JP3028622B2 - Method for producing hydrogen storage electrode and metal oxide-hydrogen storage battery - Google Patents

Method for producing hydrogen storage electrode and metal oxide-hydrogen storage battery

Info

Publication number
JP3028622B2
JP3028622B2 JP3049510A JP4951091A JP3028622B2 JP 3028622 B2 JP3028622 B2 JP 3028622B2 JP 3049510 A JP3049510 A JP 3049510A JP 4951091 A JP4951091 A JP 4951091A JP 3028622 B2 JP3028622 B2 JP 3028622B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
metal oxide
electrode
complexing agent
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3049510A
Other languages
Japanese (ja)
Other versions
JPH04284355A (en
Inventor
剛平 鈴木
博志 川野
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3049510A priority Critical patent/JP3028622B2/en
Publication of JPH04284355A publication Critical patent/JPH04284355A/en
Application granted granted Critical
Publication of JP3028622B2 publication Critical patent/JP3028622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電解液中で水素を可逆
的に吸蔵・脱蔵する水素吸蔵電極を負極とする金属酸化
物−水素蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal oxide-hydrogen storage battery having a negative electrode as a negative electrode for storing and removing hydrogen reversibly in an electrolyte.

【0002】[0002]

【従来の技術】可逆的に水素を吸蔵・脱蔵する合金を用
いる水素吸蔵電極は、一般に次のような方法によって製
造されている。すなわち、合金組成に合うように各種金
属を秤量し、アーク溶解炉などを用いて高温アーク放電
によって各種金属の混合物を溶解させて、所期の組成を
有する合金を製造し、この合金をさらに粉砕して300
メッシュ以下の粒径を有する粉末とする。
2. Description of the Related Art A hydrogen storage electrode using an alloy that reversibly stores and desorbs hydrogen is generally manufactured by the following method. In other words, various metals are weighed to match the alloy composition, and a mixture of various metals is melted by high-temperature arc discharge using an arc melting furnace or the like to produce an alloy having an intended composition, and this alloy is further pulverized. Then 300
A powder having a particle size equal to or smaller than the mesh is used.

【0003】この粉末を結着剤などと均一状態になるよ
うに混練して、ペースト状となし、例えば発泡状金属多
孔体,パンチングメタルなどの電極支持体に加圧充填あ
るいは塗着した後、乾燥して水素吸蔵電極体としてい
る。この水素吸蔵電極を負極とし、セパレータを介して
公知のニッケル正極などと組み合わせて金属酸化物−水
素蓄電池が構成される。
[0003] This powder is kneaded with a binder or the like so as to be in a uniform state, and is made into a paste. For example, after pressure-filled or coated on an electrode support such as a foamed metal porous body or a punching metal, It is dried to form a hydrogen storage electrode body. The metal oxide-hydrogen storage battery is configured by combining this hydrogen storage electrode with a negative electrode and a known nickel positive electrode or the like via a separator.

【0004】[0004]

【発明が解決しようとする課題】水素吸蔵電極に好まし
い合金はアーク溶解方法などによって製造されるが、合
金の均質性が重要であり、少しでもこの不均質性をなく
した合金を製造する必要がある。しかし、この合金の中
にはアルカリ性の水溶液に溶解するような金属も含まれ
ているため、完全に合金化されない場合には、この種の
金属の一部が電解液であるアルカリ溶液中に溶解する。
特に高温になるとこの溶解速度,溶解量が多くなる。こ
のような水素吸蔵電極を負極として電解液が豊富な電池
系、例えば据置型の金属酸化物−水素蓄電池を構成する
と、充・放電サイクルを重ねるにつれて、放電時に電解
液中に上記金属イオンが負極から溶解し、この金属イオ
ンが酸化されて析出したり、または溶解度の関係から金
属状態で析出する。これらの微細な析出物の多くはセパ
レータに付着し、セパレータの絶縁性を悪くする原因と
なる。この現象のために、電池内で微小短絡を発生し容
量低下を引き起こす。
The preferred alloy for the hydrogen storage electrode is produced by an arc melting method or the like. However, the homogeneity of the alloy is important, and it is necessary to produce an alloy in which this heterogeneity is eliminated as much as possible. is there. However, since some of these alloys contain metals that dissolve in alkaline aqueous solutions, if they are not completely alloyed, some of these metals will dissolve in the alkaline solution that is the electrolyte. I do.
Particularly when the temperature becomes high, the dissolution rate and the dissolution amount increase. When such a hydrogen storage electrode is used as a negative electrode to form a battery system rich in an electrolyte, for example, a stationary metal oxide-hydrogen storage battery, as the charge / discharge cycle is repeated, the above-mentioned metal ions are added to the negative electrode in the electrolyte during discharge. And the metal ions are oxidized and deposited, or deposited in a metallic state due to solubility. Many of these fine precipitates adhere to the separator and cause deterioration of the insulation of the separator. Due to this phenomenon, a minute short circuit occurs in the battery, causing a reduction in capacity.

【0005】従って本発明の目的は、充・放電サイクル
中で上記の現象を発生しないようにし、長寿命で品質の
安定した金属酸化物−水素蓄電池を提供することであ
る。
Accordingly, it is an object of the present invention to provide a metal oxide-hydrogen storage battery having a long life and a stable quality by preventing the above-mentioned phenomenon from occurring during a charge / discharge cycle.

【0006】[0006]

【課題を解決するための手段】本発明は容量低下の原因
となる微小短絡の発生を防止する目的で、上記の金属あ
るいは金属酸化物の析出を抑えるために錯化剤、好まし
くは耐アルカリ性が高くアルカリ領域において上記金属
との錯形成定数が大きいもの、例えばカルボン酸を官能
基に持つエチレンジアミン誘導体を電池内に溶存含有さ
せるものである。
SUMMARY OF THE INVENTION The present invention aims at preventing the occurrence of a micro short-circuit which causes a reduction in capacity and, in order to suppress the deposition of the above-mentioned metal or metal oxide, a complexing agent, preferably an alkali-resistant one. A battery having a high complex formation constant with the metal in a high alkali region, for example, an ethylenediamine derivative having a carboxylic acid as a functional group dissolved and contained in a battery.

【0007】[0007]

【作用】上記の錯化剤を電池内に溶存含有させる方法と
して、次の3つが挙げられる。まず第1に、合金粉末を
ペースト化して負極を構成する際、ペーストの溶媒に係
る錯化剤を含有させる方法がある。このとき、ペースト
溶媒中の錯化剤量は飽和量付近であることが望ましく、
また飽和量を高める意味において、上記溶媒のpHは高い
ことが好ましい。
The following three methods can be used to dissolve and contain the above-mentioned complexing agent in the battery. First, there is a method in which a complexing agent relating to a solvent of the paste is contained when forming a negative electrode by forming an alloy powder into a paste. At this time, the amount of the complexing agent in the paste solvent is desirably near the saturation amount,
From the viewpoint of increasing the saturation amount, the pH of the solvent is preferably high.

【0008】第2に電解液中に係る錯化剤を溶解含有さ
せる方法がある。このとき電解液中に溶存する錯化剤量
は、その効果と電池性能そのものとの兼ね合いを考慮す
る必要がある。
Second, there is a method in which the complexing agent is dissolved and contained in the electrolytic solution. At this time, the amount of the complexing agent dissolved in the electrolytic solution needs to consider the balance between the effect and the battery performance itself.

【0009】第3に正極,負極及びセパレータの少なく
とも一つを、電池構成前に係る錯化剤の水溶液中に含浸
させる方法がある。このとき上記水溶液中の錯化剤量
は、第1の場合と同様、飽和量付近であることが望まし
く、また飽和量を高める意味において、上記溶媒のpHは
高いことが好ましい。
Third, there is a method in which at least one of the positive electrode, the negative electrode and the separator is impregnated with an aqueous solution of the complexing agent prior to the construction of the battery. At this time, the amount of the complexing agent in the aqueous solution is desirably near the saturation amount as in the first case, and in order to increase the saturation amount, the pH of the solvent is preferably high.

【0010】以上の3方法はそれぞれ単独に行うことで
も効果があるが、2つ、あるいは3つすべてを組み合わ
せて行うこともさらに効果を上げるための好ましい態様
であることを示す。
Although the above three methods are effective even if performed independently, it is shown that performing two or all three methods in combination is a preferable embodiment for further improving the effect.

【0011】これらの方法により、充・放電サイクル中
でないと電解液中に溶解しない金属は溶解後速やかに錯
化剤と錯形成反応を行う。反応生成物の溶解度が低い場
合は絶縁性の沈殿となり、金属イオンは電池反応の系外
に除去される。また反応生成物の溶解度が高い場合、形
成された錯イオンは安定で、金属イオンは電気化学的な
酸化や還元を受けにくくなり、析出が抑えられる。この
ように妨害イオン種を無害化することをマスキングとい
うが、この効果により本発明では充・放電サイクルを繰
り返しても金属あるいは金属酸化物がセパレータ上に析
出する程度が著しく減少し、短絡現象を大幅に軽減する
ことができる。
According to these methods, a metal which does not dissolve in the electrolytic solution during a charge / discharge cycle immediately undergoes a complex formation reaction with a complexing agent after dissolution. When the solubility of the reaction product is low, an insulating precipitate is formed, and the metal ions are removed out of the battery reaction system. When the solubility of the reaction product is high, the formed complex ion is stable, and the metal ion is less likely to undergo electrochemical oxidation or reduction, and the precipitation is suppressed. Detoxifying the interfering ion species in this way is called masking. According to the effect, in the present invention, even if the charge / discharge cycle is repeated, the extent to which the metal or metal oxide precipitates on the separator is significantly reduced, and the short circuit phenomenon is prevented. It can be significantly reduced.

【0012】[0012]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0013】(実施例1)純度99.5%以上のランタ
ン(La),ニッケル(Ni),マンガン(Mn),ア
ルミニウム(Al),コバルト(Co)を所定の割合で
混合し、アーク溶解炉にて溶解してLaNi4.0Mn0.3
Al0.3Co0.4合金を製造した。この合金を不活性雰囲
気中で粉砕し、300メッシュ以下の粉末とした。この
合金粉末に高分子結着剤を加え、電極支持体の発泡状金
属多孔体に加圧・充填して水素吸蔵電極とし、正極には
公知のニッケル極を用い、比重1.3の苛性カリ水溶液
200mlを用いて金属酸化物−水素蓄電池を組立てた。
これを電池Aとする。
(Example 1) Lanthanum (La), nickel (Ni), manganese (Mn), aluminum (Al), and cobalt (Co) having a purity of 99.5% or more were mixed at a predetermined ratio, and an arc melting furnace was used. Dissolved in LaNi 4.0 Mn 0.3
An Al 0.3 Co 0.4 alloy was produced. This alloy was pulverized in an inert atmosphere to obtain a powder of 300 mesh or less. A polymer binder is added to the alloy powder, and the foamed metal porous body of the electrode support is pressurized and filled to form a hydrogen storage electrode. A known nickel electrode is used as a positive electrode, and a caustic potassium aqueous solution having a specific gravity of 1.3 is used. A metal oxide-hydrogen storage battery was assembled using 200 ml.
This is called battery A.

【0014】次に同様の方法で水素吸蔵電極をつくり、
上記正極と組み合わせた。電解液中にエチレンジアミン
の4酢酸誘導体であるEDTA7gを溶解させ、電池A
と同様に金属酸化物−水素蓄電池を構成した。これを電
池Bとする。
Next, a hydrogen storage electrode is formed in the same manner,
Combined with the positive electrode. A battery A was prepared by dissolving 7 g of EDTA, a tetraacetic acid derivative of ethylenediamine, in an electrolytic solution.
A metal oxide-hydrogen storage battery was constructed in the same manner as described above. This is called battery B.

【0015】続いて同様の方法で水素吸蔵電極をつく
り、これをEDTA飽和水溶液(pH12)に1日間含浸
させた後、上記正極と組み合わせ、電池Aと同様に金属
酸化物−水素蓄電池を構成した。これを電池Cとする。
Subsequently, a hydrogen storage electrode was prepared in the same manner and impregnated with a saturated aqueous solution of EDTA (pH 12) for one day, and then combined with the positive electrode to form a metal oxide-hydrogen storage battery in the same manner as Battery A. . This is called battery C.

【0016】さらに同様の方法で水素吸蔵電極をつく
り、これをEDTA飽和水溶液(pH12)に1日間含浸
させた後、上記正極と組み合わせ、電解液中にエチレン
ジアミン4酢酸(EDTA)7gを溶解させ、電池Aと
同様に金属酸化物−水素蓄電池を構成した。これを電池
Dとする。
Further, a hydrogen storage electrode was prepared in the same manner, and impregnated with a saturated aqueous solution of EDTA (pH 12) for one day, combined with the above positive electrode, and dissolved 7 g of ethylenediaminetetraacetic acid (EDTA) in the electrolyte. A metal oxide-hydrogen storage battery was constructed in the same manner as Battery A. This is called battery D.

【0017】また上記の水素吸蔵合金粉末を高分子結着
剤とともにEDTA飽和水溶液(pH12)溶媒を用いて
練合してペースト化し、これを電極支持体の発泡状金属
多孔体に加圧・充填して水素吸蔵電極を作製した。この
電極を負極とし、電池A,B,C及びDと同じ方法で金
属酸化物−水素蓄電池を構成した。これをそれぞれ電池
E,F,G及びHとする。
Further, the above-mentioned hydrogen storage alloy powder is kneaded together with a polymer binder by using a saturated aqueous solution of EDTA (pH 12) to form a paste, which is then pressed and filled into a foamed metal porous body of an electrode support. Thus, a hydrogen storage electrode was produced. Using this electrode as a negative electrode, a metal oxide-hydrogen storage battery was constructed in the same manner as batteries A, B, C and D. These are referred to as batteries E, F, G and H, respectively.

【0018】なお、正極は容量1.8Ahのもの2枚、負
極は容量1.8Ahのもの3枚を用いた。電極の大きさは
正,負極とも36cm2であり、負極の合金は1枚当たり
約7〜8gを用いた。
The positive electrode used was two sheets having a capacity of 1.8 Ah, and the negative electrode was used three sheets having a capacity of 1.8 Ah. The size of the electrode was 36 cm 2 for both the positive and negative electrodes, and the alloy of the negative electrode used was about 7 to 8 g per sheet.

【0019】電池A〜H各1個について2Aの電流で充
放電した。充電時間は放電時間の50%過剰とし、放電
終止電圧は1.0Vとした。この充・放電サイクル試験
における電池の放電容量の変動を(表1)に示す。
Each of the batteries A to H was charged and discharged at a current of 2 A. The charging time was 50% excess of the discharging time, and the discharge end voltage was 1.0 V. Changes in the discharge capacity of the battery in this charge / discharge cycle test are shown in (Table 1).

【0020】[0020]

【表1】 [Table 1]

【0021】(表1)より、電池B,D,F,G及びH
は600サイクルの充・放電を繰り返しても容量低下は
数%程度であり小さい。一方、電池C及びEは600サ
イクルの充・放電を繰り返すと約5〜10%程度の容量
低下が観察されたが、実用上は問題ない範囲に入ってい
る。これに対して電池Aは、200サイクルまでは電池
B〜Hと差異はないものの、サイクル数を重ねる毎に容
量は低下し、600サイクルでは残存放電容量が40%
程度低下している。従って、電池B〜Hは電池Aと比較
して充・放電サイクル寿命が非常に優れていることがわ
かる。
From Table 1, it can be seen that batteries B, D, F, G and H
However, even when charge and discharge are repeated for 600 cycles, the capacity decrease is as small as about several percent. On the other hand, in the batteries C and E, when the charge and discharge were repeated for 600 cycles, a capacity reduction of about 5 to 10% was observed, but it was within a range in which there was no problem in practical use. On the other hand, the battery A does not differ from the batteries B to H up to 200 cycles, but the capacity decreases as the number of cycles increases, and the remaining discharge capacity becomes 40% at 600 cycles.
To some extent. Accordingly, it can be seen that the batteries B to H have much better charge / discharge cycle life than the battery A.

【0022】この寿命特性の差異は水素吸蔵電極中に含
有している金属の一部が溶解し、この溶解した金属が再
度セパレータの表面や内部に析出し、この析出した金属
などによってセパレータの絶縁性機能を失い、短絡減少
を起こし、これによって容量低下を起こしたものと考え
られる。充・放電サイクルの繰り返しにより金属が徐々
に溶解し、金属又は金属酸化物のセパレータ上への析出
量も増加して微小短絡が進み、大きな容量低下につなが
る。ここで、試験終了後の電池Aを分解調査してみる
と、セパレータの表面と内部に黒色の析出物が付着して
いることから、容易に判断がつく。
This difference in life characteristics is attributed to the fact that a part of the metal contained in the hydrogen storage electrode is dissolved, and the dissolved metal precipitates again on the surface or inside of the separator. It is considered that the sexual function was lost, the short circuit was reduced, and the capacity was reduced. By repeating the charge / discharge cycle, the metal is gradually dissolved, the amount of the metal or metal oxide deposited on the separator is increased, and a minute short circuit is caused, leading to a large capacity reduction. Here, when the battery A after the test is disassembled and inspected, it is easy to judge from the fact that black precipitates adhere to the surface and inside of the separator.

【0023】これに対して本発明の電池においては、上
記錯化剤が溶解した金属をマスキングするので、これら
金属の析出が起こりにくくなり容量低下はほとんどなく
なる。このことは試験終了後、本発明の電池B〜Hを電
池Aと同様に分解調査した結果、セパレータ表面への析
出物がほとんどなく、短絡現象を起こしている所も見当
たらないことよりも明らかである。また電池B〜H間の
容量低下の差異より、マスキングの効果は電極近傍のみ
ならず、電解液中に存在する錯化剤イオンの総量と相関
を成すものと考えられる。
On the other hand, in the battery of the present invention, the metal in which the complexing agent is dissolved is masked, so that precipitation of these metals hardly occurs, and the capacity is hardly reduced. This is apparent from the results of the disassembly and examination of the batteries B to H of the present invention after the test in the same manner as the battery A. As a result, there is almost no deposit on the separator surface, and no short-circuit phenomenon is found. is there. Further, from the difference in capacity reduction between the batteries B to H, it is considered that the masking effect correlates not only with the vicinity of the electrode but also with the total amount of complexing agent ions present in the electrolytic solution.

【0024】電池Aに見られるような現象は特に電解液
が豊富になるほど顕著に現れる。電解液量が増えると金
属の電解液中への溶解速度が増大することに起因する。
また電解液量が少ない密閉形蓄電池においてもこの傾向
が若干見られるので、本発明の方法は有効である。
The phenomenon seen in the battery A is particularly prominent as the amount of the electrolyte is increased. This is because when the amount of the electrolytic solution increases, the dissolution rate of the metal in the electrolytic solution increases.
Further, this tendency is slightly observed even in a sealed storage battery having a small amount of electrolyte, so that the method of the present invention is effective.

【0025】(実施例2)実施例1と同様に作製された
水素吸蔵合金粉末に高分子結着剤を加え、電極支持体の
発泡状金属多孔体に加圧・充填して水素吸蔵電極とし、
公知のニッケル正極と組み合わせた。EDTA量を(表
2)のように変えて電解液200ml中に溶解させ、実施
例1と同様に金属酸化物−水素蓄電池を構成した。
Example 2 A polymer binder was added to the hydrogen-absorbing alloy powder produced in the same manner as in Example 1, and the foamed metal porous body of the electrode support was pressed and filled to form a hydrogen-absorbing electrode. ,
Combined with a known nickel positive electrode. The amount of EDTA was changed as shown in Table 2 and dissolved in 200 ml of the electrolytic solution, whereby a metal oxide-hydrogen storage battery was constructed in the same manner as in Example 1.

【0026】それぞれの電池各1個について2Aの電流
で充放電した。充電時間は放電時間の50%過剰とし、
放電終止電圧は1.0Vとした。この電池のこの充・放
電サイクル試験における放電容量の変動を(表2)に併
せて示す。
Each of the batteries was charged and discharged at a current of 2 A. Charge time is 50% excess of discharge time,
The discharge end voltage was 1.0 V. The fluctuation of the discharge capacity of this battery in this charge / discharge cycle test is also shown in (Table 2).

【0027】[0027]

【表2】 [Table 2]

【0028】(表2)からわかるように、電池J,K,
L,B及びMは600サイクルを経た後も初期の80%
以上の放電容量を保持しているが、A及びIは初期の7
0%以下の放電容量となっている。これは錯化剤である
EDTAの量が少なくなると溶け出した金属イオンをマ
スキングする効果が小さくなることを示している。また
電池Nは初期容量が低いが、これは錯化剤の添加量が多
すぎるとpH変化などに起因する容量の低下が起こること
を示している。よって、錯化剤としてEDTAを用いた
場合、本発明の効果を発揮するためには添加量を合金1
g当たり10-6〜10-2molとすることが望ましい。こ
のことは、錯形成反応がほぼ金属:錯化剤=1:1〜6
の範囲内で行われることより、すべての錯化剤について
適用される。
As can be seen from (Table 2), batteries J, K,
L, B and M are 80% of the initial value after 600 cycles
Although the above discharge capacity is maintained, A and I are the initial 7
The discharge capacity is 0% or less. This indicates that the effect of masking the dissolved metal ions decreases as the amount of the complexing agent EDTA decreases. The initial capacity of the battery N is low, which indicates that when the amount of the complexing agent added is too large, the capacity is reduced due to a change in pH or the like. Therefore, when EDTA is used as a complexing agent, the addition amount of alloy 1 must be set to achieve the effect of the present invention.
It is desirable that the amount be 10 -6 to 10 -2 mol per g. This means that the complex formation reaction is almost metal: complexing agent = 1: 1 to 6
Is applied for all complexing agents.

【0029】[0029]

【発明の効果】以上のように本発明によれば、充・放電
サイクル寿命が伸長し、品質の安定した、信頼性の高い
金属酸化物−水素蓄電池を提供することができる。
As described above, according to the present invention, it is possible to provide a highly reliable metal oxide-hydrogen storage battery having a stable charge / discharge cycle life, stable quality.

フロントページの続き (56)参考文献 特開 昭61−161659(JP,A) 特開 平4−82161(JP,A) 特許2871065(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H01M 2/24 - 2/26 H01M 10/24 - 10/30 H01M 10/34 Continuation of the front page (56) References JP-A-61-161659 (JP, A) JP-A-4-82161 (JP, A) Patent 2871065 (JP, B2) (58) Fields investigated (Int. Cl. 7) H01M 2/24-2/26 H01M 10/24-10/30 H01M 10/34

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気化学的に水素を吸蔵・放出する水素
吸蔵合金粉末と結着剤を含む電極において、遷移金属と
のキレート錯形成反応が可能である酸解離型錯化剤を電
極製造工程で添加することにより含有する水素吸蔵電極
(但し、結着剤にポリエチレンオキサイドを含む場合を
除く)の製造法。
1. An electrode manufacturing method comprising: an electrode containing a hydrogen storage alloy powder that electrochemically stores and releases hydrogen and a binder , and an acid dissociation type complexing agent capable of forming a chelate complex with a transition metal. Hydrogen storage electrode contained by adding
(However, if the binder contains polyethylene oxide,
Excluding) manufacturing method.
【請求項2】 上記錯化剤としてカルボン酸を官能基に
持つエチレンジアミン誘導体を用いる請求項1記載の水
素吸蔵電極の製造法。
2. The method according to claim 1, wherein an ethylenediamine derivative having a carboxylic acid as a functional group is used as the complexing agent.
【請求項3】 上記水素吸蔵合金粉末を、遷移金属との
キレート錯形成反応が可能である酸解離型錯化剤の水溶
液を溶媒として結着剤と練合してペースト化する工程を
有する水素吸蔵電極の製造法。
3. A hydrogen-containing hydrogen-absorbing alloy powder comprising a step of kneading a paste with a hydrogen-absorbing alloy powder kneaded with a binder using an aqueous solution of an acid dissociation type complexing agent capable of forming a chelate complex with a transition metal as a solvent. Manufacturing method of occlusion electrode.
【請求項4】 上記錯化剤としてカルボン酸を可能基に
持つエチレンジアミン誘導体を用いる請求項3記載の水
素吸蔵電極の製造法。
4. The method according to claim 3, wherein an ethylenediamine derivative having a carboxylic acid as a possible group is used as the complexing agent.
【請求項5】 少なくとも1種の金属酸化物からなる正
極と電解液、及び負極として請求項1または2記載の水
素吸蔵電極を用いることを特徴とする金属酸化物−水素
蓄電池の製造法。
5. A method for producing a metal oxide-hydrogen storage battery, comprising using a positive electrode comprising at least one metal oxide, an electrolytic solution, and the hydrogen storage electrode according to claim 1 or 2 as a negative electrode.
【請求項6】 少なくとも1種の金属酸化物からなる正
極と、電気化学的に水素を吸蔵・放出する水素吸蔵合金
からなる負極、セパレータ及び電解液から構成されるア
ルカリ蓄電池において、前記正極、負極及びセパレータ
の少なくとも一つを遷移金属とのキレート錯形成反応が
可能である酸解離型錯化剤の水溶液に含浸させて乾燥し
た後、これらを組み合わせて電池構成とする金属酸化物
−水素蓄電池の製造法。
6. An alkaline storage battery comprising a positive electrode made of at least one metal oxide, a negative electrode made of a hydrogen storage alloy electrochemically storing and releasing hydrogen, a separator, and an electrolytic solution, wherein the positive electrode and the negative electrode are used. And, after impregnating at least one of the separators with an aqueous solution of an acid dissociation complexing agent capable of forming a chelate complex with a transition metal and drying the mixture, a metal oxide-hydrogen storage battery having a battery configuration by combining these is used. Manufacturing method.
【請求項7】 上記錯化剤としてカルボン酸を官能基に
持つエチレンジアミン誘導体を用いる請求項6記載の金
属酸化物−水素蓄電池の製造法。
7. The method for producing a metal oxide-hydrogen storage battery according to claim 6, wherein an ethylenediamine derivative having a carboxylic acid as a functional group is used as the complexing agent.
【請求項8】 負極として請求項1または2記載の水素
吸蔵電極を用いた請求項6または7記載の金属酸化物−
水素蓄電池の製造法。
8. The metal oxide according to claim 6, wherein the hydrogen storage electrode according to claim 1 or 2 is used as a negative electrode.
Manufacturing method of hydrogen storage battery.
【請求項9】 少なくとも1種の金属酸化物からなる正
極と、請求項1または2記載の水素吸蔵電極からなる負
極、セパレータ及び電解液から構成されるアルカリ蓄電
池において、前記電解液中に遷移金属とのキレート錯形
成反応が可能である酸解離型錯化剤を溶解させる金属酸
化物−水素蓄電池の製造法。
9. An alkaline storage battery comprising a positive electrode comprising at least one metal oxide, a negative electrode comprising a hydrogen storage electrode according to claim 1 or 2, a separator and an electrolyte, wherein a transition metal is contained in the electrolyte. A method for producing a metal oxide-hydrogen storage battery, comprising dissolving an acid dissociation complexing agent capable of forming a chelate complex with an acid.
【請求項10】 上記電解液中に遷移金属とのキレート
錯形成反応が可能である酸解離型錯化剤を溶解させる請
求項6から8のいずれかに記載の金属酸化物−水素蓄電
池の製造法。
10. The production of a metal oxide-hydrogen storage battery according to claim 6, wherein an acid dissociation type complexing agent capable of forming a chelate complex with a transition metal is dissolved in the electrolytic solution. Law.
【請求項11】 上記錯化剤としてカルボン酸を官能基
に持つエチレンジアミン誘導体を用いる請求項9または
10記載の金属酸化物−水素蓄電池の製造法。
11. The method for producing a metal oxide-hydrogen storage battery according to claim 9, wherein an ethylenediamine derivative having a carboxylic acid as a functional group is used as the complexing agent.
【請求項12】 上記錯化剤が電解液中に完全に溶解し
ており、水素吸蔵合金1gに対して10-6〜10-2mol
/l含まれている請求項11記載の金属酸化物−水素蓄
電池の製造法。
12. The complexing agent is completely dissolved in the electrolytic solution, and 10 -6 to 10 -2 mol per 1 g of the hydrogen storage alloy.
The method for producing a metal oxide-hydrogen storage battery according to claim 11, wherein
JP3049510A 1991-03-14 1991-03-14 Method for producing hydrogen storage electrode and metal oxide-hydrogen storage battery Expired - Fee Related JP3028622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3049510A JP3028622B2 (en) 1991-03-14 1991-03-14 Method for producing hydrogen storage electrode and metal oxide-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3049510A JP3028622B2 (en) 1991-03-14 1991-03-14 Method for producing hydrogen storage electrode and metal oxide-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JPH04284355A JPH04284355A (en) 1992-10-08
JP3028622B2 true JP3028622B2 (en) 2000-04-04

Family

ID=12833132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3049510A Expired - Fee Related JP3028622B2 (en) 1991-03-14 1991-03-14 Method for producing hydrogen storage electrode and metal oxide-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP3028622B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070057405A (en) * 2005-12-02 2007-06-07 주식회사 엘지화학 Electrolyte for lithium secondary battery comprising chelating agent and lithium secondary battery using the same
CN108321342A (en) * 2018-01-04 2018-07-24 河南惠强新能源材料科技股份有限公司 A kind of lithium battery diaphragm coating paste and preparation method thereof having iron ion adsorption function

Also Published As

Publication number Publication date
JPH04284355A (en) 1992-10-08

Similar Documents

Publication Publication Date Title
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP3028622B2 (en) Method for producing hydrogen storage electrode and metal oxide-hydrogen storage battery
JPH0479474B2 (en)
JP2871065B2 (en) Metal oxide-hydrogen storage battery
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPH11297352A (en) Alkaline storage battery
JP4404447B2 (en) Method for producing alkaline storage battery
JPH09204930A (en) Nickel hydrogen storage battery
JP2610565B2 (en) Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH09199163A (en) Nickel-hydrogen secondary battery
JPH0441471B2 (en)
JP2001035526A (en) Nickel hydrogen storage battery
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH0232750B2 (en)
JP3482478B2 (en) Nickel-metal hydride storage battery
JP2530281B2 (en) Alkaline storage battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP3462673B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0412587B2 (en)
JPH04328252A (en) Hydrogen storage alloy electrode
JP2001164329A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, nickel-hydrogen storage battery and method for producing hydrogen storage alloy
JP2001338647A (en) Lithium secondary battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees