試
験、すなわち充放電試験を行った結果、添加剤を用いな
い電解液中での試験結果と較べると、充放電の可逆性が
大きく改善された。これは充電時に添加物の金属陽イオ
ンが還元され、これが金属リチウムと合金化して析出形
態が添加剤が無い場合に比べ改善される、すなわちデン
ドライトが形成されにくくなるためと考えられる。さら
に添加剤の陰イオンとしてヨウ化物イオンを用いている
が、これは酸化状態で電極上のリチウムと反応してもヨ
ウ化リチウムとなり、リチウムイオン伝導性の保護被膜
を形成し、金属リチウムと溶媒などとの副反応を抑制す
る効果が現われるためと考えられる。
The electrochemical deposition and dissolution test of the lithium metal negative electrode, that is, the charge-discharge test, was carried out using the organic electrolyte solution containing the additive according to the present invention. The reversibility of charge and discharge was greatly improved as compared with the test results of. It is considered that this is because the metal cation of the additive is reduced at the time of charging, and this is alloyed with metal lithium to improve the precipitation morphology as compared with the case without the additive, that is, dendrite is hardly formed. Furthermore, iodide ion is used as an anion of the additive, which becomes lithium iodide even when it reacts with lithium on the electrode in the oxidized state, forming a protective film with lithium ion conductivity, and forming a lithium metal and solvent. It is considered that this is because the effect of suppressing side reactions with the above appears.

【0013】[0013]

【実施例】以下、本発明を実施例を参照しながら具体的
に説明する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0014】〔比較例〕電解液触媒には市販の電池グレ
ードのプロピレンカーボネート(PC)を用いた。電解
質塩には、過塩素酸リチウム(LiClO4 )を1モル
濃度で用いた。電気化学測定には三極式ビーカー型セル
を用いた。すなわち、試験極基板には、直径13mmの
ニッケル(Ni)板をフッ素樹脂(例えばテフロン(デ
ュポン社商品名))製のホルダーに装着して用いた。対
極にはNiメッシュにリチウム(Li)箔を圧着したも
のを、また、参照極にはNi線の先にLi片を巻きつけ
たものを用い、電解液容量は50cm3 とした。
Comparative Example Commercially available battery grade propylene carbonate (PC) was used as the electrolyte catalyst. As the electrolyte salt, lithium perchlorate (LiClO 4 ) was used at a molar concentration of 1. A three-electrode beaker cell was used for electrochemical measurement. That is, as the test electrode substrate, a nickel (Ni) plate having a diameter of 13 mm was attached to a holder made of fluororesin (for example, Teflon (trade name of DuPont)) and used. A lithium mesh (Li) foil bonded to a Ni mesh was used as the counter electrode, and a lithium piece was wound around the Ni wire as the reference electrode, and the electrolytic solution volume was 50 cm 3 .

【0015】試験極のNi基板上でのLiのクーロン効
率の測定は電流密度2mA/cm2の定電流で行った。
ここでいうクーロン効率とは、個々の充放電サイクルに
おいて、Ni基板上のLiの析出に要した電気量に対す
る、Liの溶解に要した電気量の百分率と定義する。従
って、この値が100%により近ければ、充放電の可逆
性が優れているとみなすことができる。さらにここでの
クーロンの測定における条件として、充電すなわちLi
の析出に要する電気量については、0.2クーロンの一
定とし、放電すなわちLiの溶解は、参照極のLiに対
し試験極が1.5Vに達するまで行うこととした。これ
らの測定は、乾燥Ar中,室温(18〜25℃)で行っ
た。
The Coulombic efficiency of Li on the Ni substrate of the test electrode was measured at a constant current with a current density of 2 mA / cm 2 .
The Coulombic efficiency here is defined as the percentage of the amount of electricity required to dissolve Li with respect to the amount of electricity required to deposit Li on the Ni substrate in each charge / discharge cycle. Therefore, if this value is closer to 100%, it can be considered that the reversibility of charge and discharge is excellent. Furthermore, as a condition in the measurement of Coulomb here, charging, that is, Li
The amount of electricity required for the precipitation of was fixed at 0.2 coulomb, and the discharge, that is, the dissolution of Li, was performed until the test electrode reached 1.5 V with respect to the reference electrode Li. These measurements were performed at room temperature (18 to 25 ° C.) in dry Ar.

【0016】この系では、すなわち添加物を用いない場
合では、充放電の繰り返しによるクーロン効率は初回の
充放電サイクルでは65%であり、その後は徐々に増加
し5サイクル目では85%となった。しかしそれ以降で
は効率は徐々に低下し、10サイクル目では80%、2
0サイクル目では50%にまで低下した。
In this system, that is, when no additive was used, the Coulombic efficiency due to repeated charging / discharging was 65% in the first charging / discharging cycle and then gradually increased to 85% in the 5th cycle. . However, after that, the efficiency gradually decreased, and at the 10th cycle, 80%, 2
It decreased to 50% at the 0th cycle.

【0017】〔実施例1〕電解液溶媒には比較例で述べ
たものと同じ電池グレードのプロピレンカーボネート
(PC)を用いた。電解質塩には、やはり比較例と同じ
くLiClO4 を1モル濃度で用いた。さらに電解液の
添加剤としてヨウ化アルミニウムを100ppm電解液
に溶解させた。電気化学測定には三極式ビーカー型セル
を用いた。試験極基板には、直径13mmのNi板をフ
ッ素樹脂製のホルダーに装着して用いた。対極にはNi
メッシュにLi箔を圧着したものを、また、参照極には
Ni線の先にLi片を巻きつけたものを用い、電解液容
量は50cm3 とした。
Example 1 The same battery grade propylene carbonate (PC) as described in Comparative Example was used as the electrolyte solvent. As the electrolyte salt, LiClO 4 was used at a molar concentration of 1 as in the comparative example. Further, aluminum iodide was dissolved in 100 ppm of the electrolytic solution as an additive of the electrolytic solution. A three-electrode beaker cell was used for electrochemical measurement. As the test electrode substrate, a Ni plate having a diameter of 13 mm was attached to a holder made of fluororesin and used. Ni for the counter electrode
The mesh was obtained by crimping a Li foil, and the reference electrode was prepared by winding a Li piece around the Ni wire, and the electrolytic solution volume was set to 50 cm 3 .

【0018】Ni基板上でのLiのクーロン効率の測定
は電流密度2mA/cm2 の定電流で行った。この試験
における充放電条件は比較例と同じである。その結果、
充放電におけるクーロン効率は初回の充放電サイクルで
は70%であったが2回目では90%となり、これ以降
20サイクルまでほぼ90%と一定になり、優れた充放
電可逆性を示した。
The Coulombic efficiency of Li on the Ni substrate was measured at a constant current density of 2 mA / cm 2 . The charging / discharging conditions in this test are the same as in the comparative example. as a result,
The Coulomb efficiency in charge and discharge was 70% in the first charge and discharge cycle, but was 90% in the second time, and remained constant at 90% up to 20 cycles thereafter, showing excellent charge and discharge reversibility.

【0019】〔実施例2〕電解液溶媒には比較例で述べ
たものと同じ電池グレードのプロピレンカーボネート
(PC)を用いた。電解質塩には、やはり比較例と同じ
くLiClO4 を1モル濃度で用いた。さらに電解液の
添加剤としてヨウ化スズを100ppm電解液に溶解さ
せた。電気化学測定には三極式ビーカー型セルを用い
た。試験極基板には、直径13mmのNi板をフッ素樹
脂製のホルダーに装着して用いた。対極にはNiメッシ
ュにLi箔を圧着したものを、また、参照極にはNi線
の先にLi片を巻きつけたものを用い、電解液容量は5
0cm3 とした。
Example 2 The same battery grade propylene carbonate (PC) as that described in the comparative example was used as the electrolytic solution solvent. As the electrolyte salt, LiClO 4 was used at a molar concentration of 1 as in the comparative example. Further, tin iodide as an additive of the electrolytic solution was dissolved in 100 ppm of the electrolytic solution. A three-electrode beaker cell was used for electrochemical measurement. As the test electrode substrate, a Ni plate having a diameter of 13 mm was attached to a holder made of fluororesin and used. The counter electrode was a Ni mesh crimped with a Li foil, and the reference electrode was a Ni wire wrapped with a Li piece.
It was set to 0 cm 3 .

【0020】Ni基板上でのLiのクーロン効率の測定
は電流密度2mA/cm2 の定電流で行った。この試験
における充放電条件は比較例と同じである。その結果、
充放電におけるクーロン効率は初回の充放電サイクルで
は65%であり、その後サイクル数が増えるにつれて増
大し、5サイクル目では90%となった。これ以降20
サイクルまで徐々に効率が減少し、20サイクル目では
80%となった。
The Coulombic efficiency of Li on the Ni substrate was measured at a constant current with a current density of 2 mA / cm 2 . The charging / discharging conditions in this test are the same as in the comparative example. as a result,
The coulombic efficiency in charge and discharge was 65% in the first charge and discharge cycle, then increased as the number of cycles increased, and reached 90% in the fifth cycle. After this 20
The efficiency gradually decreased until the cycle and reached 80% at the 20th cycle.

【0021】[0021]

【発明の効果】以上のように、リチウム金属の負極に対
して、プロピレンカーボネートなどの非プロトン溶媒中
にリチウム塩を溶解させた電解液に、リチウムと合金化
する金属の陽イオンと、ヨウ化物陰イオンからなる化合
物を添加剤として用いることにより、良好な充放電可逆
性を維持できることがわかった。すなわち、無添加の電
解液に比べ、金属リチウムの溶解析出の可逆性が大きく
向上した。
As described above, for the negative electrode of lithium metal, the cation of the metal capable of alloying with lithium and iodide are added to the electrolytic solution in which the lithium salt is dissolved in an aprotic solvent such as propylene carbonate. It was found that good charge-discharge reversibility can be maintained by using a compound consisting of a substance anion as an additive. That is, the reversibility of dissolution and precipitation of metallic lithium was significantly improved as compared with the electrolyte solution without addition.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 康史 福岡県福岡市南区塩原2丁目1番47号 九 州電力株式会社総合研究所内 (72)発明者 足立 和之 福岡県福岡市南区塩原2丁目1番47号 九 州電力株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Goto 2-47 Shiobara, Minami-ku, Fukuoka-shi, Fukuoka Inside Kyushu Electric Power Co., Inc. Research Institute (72) Inventor Kazuyuki Adachi Minami-ku, Fukuoka-ku, Fukuoka 2-Chome 1-47 Kyushu Electric Power Co., Inc. Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム塩が非水溶媒に溶解してなる電解
液において、リチウムと合金化する金属の陽イオンと、
ヨウ化物陰イオンからなる化合物を添加剤とし、これを
電解液に対して10ppmから2000ppmの範囲で
含有することを特徴とする、金属リチウム負極を有する
リチウム二次電池用電解液。
1. A cation of a metal which forms an alloy with lithium in an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent,
An electrolytic solution for a lithium secondary battery having a metallic lithium negative electrode, characterized in that a compound comprising an iodide anion is used as an additive and is contained in the range of 10 ppm to 2000 ppm with respect to the electrolytic solution.
JP5289553A 1993-11-18 1993-11-18 Lithium secondary battery electrolyte containing additive Pending JPH07142090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5289553A JPH07142090A (en) 1993-11-18 1993-11-18 Lithium secondary battery electrolyte containing additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5289553A JPH07142090A (en) 1993-11-18 1993-11-18 Lithium secondary battery electrolyte containing additive

Publications (1)

Publication Number Publication Date
JPH07142090A true JPH07142090A (en) 1995-06-02

Family

ID=17744731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5289553A Pending JPH07142090A (en) 1993-11-18 1993-11-18 Lithium secondary battery electrolyte containing additive

Country Status (1)

Country Link
JP (1) JPH07142090A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477744B1 (en) * 2001-10-31 2005-03-18 삼성에스디아이 주식회사 Organic electrolytic solution and lithium secondary battery adopting the same
WO2008012774A3 (en) * 2006-07-27 2008-05-29 Gillette Co Battery
JP2008305772A (en) * 2007-05-08 2008-12-18 Sony Corp Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution
CN100466370C (en) * 2007-06-25 2009-03-04 中南大学 An electrolyte for super capacitance cell
US20110027662A1 (en) * 2009-07-31 2011-02-03 Etsuko Nishimura Lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477744B1 (en) * 2001-10-31 2005-03-18 삼성에스디아이 주식회사 Organic electrolytic solution and lithium secondary battery adopting the same
WO2008012774A3 (en) * 2006-07-27 2008-05-29 Gillette Co Battery
US7648798B2 (en) 2006-07-27 2010-01-19 The Gillette Company Battery with electrolyte containing aluminum salt
JP2008305772A (en) * 2007-05-08 2008-12-18 Sony Corp Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution
CN100466370C (en) * 2007-06-25 2009-03-04 中南大学 An electrolyte for super capacitance cell
US20110027662A1 (en) * 2009-07-31 2011-02-03 Etsuko Nishimura Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
Fang et al. Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in commercial carbonate electrolytes
EP2709194B1 (en) Lithium-sulfur battery with performance enhanced additives
Wu et al. The roles of sulfur-containing additives and their working mechanism on the temperature-dependent performances of li-ion batteries
US4869977A (en) Electrolyte additive for lithium-sulfur dioxide electrochemical cell
JP5165862B2 (en) Non-aqueous electrolyte and electrochemical energy storage device using the same
Zheng et al. A multifunctional thiophene-based electrolyte additive for lithium metal batteries using high-voltage LiCoO2 cathode
EP4250425A1 (en) Battery electrolyte solution, secondary battery, and terminal
JP2002231306A (en) Electrolyte for battery, and nonaqueous electrolyte battery
JP2002110230A (en) Non-acqueous electrolyte lithium secondary battery
WO2003021707A1 (en) Nonaqueous electrolyte
JPH06333596A (en) Nonaqueous electrolyte battery
JPH1064584A (en) Nonaqueous electrolyte for lithium secondary battery
JPH07142090A (en) Lithium secondary battery electrolyte containing additive
WO2023245619A1 (en) Secondary battery, method for preparing secondary battery, battery module, battery pack, and electrical device
JPS62100948A (en) Secondary battery
JP2000058120A (en) Electrolyte for lithium secondary battery
JP2002231305A (en) Electrolyte for battery, and nonaqueous electrolyte battery
JPH11250933A (en) Nonaqueous electrolyte secondary battery
WO2023130249A1 (en) Electrolyte, secondary battery using same, battery module, battery pack, and electrical device
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
JP2004047406A (en) Nonaqueous electrolyte secondary battery
JPH0722068A (en) Secondary battery having nonaqueous solvent electrolyte
JPH0226345B2 (en)
JP3283412B2 (en) Non-aqueous electrolyte secondary battery
JP2991758B2 (en) Non-aqueous electrolyte for lithium secondary batteries