JPH06310125A - Negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery

Info

Publication number
JPH06310125A
JPH06310125A JP5093360A JP9336093A JPH06310125A JP H06310125 A JPH06310125 A JP H06310125A JP 5093360 A JP5093360 A JP 5093360A JP 9336093 A JP9336093 A JP 9336093A JP H06310125 A JPH06310125 A JP H06310125A
Authority
JP
Japan
Prior art keywords
layer
lithium
negative electrode
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5093360A
Other languages
Japanese (ja)
Inventor
Kozo Sasaki
孝蔵 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP5093360A priority Critical patent/JPH06310125A/en
Publication of JPH06310125A publication Critical patent/JPH06310125A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an excellent cycle life of charge and discharge, a high electromotive force, and a high energy density, by providing a metallic layer having the Li diffusivity on the surface of a metallic lithium through a solid electrolyte layer with the thickness 0.05 to 2mum. CONSTITUTION:On the surface of a lithium layer 11, a solid electrolyte layer 12, and a metallic layer 13 having a Li diffusivity are laminated in order. The layer 12 consists of a layer of a conductive solid and including a substance whose charge carrier is ion. The layer 12 is formed to make the thickness 0.05 to 2mum on the surface of the layer 11 obtained by forming a pure lithium in a specific size and form. When the thickness of the layer 12 is less than 0.05mum, the metal in the layer 3 is diffused in the layer 11, and the whole body of the negative electrode is alloyed so as to reduce the energy density, and when it is more than 2mum, the electric resistance of the layer 12 is increased too much, so as to reduce the conductivity. As the layer 13, a metal with Li diffusion coefficient 10<-10>cm<2>S<-1> or more is favorable. Consequently, a generation of dendrite owing to the diffusion of the separated Li in the charging by the layer 13 can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池用負
極に関し、詳しくは高起電力、高エネルギーを有すると
ともに、放電・充電を繰り返して行うことができるサイ
クル寿命に優れるリチウム二次電池用負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a lithium secondary battery, and more particularly to a lithium secondary battery having a high electromotive force and high energy and excellent in cycle life that can be repeatedly discharged and charged. Regarding the negative electrode.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】一般に二
次電池に要求される性能として、エネルギー密度が大
きい、出力密度が大きい、自己放電率が小さい、
安価である、エネルギー効率が高い、サイクル寿命
が長い等が挙げられる。このような性能を有する二次電
池として、リチウムイオンの移動による電気エネルギー
を利用した非水電解質電池、所謂リチウム二次電池が高
起電圧、高エネルギー密度を有するものとして知られて
いる。このリチウム二次電池においては、負極に純リチ
ウムを用いると、高エネルギー密度を有する負極が得ら
れる反面、充電時にLiがリチウム表面のエネルギー的に
活性なポイントに集中して析出し、これが成長して針状
の結晶、所謂デンドライトを生成しやすい。このデンド
ライトは、それがさらに成長するとセパレータを貫通し
て正極と短絡したり、またデンドライト自体が活性なた
め電解液と容易に反応し不活性化するので負極が劣化
し、その結果電池のサイクル寿命が短くなる、といった
問題を生じるものである。この問題を解消するために、
Li拡散係数の高い Al, Zn, Pb 等の金属でリチウムを合
金化したものを負極体とし、これにより充電時に析出Li
を拡散させ、特定のポイントに集中して析出することを
防ぐことによってデンドライトの発生を抑制することが
なされている。ところが、この方法では純リチウムを使
用した場合に比べエネルギー密度が低下するという問題
がある。そこで、リチウム表面のみに上記 Al, Zn, Pb
等の金属よりなる合金層を設けることによって、純リチ
ウムにより高エネルギー密度を維持しながらその表面の
合金層によりデンドライトの発生を防止する方法が検討
されている。しかしながら、この方法では、合金層中の
Al, Zn, Pb 等が電位差によりリチウム内部に拡散する
ため、結局リチウム全体が合金化して負極のエネルギー
密度が低下し、高起電力、高エネルギーを有するリチウ
ム二次電池は得られなかった。
2. Description of the Related Art Generally, secondary batteries are required to have high energy density, high output density, and low self-discharge rate.
It is inexpensive, has high energy efficiency, and has a long cycle life. As a secondary battery having such performance, a non-aqueous electrolyte battery utilizing electric energy due to movement of lithium ions, a so-called lithium secondary battery is known to have a high electromotive voltage and a high energy density. In this lithium secondary battery, when pure lithium is used for the negative electrode, a negative electrode having a high energy density can be obtained, but at the time of charging, Li is concentrated and deposited at the energetically active point on the lithium surface, which grows. To easily form needle-like crystals, so-called dendrites. When this dendrite grows further, it penetrates the separator and short-circuits with the positive electrode, and because the dendrite itself is active, it easily reacts with the electrolyte and becomes inactive, degrading the negative electrode, and as a result, the cycle life of the battery. It causes problems such as shortening. To solve this problem,
Li alloyed with a metal such as Al, Zn, Pb, etc., which has a high Li diffusion coefficient, was used as the negative electrode body.
The generation of dendrites has been suppressed by diffusing the particles and preventing them from being concentrated and deposited at specific points. However, this method has a problem that the energy density is lower than that when pure lithium is used. Therefore, the Al, Zn, Pb
A method of preventing the generation of dendrites by the alloy layer on the surface of pure lithium while maintaining a high energy density by providing an alloy layer made of such a metal is being studied. However, in this method, in the alloy layer
Since Al, Zn, Pb and the like diffuse into the inside of lithium due to the potential difference, the whole lithium eventually alloys and the energy density of the negative electrode decreases, and a lithium secondary battery with high electromotive force and high energy cannot be obtained.

【0003】本発明の目的は、上記のような問題を解消
し、高起電力、高エネルギーを有するとともに、サイク
ル寿命に優れるリチウム二次電池用負極を提供すること
にある。
An object of the present invention is to solve the above problems and to provide a negative electrode for a lithium secondary battery which has a high electromotive force and a high energy and has an excellent cycle life.

【0004】[0004]

【課題を解決するための手段】本発明者は、リチウム負
極の合金化の方法について検討を重ねた結果、リチウム
表面に、固体電解質の層を介して Al, Zn, Pb 等のLi拡
散能を有する金属の層を形成するようにすると、該固体
電解質により金属層中の金属がリチウム内部に拡散しな
いため、電気化学的に安定した金属層を表面に有するリ
チウム負極が得られることを見出し、本発明を完成する
に至った。即ち、本発明のリチウム二次電池用負極は、
金属リチウムの表面上に、固体電解質層を介してLi拡散
能を有する金属層を設けてなるものであり、望ましくは
該固体電解質層が厚さ0.05〜2μm、金属層がリチ
ウムに対して原子比で5〜45atom%となるように成形
されたものである。
Means for Solving the Problems As a result of repeated studies on a method for alloying a lithium negative electrode, the present inventor has found that the lithium surface has a Li diffusion ability such as Al, Zn, and Pb through a layer of a solid electrolyte. It has been found that a lithium negative electrode having an electrochemically stable metal layer on the surface thereof can be obtained because the metal in the metal layer does not diffuse into lithium when the solid electrolyte layer is formed. The invention was completed. That is, the lithium secondary battery negative electrode of the present invention,
A metal layer having a Li diffusing ability is provided on the surface of metallic lithium through a solid electrolyte layer, preferably the solid electrolyte layer has a thickness of 0.05 to 2 μm, and the metal layer has a thickness relative to lithium. It was molded to have an atomic ratio of 5 to 45 atom%.

【0005】本発明のリチウム二次電池用負極は、図1
に示すように、リチウム層11の表面上に固体電解質層1
2、Li拡散能を有する金属層13をこの順序に積層させた
構成となっている。
The negative electrode for a lithium secondary battery of the present invention is shown in FIG.
On the surface of the lithium layer 11, the solid electrolyte layer 1
2. The metal layer 13 having the Li diffusing ability is laminated in this order.

【0006】上記固体電解質層12は、導電性の固体でそ
の電荷担体がイオンである物質を含む層よりなり、具体
的には、リチウムイオン伝導度の高いLi3 N, Li3 N-Li
I-LiOH, LiI-Al2 O 3等よりなる固体電解質が好適に使
用できる。
[0006] The solid electrolyte layer 12 is a layer containing a substance which is a conductive solid and whose charge carriers are ions, and specifically, Li 3 N, Li 3 N-Li having high lithium ion conductivity.
A solid electrolyte made of I-LiOH, LiI-Al 2 O 3 or the like can be preferably used.

【0007】上記固体電解質層12は、純リチウムを任意
の方法により所望の大きさ、形状に成形して得たリチウ
ム層11の表面上に、キャスティング、プレス成形、CV
D法等の方法により、厚さ0.05〜2μm、好ましく
は0.1〜1μmとなるように形成する。この固体電解
質層12の厚さが0.05μm未満であると、金属層13中
の金属がリチウム層11へ拡散し、負極全体が合金化して
そのエネルギー密度が低下し、一方2μmを越えると、
固体電解質層12の電気抵抗が過大となって導電性が低下
するため好ましくない。
The solid electrolyte layer 12 is formed by casting pure lithium into a desired size and shape by an arbitrary method, and casting, press molding, CV on the surface of the lithium layer 11.
It is formed by a method such as D method so as to have a thickness of 0.05 to 2 μm, preferably 0.1 to 1 μm. When the thickness of the solid electrolyte layer 12 is less than 0.05 μm, the metal in the metal layer 13 diffuses into the lithium layer 11, and the entire negative electrode is alloyed to lower its energy density. On the other hand, when it exceeds 2 μm,
It is not preferable because the electric resistance of the solid electrolyte layer 12 becomes excessive and the conductivity decreases.

【0008】上記Li拡散能を有する金属層13としては、
Li拡散係数が10-10 cm2 -1以上、好ましくは10-6
cm2 -1以上である金属が使用でき、このような金属の
例として、 Al, Zn, Pb 等が挙げられる。Li拡散係数が
10-10 cm2 -1未満の金属を使用すると、充電時に析
出Liが十分に拡散せず特定のポイントに集中してデンド
ライトを形成し、電池のサイクル特性が劣化するため好
ましくない。
As the metal layer 13 having the Li diffusing ability,
Li diffusion coefficient is 10 -10 cm 2 S -1 or more, preferably 10 -6
A metal having a cm 2 S -1 or more can be used, and examples of such a metal include Al, Zn, Pb and the like. When a metal having a Li diffusion coefficient of less than 10 -10 cm 2 S -1 is used, precipitated Li does not sufficiently diffuse during charging and concentrates at a specific point to form dendrites, which deteriorates the cycle characteristics of the battery, which is preferable. Absent.

【0009】上記金属層13は、上記金属材料をスパッタ
リング、CVD法、真空蒸着等の方法により、リチウム
層11のリチウムに対して原子比で5〜45atom%、好ま
しくは10〜20atom%となるように上記固体電解質層
12の表面上に蒸着して形成する。この金属層13の金属が
リチウムに対して原子比で5atom%未満となると、析出
Liの拡散が不十分となってデンドライトを形成し、一方
45atom%を越えると相対的に金属リチウム層11が薄く
なって電池の起電力が低下するため好ましくない。
The metal layer 13 has an atomic ratio of 5 to 45 atom%, preferably 10 to 20 atom% with respect to lithium of the lithium layer 11 by a method such as sputtering, a CVD method, or vacuum deposition of the metal material. Above solid electrolyte layer
It is formed by vapor deposition on the surface of 12. When the metal content of the metal layer 13 is less than 5 atom% with respect to lithium, precipitation occurs.
The diffusion of Li is insufficient to form dendrites, while when it exceeds 45 atom%, the metallic lithium layer 11 becomes relatively thin and the electromotive force of the battery decreases, which is not preferable.

【0010】本発明の負極体は、リチウム二次電池用の
負極として使用されるものであるが、正極および電解質
としては、従来既知のものを使用すればよい。具体的に
は、MnO2 、 LiCoO2 等を活物質とする正極、ならびに
LiClO4 、LiBF4 等のリチウム塩をエチレンカーボネー
ト、1,2-ジメトキシエタン等の有機溶媒に溶解させて得
られる電解液または上記リチウム塩をポリエチレンオキ
シド、ポリプロピレンオキシド等のポリマーに混合して
得られる固体電解質等が使用できる。
The negative electrode body of the present invention is used as a negative electrode for a lithium secondary battery, and conventionally known ones may be used as the positive electrode and the electrolyte. Specifically, a positive electrode using MnO 2 , LiCoO 2 or the like as an active material, and
An electrolytic solution obtained by dissolving a lithium salt such as LiClO 4 or LiBF 4 in an organic solvent such as ethylene carbonate or 1,2-dimethoxyethane, or obtained by mixing the lithium salt with a polymer such as polyethylene oxide or polypropylene oxide. A solid electrolyte or the like can be used.

【0011】上記負極体を用いて電池を作製する場合
は、上記金属層13形成面が正極に対向するように負極体
を配設し、例えば図2に示すような構成とする。
When a battery is manufactured by using the above-mentioned negative electrode body, the negative electrode body is arranged so that the surface on which the metal layer 13 is formed faces the positive electrode, and has a structure as shown in FIG. 2, for example.

【0012】[0012]

【作用】上記構成のリチウム二次電池用負極は、金属リ
チウムの表面上に固体電解質層を介してLi拡散能を有す
る金属層を形成したので、該金属層中の金属がリチウム
内部に拡散しないため電気化学的に安定した金属層を表
面に有するリチウム負極となっている。よってこのリチ
ウム二次電池用負極は、純リチウムにより高エネルギー
密度を維持しながら、金属層により充電時に析出Liが拡
散することによってデンドライトの発生を効果的に防ぐ
ことができるという作用・効果を有するものとなってい
る。したがって、リチウム二次電池の高起電力、高エネ
ルギーを維持させながらそのサイクル寿命を向上させる
ことができるようになる。
In the negative electrode for a lithium secondary battery having the above structure, since a metal layer having a Li diffusing ability is formed on the surface of metallic lithium through the solid electrolyte layer, the metal in the metallic layer does not diffuse into lithium. Therefore, the lithium negative electrode has an electrochemically stable metal layer on the surface. Therefore, this negative electrode for a lithium secondary battery has the action and effect that it is possible to effectively prevent the generation of dendrites due to the diffusion of deposited Li during charging by the metal layer while maintaining a high energy density with pure lithium. It has become a thing. Therefore, the cycle life of the lithium secondary battery can be improved while maintaining high electromotive force and high energy.

【0013】[0013]

【実施例】以下、本発明の実施例を示しより具体的に説
明する。なお、本発明がこれに限定されるものでないこ
とは言うまでもない。 実施例1 (負極の作製)厚さ0.25mmの金属リチウムシートを
直径20mmに打ち抜き、片面にニッケルメッシュを圧着
した。この円板状金属リチウムのニッケルメッシュ圧着
面の反対面上に、Li 3 Nをキャスティングにより成形し
て、厚さ0.1μmの固体電解質層を形成した。さら
に、固体電解質層の表面に、Alをスパッタリングにより
厚さ1μm(金属リチウムに対し原子比20atom%)と
なるように蒸着して、負極体を作製した。
EXAMPLES Examples of the present invention will now be described in more detail. Needless to say, the present invention is not limited to this. Example 1 (Preparation of Negative Electrode) A metal lithium sheet having a thickness of 0.25 mm was punched out to a diameter of 20 mm, and a nickel mesh was pressure-bonded to one surface thereof. Li 3 N was molded by casting on the surface opposite to the nickel mesh pressure-bonded surface of the disk-shaped metallic lithium to form a solid electrolyte layer having a thickness of 0.1 μm. Further, Al was vapor-deposited on the surface of the solid electrolyte layer by sputtering so as to have a thickness of 1 μm (atomic ratio to metal lithium: 20 atom%), to prepare a negative electrode body.

【0014】(リチウム二次電池の作製)リチウム・コ
バルト複合酸化物(LiCoO 2 )を粉砕して得た正極活物
質8重量部、アセチレンブラック1重量部およびテフロ
ン粉末1重量部を十分に混合し、この混合物100mg
を、孔径20.0mmのダイスを用いて、圧力5000Kg
/cm 2 でニッケルメッシュ上にプレス成形して、片面に
ニッケルメッシュを圧着した厚さ1.0mmの円板状正極
体を作製した。別に、含水量を50ppm 以下に調製した
プロピレンカーボネートに、1mol /リットルの過塩素
酸リチウムを溶解して電解液を調製した。また、厚さ
0.5mmの多孔性ポリプロピレンフィルムを、直径2
5.0mmに打ち抜いてセパレータを作製した。
(Preparation of Lithium Secondary Battery) Lithium
Baltic complex oxide (LiCoO2 ) Crushed positive electrode active material
Quality 8 parts by weight, acetylene black 1 part by weight and tefro
1 part by weight of powder was thoroughly mixed, and 100 mg of this mixture was added.
Using a die with a hole diameter of 20.0 mm and pressure of 5000 kg
/cm 2Press-mold on nickel mesh with
Disc-shaped positive electrode 1.0 mm thick with nickel mesh crimped
The body was made. Separately, the water content was adjusted to 50 ppm or less
1 mol / l perchlorine in propylene carbonate
Lithium acid was dissolved to prepare an electrolytic solution. Also the thickness
A 0.5 mm porous polypropylene film with a diameter of 2
A separator was prepared by punching out into 5.0 mm.

【0015】上記の負極体、正極体およびセパレータ
を、図2に示す構成に組立て、上記負極体1にはステン
レス製負極キャップ5を、正極体2にはステンレス製正
極缶6をそれぞれ取り付け、電解液を容器内に注入した
後、ガスケット7で封止して試験用リチウム二次電池D
を作製した。このリチウム二次電池Dの起電力を二端子
法で測定したところ、表1に示す通りであった。
The above-mentioned negative electrode body, positive electrode body and separator are assembled into the structure shown in FIG. 2, a stainless steel negative electrode cap 5 is attached to the negative electrode body 1, and a stainless steel positive electrode can 6 is attached to the positive electrode body 2 for electrolysis. After injecting the liquid into the container, it is sealed with a gasket 7 and is a test lithium secondary battery D.
Was produced. When the electromotive force of this lithium secondary battery D was measured by the two-terminal method, it was as shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】(充放電試験)上記試験用リチウム二次電
池Dを用いて、0.5mA/cm2 の電流密度で上限電圧
4.2V、下限電圧2Vに設定して充放電を100回繰
り返した。この充放電の100回目における充放電効率
を充放電初期と比較してその低下を調べた。また、上記
試験用リチウム二次電池Dのエネルギー密度を測定し
た。これらの試験の結果は、表1に示す通りであった。
(Charge / Discharge Test) Using the test lithium secondary battery D, charge / discharge was repeated 100 times at a current density of 0.5 mA / cm 2 at an upper limit voltage of 4.2 V and a lower limit voltage of 2 V. . The charge / discharge efficiency at the 100th charging / discharging was compared with that at the beginning of charging / discharging, and the decrease was examined. Further, the energy density of the test lithium secondary battery D was measured. The results of these tests were as shown in Table 1.

【0018】比較例1 上記実施例1において、固体電解質層を形成せずにAl金
属層を直接リチウム表面に形成して負極体を作製する以
外は全て同様にして試験用リチウム二次電池を作製し
た。
Comparative Example 1 A test lithium secondary battery was prepared in the same manner as in Example 1 except that a solid electrolyte layer was not formed and an Al metal layer was directly formed on the lithium surface to prepare a negative electrode. did.

【0019】比較例2 上記実施例1において、固体電解質層および金属層を形
成せず、リチウムのみを使用して負極体を作製する以外
は全て同様にして試験用リチウム二次電池を作製した。
Comparative Example 2 A test lithium secondary battery was manufactured in the same manner as in Example 1 except that the solid electrolyte layer and the metal layer were not formed and the negative electrode body was manufactured using only lithium.

【0020】実施例2〜5 上記実施例1において、負極体の固体電解質層およびAl
金属層の厚さを表1に示すように変量する以外は全て同
様にして試験用リチウム二次電池を作製した。
Examples 2 to 5 In the above Example 1, the solid electrolyte layer of the negative electrode and Al
A test lithium secondary battery was prepared in the same manner except that the thickness of the metal layer was varied as shown in Table 1.

【0021】(実施例2〜5および比較例1〜2のリチ
ウム二次電池の評価)上記実施例2〜5および比較例1
〜2のそれぞれにおいて得られた試験用リチウム二次電
池の起電力、充放電効率の低下およびエネルギー密度を
実施例1と同様に調べたところ、表1に示す結果が得ら
れた。
(Evaluation of Lithium Secondary Batteries of Examples 2-5 and Comparative Examples 1-2) Above Examples 2-5 and Comparative Example 1
When the electromotive force, the decrease in charge / discharge efficiency, and the energy density of the test lithium secondary batteries obtained in each of Examples 1 to 2 were examined in the same manner as in Example 1, the results shown in Table 1 were obtained.

【0022】[0022]

【発明の効果】以上詳述したように、本発明のリチウム
二次電池用負極においては、リチウムの表面上に固体電
解質層を介してLi拡散能を有する金属層を形成するよう
にしたので、該金属層中の金属がリチウム内部に拡散し
ないため金属層が電気化学的に安定したものとなってい
るのである。したがってこのリチウム二次電池用負極
は、純リチウムにより高エネルギー密度を維持しなが
ら、金属層により充電時にLiが拡散することによってデ
ンドライトの発生を効果的に防ぐことができるという効
能を有するものである。よって、本発明のリチウム二次
電池用負極は、高エネルギーを有するとともに、充放電
の繰り返しによっても放電容量の低下が見られず、サイ
クル劣化がほとんど見られない優れたものである。した
がって、本発明によって、充放電のサイクル寿命に優
れ、高起電力、高エネルギー密度を有するリチウム二次
電池が得られる。
As described above in detail, in the negative electrode for a lithium secondary battery of the present invention, since the metal layer having the Li diffusing ability is formed on the surface of lithium through the solid electrolyte layer, Since the metal in the metal layer does not diffuse into lithium, the metal layer is electrochemically stable. Therefore, this negative electrode for a lithium secondary battery has an effect that it is possible to effectively prevent generation of dendrite due to diffusion of Li during charging by the metal layer while maintaining a high energy density with pure lithium. . Therefore, the negative electrode for a lithium secondary battery of the present invention is excellent in that it has a high energy, no decrease in discharge capacity is observed even after repeated charging and discharging, and almost no cycle deterioration is observed. Therefore, according to the present invention, a lithium secondary battery having excellent charge / discharge cycle life, high electromotive force, and high energy density can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム二次電池用負極の一実施例を
示す模式断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a negative electrode for a lithium secondary battery of the present invention.

【図2】本発明の負極体を用いたリチウム二次電池の一
例を示す模式断面図である。
FIG. 2 is a schematic cross-sectional view showing an example of a lithium secondary battery using the negative electrode body of the present invention.

【符号の説明】 11 リチウム層 12 固体電解質層 13 Li拡散金属層 L リチウム二次電池用負極[Explanation of symbols] 11 lithium layer 12 solid electrolyte layer 13 Li diffusion metal layer L negative electrode for lithium secondary battery

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属リチウムの表面上に、固体電解質層
を介してLi拡散能を有する金属層を設けてなるリチウム
二次電池用負極。
1. A negative electrode for a lithium secondary battery, comprising a metal layer having Li diffusing ability provided on the surface of metallic lithium via a solid electrolyte layer.
【請求項2】 固体電解質層が厚さ0.05〜2μmと
なるように成形されたものである請求項1記載のリチウ
ム二次電池用負極。
2. The negative electrode for a lithium secondary battery according to claim 1, wherein the solid electrolyte layer is formed to have a thickness of 0.05 to 2 μm.
【請求項3】 Li拡散能を有する金属層がリチウムに対
して原子比で5〜45atom%となるように成形されたも
のである請求項1または2に記載のリチウム二次電池用
負極。
3. The negative electrode for a lithium secondary battery according to claim 1, wherein the metal layer having a Li diffusing ability is formed so as to have an atomic ratio to lithium of 5 to 45 atom%.
JP5093360A 1993-04-20 1993-04-20 Negative electrode for lithium secondary battery Pending JPH06310125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5093360A JPH06310125A (en) 1993-04-20 1993-04-20 Negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5093360A JPH06310125A (en) 1993-04-20 1993-04-20 Negative electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH06310125A true JPH06310125A (en) 1994-11-04

Family

ID=14080124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5093360A Pending JPH06310125A (en) 1993-04-20 1993-04-20 Negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH06310125A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340257A (en) * 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd Lithium secondary battery
EP1162675A2 (en) * 2000-06-08 2001-12-12 Sumitomo Electric Industries, Ltd. Negative electrode of lithium secondary battery
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
JP2004247317A (en) * 1998-12-03 2004-09-02 Sumitomo Electric Ind Ltd Lithium secondary battery
JP2005353309A (en) * 2004-06-08 2005-12-22 Tokyo Institute Of Technology Lithium cell element
CN111725558A (en) * 2019-03-20 2020-09-29 宁德时代新能源科技股份有限公司 Solid electrolyte and all-solid-state lithium metal battery thereof
CN113892205A (en) * 2019-04-19 2022-01-04 株式会社Lg新能源 Electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340257A (en) * 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd Lithium secondary battery
JP2004247317A (en) * 1998-12-03 2004-09-02 Sumitomo Electric Ind Ltd Lithium secondary battery
EP1162675A2 (en) * 2000-06-08 2001-12-12 Sumitomo Electric Industries, Ltd. Negative electrode of lithium secondary battery
EP1162675A3 (en) * 2000-06-08 2004-09-08 Sumitomo Electric Industries, Ltd. Negative electrode of lithium secondary battery
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
JP2003115293A (en) * 2001-07-31 2003-04-18 Nec Corp Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
US7202000B2 (en) 2001-07-31 2007-04-10 Nec Corporation Anode for secondary battery, secondary battery using same and method for fabricating anode
JP2005353309A (en) * 2004-06-08 2005-12-22 Tokyo Institute Of Technology Lithium cell element
CN111725558A (en) * 2019-03-20 2020-09-29 宁德时代新能源科技股份有限公司 Solid electrolyte and all-solid-state lithium metal battery thereof
CN113892205A (en) * 2019-04-19 2022-01-04 株式会社Lg新能源 Electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same
US20220200097A1 (en) * 2019-04-19 2022-06-23 Lg Energy Solution, Ltd. Electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same

Similar Documents

Publication Publication Date Title
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
WO1995024742A1 (en) High capacity rechargeable cell having manganese dioxide electrode
US5532087A (en) Electrochemical cell
JP3182195B2 (en) Electrode for non-aqueous electrolyte secondary battery and battery using the same
JPS6313267A (en) Lithium secondary battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JP5329066B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
JP5342188B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
JPS63308868A (en) Secondary cell
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JPS62226563A (en) Nonaqueous electrolyte secondary battery
JPH0536401A (en) Lithium secondary battery
JPH07307152A (en) Negative electrode for lithium secondary battery and manufacture thereof
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JPS63175348A (en) Lithium cell
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JPS62123651A (en) Lithium secondary battery
JP2001338647A (en) Lithium secondary battery
JPS62150657A (en) Secondary cell
JP3197658B2 (en) Non-aqueous secondary battery
JPS6174258A (en) Lithium organic secondary battery
JPS62119865A (en) Lithium secondary cell
JPH0636759A (en) Lithium secondary battery
JPS60124357A (en) Negative electrode of nonaqueous electrolyte secondary battery
US9525166B2 (en) Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery