JPS6313267A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPS6313267A
JPS6313267A JP61158501A JP15850186A JPS6313267A JP S6313267 A JPS6313267 A JP S6313267A JP 61158501 A JP61158501 A JP 61158501A JP 15850186 A JP15850186 A JP 15850186A JP S6313267 A JPS6313267 A JP S6313267A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
amorphous
negative electrode
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61158501A
Other languages
Japanese (ja)
Other versions
JPH0724219B2 (en
Inventor
Kazumi Yoshimitsu
由光 一三
Fusaji Kita
房次 喜多
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61158501A priority Critical patent/JPH0724219B2/en
Publication of JPS6313267A publication Critical patent/JPS6313267A/en
Publication of JPH0724219B2 publication Critical patent/JPH0724219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase charge-discharge cycle performance by using a lithium alloy obtained by electrochemically alloying lithium with amorphous metal in a negative electrode. CONSTITUTION:Two lithium sheets and an amorphous aluminium sheet are used as negative material. A lithium sheet 3a, an amorphous aluminium sheet 3b, and a lithium sheet 3c are placed in order inside a negative can 1, and a battery is assembled in a regular way. The lithium sheets 3a, 3c and the amorphous aluminium sheet 3b are electrochemically alloyed under the existence of electrolyte to form a negative electrode 3. Thereby, a lithium secondary battery having excellent charge-discharge performance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリチウム二次電池に係わり、さらに詳しくは
その負極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lithium secondary battery, and more particularly to improvement of its negative electrode.

〔従来の技術〕[Conventional technology]

従来、リチウム二次電池では、負極に金属リチウムを単
独で用いていたが、充放電サイクルの繰り返しにより、
負極が劣化するという問題があった。これは充電時にリ
チウムがデンドライト状(樹枝状)に析出し、このデン
ドライト状リチウムが非常に活性′で電解液と反応して
充放電反応に利用できなくなったり、あるいは上記デン
ドライト状リチウムが充放電の繰り返しにより成長して
、その根元から折れ脱落して充放電反応に利用できなく
なるからである。また、充放電の繰り返しによって成長
したデンドライト状リチウムが正極と負極とを隔離する
セパレータを貫通し、正極と接触して内部短絡を引き起
こし、電池としての機能を喪失させるという問題も発生
した。
Conventionally, lithium secondary batteries used metallic lithium alone as the negative electrode, but due to repeated charging and discharging cycles,
There was a problem that the negative electrode deteriorated. This is because lithium precipitates in the form of dendrites (dendritic branches) during charging, and this dendrite lithium is extremely active and reacts with the electrolyte, making it unusable for charging and discharging reactions. This is because the cells grow through repetition, break off from their roots, and fall off, making them unusable for charging and discharging reactions. There was also the problem that dendrite-like lithium, which had grown through repeated charging and discharging, penetrated the separator separating the positive and negative electrodes and came into contact with the positive electrode, causing an internal short circuit and causing the battery to lose its functionality.

そのため、リチウム−アルミニウム合金を負極に用いる
ことによって、負極の劣化を防止し、充放電サイクル特
性を向上させることが提案されている(例えば、米国特
許第4,002,492号明細書)。
Therefore, it has been proposed to prevent deterioration of the negative electrode and improve charge/discharge cycle characteristics by using a lithium-aluminum alloy for the negative electrode (for example, US Pat. No. 4,002,492).

上記のような負極にリチウム−アルミニウム合金を用い
る提案は、充電時に、リチウムとアルミニウムとの電気
化学的合金化反応を利用して、リチウムをアルミニウム
中に拡散させ、析出リチウムの電解液との反応やデンド
ライト成長を抑制しようとするものであるが、充電時に
おけるリチウムとアルミニウムとの電気化学的合金化反
応が充分に速いとはいえず、必ずしも満足し得るほどの
充放電サイクル特性の向上は得られなかった。
The proposal to use a lithium-aluminum alloy for the negative electrode as described above utilizes an electrochemical alloying reaction between lithium and aluminum during charging to diffuse lithium into the aluminum and cause the precipitated lithium to react with the electrolyte. However, the electrochemical alloying reaction between lithium and aluminum during charging is not fast enough, and it is not possible to improve charge/discharge cycle characteristics to a satisfactory level. I couldn't.

そのため、本発明者らは、アルミニウムやインジウムを
母材にし、これにチタン、ホウ素、鉛、ニッケル、鉄、
コバルトなどを少量添加することによって、結晶の微細
化を行い、粒界を多く存在させ、リチウムの粒界拡散に
より、充電時におけるリチウムの電気化学的合金化反応
を速めて、充放電サイクル特性を向上させ得ることを見
出し、それについて既に特許出願をしてきたく特願昭6
0−159723〜159725号、特願昭60−25
9335号)。
Therefore, the present inventors used aluminum or indium as a base material, and added titanium, boron, lead, nickel, iron, etc.
By adding a small amount of cobalt, etc., the crystals are made finer and there are more grain boundaries, and the lithium grain boundary diffusion accelerates the electrochemical alloying reaction of lithium during charging, improving charge-discharge cycle characteristics. I have discovered something that could be improved and have already filed a patent application for it.
No. 0-159723 to 159725, patent application 1986-25
No. 9335).

上記のように、チタン、ホウ素、鉛、ニッケル、鉄、コ
バルトなどを少量アルミニウムと合金化しておくことに
よって、充電時のリチウムとアルミニウムとの電気化学
的合金化反応がアルミニウムを単独で用いる場合よりも
速くなり、活性な析出リチウムの状態でとどまる時間が
少なくなり、また析出リチウムのデンドライト成長が抑
制されて、充放電サイクル特性がアルミニウムを単独で
用いる場合に比べて大幅に向上する。
As mentioned above, by alloying a small amount of titanium, boron, lead, nickel, iron, cobalt, etc. with aluminum, the electrochemical alloying reaction between lithium and aluminum during charging is faster than when aluminum is used alone. This also reduces the amount of time the lithium remains in the active precipitated state, suppresses the growth of dendrites in the precipitated lithium, and significantly improves charge-discharge cycle characteristics compared to when aluminum is used alone.

しかしながら、電池を使用する立場からは、電池がより
高い充放電サイクル特性を有することが望ましく、上記
のような先願技術による充放電サイクル特性の向上では
必ずしも満足できない面があった。
However, from the standpoint of using the battery, it is desirable for the battery to have higher charge-discharge cycle characteristics, and the improvements in charge-discharge cycle characteristics provided by the prior art described above are not necessarily satisfactory.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は前述した従来製品において生じていた析出リ
チウムの電解液との反応やデンドライト成長に基づく充
放電サイクル特性の低下を抑制し、かつ本出願人が先に
出願した先願技術によるよりもさらに充放電サイクル特
性を向上させたリチウム二次電池を提供することを目的
とする。
This invention suppresses the deterioration of charge-discharge cycle characteristics caused by the reaction of precipitated lithium with the electrolyte solution and the growth of dendrites, which occurred in the conventional products mentioned above, and further improves this invention compared to the prior art previously filed by the present applicant. The purpose of the present invention is to provide a lithium secondary battery with improved charge/discharge cycle characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、結晶構造を持たない非晶質金属(Amorp
hous metal )とリチウムを電気化学的に合
金化させて負極に用いることにより、充電時のリチウム
との電気化学的合金化反応を、結晶構造を有するアルミ
ニウムを単独で用いる場合に比べてはもとより、アルミ
ニウムを母材にし、これにチタン、ホウ素、鉛、ニッケ
ル、鉄、コバルト、クロムなどを少量添加して合金化さ
せた結晶構造を有するアルミニウム合金や、インジウム
を母材にして鉛を少量添加した結晶構造を有するインジ
ウム合金を用いる場合よりもさらに速くし、それによっ
て、充放電サイクル特性を向上させたものである。
The present invention deals with amorphous metals (Amorphous metals) having no crystal structure.
By electrochemically alloying lithium with lithium and using it for the negative electrode, the electrochemical alloying reaction with lithium during charging is improved compared to when aluminum having a crystal structure is used alone. Aluminum alloys have a crystalline structure made by using aluminum as a base material and adding small amounts of titanium, boron, lead, nickel, iron, cobalt, chromium, etc., and aluminum alloys that have a crystal structure that is made of indium as a base material and adding small amounts of lead. The speed is even faster than when using an indium alloy with a crystalline structure, thereby improving the charge/discharge cycle characteristics.

非晶質金属が充電時のリチウムとの電気化学的合金化速
度を速める理由は次のように考えられる。
The reason why the amorphous metal accelerates the rate of electrochemical alloying with lithium during charging is thought to be as follows.

すなわち、リチウム二次電池における負極として、リチ
ウム−アルミニウム合金を用いる場合、焼鈍した結晶粒
子の大きな軟質アルミニウムよりも、冷間圧延した結晶
粒子の小さい粒界の多い硬質アルミニウムを用いる方が
リチウムの可逆性が優れており、充放電サイクル特性の
良好なリチウム二次電池が得られる。これについては本
出願人の出願に係わる特願昭60−50170号明細書
に詳記する通りである。この理由は、充電時、リチウム
がアルミニウム板の表面に電着して電気化学的に合金化
する場合、まずリチウムが粒界よりアルミニウム板中に
進入し、その粒界からアルミニウム結晶中に拡散してい
くからであると考えられる。
In other words, when using a lithium-aluminum alloy as a negative electrode in a lithium secondary battery, it is better to use cold-rolled hard aluminum with small crystal grains and many grain boundaries than annealed soft aluminum with large crystal grains. A lithium secondary battery with excellent charging and discharging cycle characteristics can be obtained. This is detailed in the specification of Japanese Patent Application No. 1983-50170 filed by the present applicant. The reason for this is that when lithium is electrodeposited on the surface of an aluminum plate and alloyed electrochemically during charging, lithium first enters the aluminum plate through the grain boundaries and then diffuses into the aluminum crystals from the grain boundaries. This is thought to be due to the fact that

したがって、粒界が多く、結晶粒子の小さいものほどリ
チウムの可逆性が優れており、充放電サイクル特性が向
上すると考えられる。事実、アルミニウムにホウ素、チ
タン、ニッケルなどを少量添加したものは粒界がより多
く存在し、アルミニウム結晶はより微細化し、前述した
先願に開示されるように、充放電サイクル特性が向上す
る。このように結晶粒子が小さいほど、リチウムの可逆
性が良くなり、充放電サイクル特性が向上する。そして
、結晶構造を持たない非晶質金属では、上記結晶粒子の
小さいものほど、リチウムとの合金化がより速くなると
いうことのさらに発展したものに相当し、結晶構造がな
いため結晶粒子中への拡散工程を要さないので、充電時
のリチウムの電気化学的合金化反応がより速くなり、そ
れによって充放電サイクル特性がより一層向上する。そ
して、非晶質金属は、リチウムとの合金化に際して、電
気化学的に合金化させるので、リチウムとの合金化によ
ってその非晶質状態を失うこともなく、また、充放電の
繰り返しによっても、その非晶質状態を失うことがない
Therefore, it is considered that the larger the number of grain boundaries and the smaller the crystal grains, the better the reversibility of lithium and the better the charge/discharge cycle characteristics. In fact, when a small amount of boron, titanium, nickel, etc. is added to aluminum, there are more grain boundaries, the aluminum crystal becomes finer, and the charge/discharge cycle characteristics are improved as disclosed in the earlier application mentioned above. As described above, the smaller the crystal particles, the better the reversibility of lithium and the better the charge/discharge cycle characteristics. In amorphous metals that do not have a crystalline structure, this is a further development of the above-mentioned idea that the smaller the crystalline particles, the faster the alloying with lithium. Since no diffusion step is required, the electrochemical alloying reaction of lithium during charging becomes faster, thereby further improving the charge-discharge cycle characteristics. Since amorphous metals are electrochemically alloyed when alloyed with lithium, they do not lose their amorphous state due to alloying with lithium, and even after repeated charging and discharging. It never loses its amorphous state.

本発明において、非晶質金属はリチウムと電気化学的に
合金化できるものであることが必要であるが、このよう
な非晶質金属としては、例えばアルミニウム(Al)、
インジウム(In)、ガリウム(Ga)、ビスマス(B
i)、ホウ素(B)、“   ケイ素(St)、鉛(P
b)、錫(Sn)、亜鉛(Zn)、銀(Ag)、金(A
u) 、白金(Pt)などの金属またはそれらの金属を
母材にした合金の非晶質状態のものがあげられる。これ
ら非晶質金属は、一般に真空蒸着法、イオンブレーティ
ング法、メッキ法、液体急冷法などによってつくられる
In the present invention, it is necessary that the amorphous metal can be electrochemically alloyed with lithium, and such amorphous metals include, for example, aluminum (Al),
Indium (In), Gallium (Ga), Bismuth (B)
i), boron (B), silicon (St), lead (P
b), tin (Sn), zinc (Zn), silver (Ag), gold (A
u) Metals such as platinum (Pt) or alloys made of these metals as base materials can be cited. These amorphous metals are generally produced by a vacuum deposition method, an ion blating method, a plating method, a liquid quenching method, or the like.

リチウムと上記非晶質金属との合金化は、電気化学的合
金化によって行われるが、この電気化学的合金化は電池
内で行うこともできるし、また電池外で行うこともでき
る。
Alloying of lithium and the above-mentioned amorphous metal is performed by electrochemical alloying, and this electrochemical alloying can be performed within the battery or outside the battery.

そして、これら非晶質金属と合金化させるリチウムの量
、いわゆるリチウムの仕込み量は、電池の用途に応じて
種々に変えられるが、特にリチウム合金中リチウムが2
0〜48原子%(atomic%)の範囲になるように
するのが好ましい。
The amount of lithium to be alloyed with these amorphous metals, the so-called lithium charge amount, can be varied depending on the purpose of the battery, but in particular, lithium in the lithium alloy is
It is preferable that the content be in the range of 0 to 48 atomic %.

本発明の電池において、リチウムイオン伝導性有機非水
電解液としては、例えば1,2−ジメトキシエタン、1
.2−ジェトキシエタン、エチレンカーボネート、プロ
ピレンカーボネート、T−ブチロラクトン、テトラヒド
ロフラン、1.3−ジオキソラン、4−メチル−1,3
−ジオキソランなどの単独または2種以上の混合溶媒に
、例えばLiC+04、LiPF6、LiAsF5、L
i5bFs、LiBF4、L iB (C6H5)aな
どの電解質を1種または2種以上溶解したものが用いら
れる。また、上記電解液中におけるLiPFBなどの電
解質を安定化させるために、例えばヘキサメチルホスホ
リックトリアミドなどの安定化剤を電解液中に加えてお
くことも好ましく採用される。
In the battery of the present invention, examples of the lithium ion conductive organic non-aqueous electrolyte include 1,2-dimethoxyethane, 1
.. 2-jethoxyethane, ethylene carbonate, propylene carbonate, T-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3
- For example, LiC+04, LiPF6, LiAsF5, L
A solution containing one or more electrolytes such as i5bFs, LiBF4, and LiB (C6H5)a is used. Furthermore, in order to stabilize the electrolyte such as LiPFB in the electrolytic solution, it is also preferably employed to add a stabilizer such as hexamethylphosphoric triamide to the electrolytic solution.

そして、正極を構成する正極活物質としては、例えば二
硫化チタン(TiS2)、二硫化モリブデン(MO32
)、三硫化モリブデン(MO33)、二硫化鉄(FeS
2)、硫化ジルコニウム(ZrS2)、二硫化ニオブ(
NbS2)、三硫化リンニッケル(NiPS3)、バナ
ジウムセレナイド(y3e2)などの遷移金属のカルコ
ゲン化合物が用いられる。特に二硫化チタンは結晶構造
が層状で、その内部でのリチウムイオンの拡散定数が大
きく、正極側における充放電反応がスムーズに進行し、
リチウムの可逆性が良好なことから好用される。
Examples of positive electrode active materials constituting the positive electrode include titanium disulfide (TiS2) and molybdenum disulfide (MO32).
), molybdenum trisulfide (MO33), iron disulfide (FeS
2), zirconium sulfide (ZrS2), niobium disulfide (
Chalcogen compounds of transition metals such as NbS2), nickel phosphorous trisulfide (NiPS3), and vanadium selenide (y3e2) are used. In particular, titanium disulfide has a layered crystal structure, and the diffusion constant of lithium ions inside it is large, allowing the charge/discharge reaction on the positive electrode side to proceed smoothly.
It is preferred because lithium has good reversibility.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 厚さ0.1mm、直径7.8+wmのリチウム板2枚と
、厚さ0.3m+m、直径7.8■の非晶質アルミニウ
ム坂とを負極材料に用い、後に第2図に基づいて説明す
るように、負極缶内に一方のリチウム板、非晶質アルミ
ニウム板、他方のリチウム板の順に配置し、以後、常法
に準じて電池組立を行い、電解液の存在下でリチウムと
非晶質アルミニウムとを電気化学的に合金化して負極と
し、リチウム二次電池を作製した。なお、用いられた非
晶質アルミニウムは液体急冷法によって得られたもので
ある。
Example 1 Two lithium plates with a thickness of 0.1 mm and a diameter of 7.8+wm and an amorphous aluminum slope with a thickness of 0.3m+m and a diameter of 7.8cm were used as negative electrode materials, and later based on FIG. As explained in the following, one lithium plate, an amorphous aluminum plate, and the other lithium plate are placed in this order in the negative electrode can.Then, the battery is assembled according to a conventional method, and lithium and lithium are mixed in the presence of an electrolyte. A lithium secondary battery was produced by electrochemically alloying it with amorphous aluminum to form a negative electrode. Note that the amorphous aluminum used was obtained by a liquid quenching method.

また、以後の実施例における非晶質金属も同様に液体急
冷法によって得られたものである。
Moreover, the amorphous metals in the following examples were similarly obtained by the liquid quenching method.

上記負極を有する電池を第1図に示す。図中、1はステ
ンレス鋼製で表面にニッケルメッキを施した負極缶で、
2は負極缶1の内面にスポット溶接したステンレス鋼網
よりなる負極集電体である。
A battery having the above negative electrode is shown in FIG. In the figure, 1 is a negative electrode can made of stainless steel with nickel plating on the surface.
2 is a negative electrode current collector made of a stainless steel mesh spot-welded to the inner surface of the negative electrode can 1.

3は負極で、この負極3は第2図に示すように−方のリ
チウム板3a、非晶質金属板(本実施例では、非晶質ア
ルミニウムff1) 3bおよび(5方のリチウム板3
cを上記負極缶1内に配置して、電解液の存在下で合金
化することにより形成したものである。
3 is a negative electrode, and as shown in FIG.
c is placed in the negative electrode can 1 and alloyed in the presence of an electrolytic solution.

4は微孔性ポリプロピレンフィルムからなるセパレータ
、5はポリプロピレン不織布からなる電解液吸収体であ
る。6は二硫化チタンを活物質とし、ポリテトラフルオ
ロエチレンをバインダーとして加圧成形した正極で、厚
さ0.5mm、直径7 、0m+@の円板状をしており
、その一方の面にはステンレス鋼網からなる正極集電体
7が配設されている。8はステンレス鋼製で表面にニッ
ケルメッキを施した正極缶で、9はポリプロピレン製の
ガスケットである。そして、この電池には、4−メチル
−1,3−ジオキソラン60容量%、1,2−ジメトキ
シエタン34.8容量%およびヘキサメチルホスホリッ
クトリアミド5.2容量%からなる混合溶媒にLiPF
6を1.0 mol/ 12熔解した有機非水電解液が
使用されている。この電池の負極中のリチウムの組成は
約38原子%で、負極理論電気量は約20mAhであり
、正極の理論電気量は約8mAhである。
4 is a separator made of a microporous polypropylene film, and 5 is an electrolyte absorber made of a polypropylene nonwoven fabric. 6 is a positive electrode that is pressure-molded using titanium disulfide as an active material and polytetrafluoroethylene as a binder, and has a disc shape with a thickness of 0.5 mm and a diameter of 7.0 m+@, and one side of the positive electrode is A positive electrode current collector 7 made of stainless steel mesh is provided. 8 is a positive electrode can made of stainless steel with a nickel-plated surface, and 9 is a gasket made of polypropylene. In this battery, LiPF was added to a mixed solvent consisting of 60% by volume of 4-methyl-1,3-dioxolane, 34.8% by volume of 1,2-dimethoxyethane, and 5.2% by volume of hexamethylphosphoric triamide.
An organic nonaqueous electrolyte in which 1.0 mol/12 of 6 is dissolved is used. The composition of lithium in the negative electrode of this battery is about 38 atomic %, the theoretical amount of electricity of the negative electrode is about 20 mAh, and the theoretical amount of electricity of the positive electrode is about 8 mAh.

上記電解液におけるヘキサメチルホスホリックトリアミ
ドはLiPF6を安定化させるための安定化剤である。
Hexamethylphosphoric triamide in the electrolyte is a stabilizer for stabilizing LiPF6.

比較例1 実施例1における非晶質アルミニウム板に代えて、市販
の硬質アルミニウム板を用いたほかは実施例1と同様の
構成からなるリチウム二次電池を作製した。
Comparative Example 1 A lithium secondary battery having the same structure as in Example 1 was produced except that a commercially available hard aluminum plate was used in place of the amorphous aluminum plate in Example 1.

実施例2 実施例1における非晶質アルミニウム板に代えて、非晶
質インジウム板を用いたほかは実施例1と同様の構成か
らなるリチウム二次電池を作製した。
Example 2 A lithium secondary battery having the same structure as Example 1 was produced except that an amorphous indium plate was used instead of the amorphous aluminum plate in Example 1.

比較例2 実施例2における非晶質インジウム板に代えて、結晶構
造を持つ市販のインジウム板を用いたほかは実施例2と
同様の構成からなるリチウム二次型   池を作製した
Comparative Example 2 A secondary lithium battery having the same structure as in Example 2 was produced, except that a commercially available indium plate having a crystal structure was used in place of the amorphous indium plate in Example 2.

実施例3 実施例1における非晶質アルミニウム板に代えて、非晶
質のビスマス−鉛−錫合金板(組成:ビスマス50重量
%、鉛32重量%、絽18重量%)を用いたほかは実施
例1と同様の構成からなるリチウム二次電池を作製した
Example 3 In place of the amorphous aluminum plate in Example 1, an amorphous bismuth-lead-tin alloy plate (composition: 50% by weight of bismuth, 32% by weight of lead, 18% by weight of porcelain) was used. A lithium secondary battery having the same configuration as in Example 1 was produced.

比較例3 実施例3における非晶質ビスマス−鉛−錫合金板に代え
て、結晶構造を持つ通常のビスマス−鉛−錫合金板(組
成は上記実施例3の非晶質合金板と同じ)を用いたほか
は実施例3と同様の構成からなるリチウム二次電池を作
製した。
Comparative Example 3 Instead of the amorphous bismuth-lead-tin alloy plate in Example 3, a normal bismuth-lead-tin alloy plate with a crystal structure (composition is the same as the amorphous alloy plate in Example 3) A lithium secondary battery having the same configuration as in Example 3 was produced except that the following was used.

実施例4 実施例1における非晶質アルミニウム仮に代えて、非晶
質のアルミニウムーチタン合金板(組成ニアルミニウム
99N量%、チタン1重量%)を用いたほかは実施例1
と同様の構成からなるリチウム二次電池を作製した。
Example 4 Example 1 except that an amorphous aluminum-titanium alloy plate (composition: Nialuminum 99N amount %, titanium 1% by weight) was used instead of the amorphous aluminum in Example 1.
A lithium secondary battery with the same configuration was fabricated.

比較例4 実施例4における非晶質アルミニウムーチタン合金板に
代えて、結晶構造を持つ通常のアルミニウムーチタン合
金板(組成は上記実施例4の非晶質合金板と同じ)を用
いたほがは実施例4と同様の構成からなるリチウム二次
電池を作製した。
Comparative Example 4 In place of the amorphous aluminum-titanium alloy plate in Example 4, a normal aluminum-titanium alloy plate with a crystalline structure (composition is the same as the amorphous alloy plate in Example 4) was used. A lithium secondary battery having the same configuration as in Example 4 was manufactured.

上記実施例1〜4の電池と比較例1〜4の電池を0.5
mAhの定電流で2 m A hの充放電を1.5〜2
.5vの電圧範囲でサイクルさせた際の1.5■終止で
見た2mAh放電可能なサイクル数を調べ、その結果を
第1表に示した。
The batteries of Examples 1 to 4 and the batteries of Comparative Examples 1 to 4 were 0.5
Charging and discharging 2 mAh with constant current of mAh 1.5~2
.. The number of cycles capable of discharging 2 mAh at the end of 1.5 volts when cycled in a voltage range of 5 V was investigated, and the results are shown in Table 1.

第      1      表 第1表に示すように、実施例1〜4の電池はそれぞれ対
応する比較例の電池に比べて、2 m A h放電可能
な充放電サイクル数が多く、充放電サイクル特性が優れ
ていた。
Table 1 As shown in Table 1, the batteries of Examples 1 to 4 had a greater number of charge/discharge cycles capable of discharging 2 mAh than the corresponding batteries of comparative examples, and had excellent charge/discharge cycle characteristics. was.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、非晶質金属をリチウ
ムと電気化学的に合金化させて負極に用いることにより
、充放電サイクル特性の優れたリチウム二次1M泊を提
供することができた。
As explained above, in the present invention, by electrochemically alloying an amorphous metal with lithium and using it for the negative electrode, it was possible to provide a lithium secondary 1M battery with excellent charge/discharge cycle characteristics. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るリチウム二次電池の一例を示す断
面図であり、第2図は第1図に示す電池の負橿材料とし
て用いられたリチウムと非晶質金属とが合金化する前の
状態を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a lithium secondary battery according to the present invention, and FIG. 2 is a cross-sectional view showing an example of a lithium secondary battery according to the present invention, and FIG. FIG. 3 is a sectional view showing the previous state.

Claims (4)

【特許請求の範囲】[Claims] (1)正極、リチウムイオン伝導性有機非水電解液およ
び負極を備えてなるリチウム二次電池において、負極に
リチウムと非晶質金属とを電気化学的に合金化したリチ
ウム合金を用いたことを特徴とするリチウム二次電池。
(1) In a lithium secondary battery comprising a positive electrode, a lithium ion conductive organic non-aqueous electrolyte, and a negative electrode, a lithium alloy, which is an electrochemical alloy of lithium and an amorphous metal, is used for the negative electrode. Features: Lithium secondary battery.
(2)非晶質金属がアルミニウム、インジウム、ガリウ
ム、ビスマス、ホウ素、ケイ素、鉛、錫、亜鉛、銀、金
、白金またはこれらの金属を母材にした合金の非晶質体
である特許請求の範囲第1項記載のリチウム二次電池。
(2) A patent claim in which the amorphous metal is an amorphous body of aluminum, indium, gallium, bismuth, boron, silicon, lead, tin, zinc, silver, gold, platinum, or an alloy based on these metals. The lithium secondary battery according to item 1.
(3)負極に用いるリチウム合金のリチウムの仕込み量
が20〜48原子%である特許請求の範囲第1項または
第2項記載のリチウム二次電池。
(3) The lithium secondary battery according to claim 1 or 2, wherein the lithium alloy used for the negative electrode contains 20 to 48 at.% of lithium.
(4)正極活物質が二硫化チタンである特許請求の範囲
第1項、第2項または第3項記載のリチウム二次電池。
(4) The lithium secondary battery according to claim 1, 2, or 3, wherein the positive electrode active material is titanium disulfide.
JP61158501A 1986-07-04 1986-07-04 Lithium secondary battery Expired - Lifetime JPH0724219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158501A JPH0724219B2 (en) 1986-07-04 1986-07-04 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158501A JPH0724219B2 (en) 1986-07-04 1986-07-04 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS6313267A true JPS6313267A (en) 1988-01-20
JPH0724219B2 JPH0724219B2 (en) 1995-03-15

Family

ID=15673114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158501A Expired - Lifetime JPH0724219B2 (en) 1986-07-04 1986-07-04 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0724219B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124956A (en) * 1987-11-09 1989-05-17 Nippon Denso Co Ltd Lithium secondary battery
JPH01132729A (en) * 1987-11-17 1989-05-25 Riken Corp Alloy for lithium battery electrode
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
WO2001078167A1 (en) * 2000-04-05 2001-10-18 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
JP2002508577A (en) * 1998-03-26 2002-03-19 ミネソタ マイニング アンド マニュファクチャリング カンパニー Tin alloy electrode composition for lithium batteries
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
US7537862B2 (en) 2004-11-15 2009-05-26 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
US7858232B2 (en) 2004-11-15 2010-12-28 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2012529747A (en) * 2009-06-09 2012-11-22 スリーエム イノベイティブ プロパティズ カンパニー Thin film alloy electrode
WO2023211383A3 (en) * 2022-04-26 2023-11-30 Nanyang Technological University Anode comprising amorphous metallic aluminum

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124956A (en) * 1987-11-09 1989-05-17 Nippon Denso Co Ltd Lithium secondary battery
JPH01132729A (en) * 1987-11-17 1989-05-25 Riken Corp Alloy for lithium battery electrode
JP2540112B2 (en) * 1987-11-17 1996-10-02 株式会社リケン Alloy for negative electrode of lithium secondary battery
JP2002508577A (en) * 1998-03-26 2002-03-19 ミネソタ マイニング アンド マニュファクチャリング カンパニー Tin alloy electrode composition for lithium batteries
EP2219253A2 (en) 1998-09-18 2010-08-18 Canon Kabushiki Kaisha Electrode material
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7183018B2 (en) 1998-09-18 2007-02-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7534528B2 (en) 1998-09-18 2009-05-19 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
WO2001078167A1 (en) * 2000-04-05 2001-10-18 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
US7635540B2 (en) 2004-11-15 2009-12-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
US7537862B2 (en) 2004-11-15 2009-05-26 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
US7858232B2 (en) 2004-11-15 2010-12-28 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7955735B2 (en) 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2012529747A (en) * 2009-06-09 2012-11-22 スリーエム イノベイティブ プロパティズ カンパニー Thin film alloy electrode
WO2023211383A3 (en) * 2022-04-26 2023-11-30 Nanyang Technological University Anode comprising amorphous metallic aluminum

Also Published As

Publication number Publication date
JPH0724219B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US4002492A (en) Rechargeable lithium-aluminum anode
JP2597091B2 (en) Lithium secondary battery
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPS6313267A (en) Lithium secondary battery
US4844996A (en) Lithium cell
JPS6166369A (en) Lithium secondary battery
JPH0665044B2 (en) Lithium organic primary battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JP5342188B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JPS6220246A (en) Nonaqueous electrolyte secondary battery
JPS62226563A (en) Nonaqueous electrolyte secondary battery
JPS6326951A (en) Lithium secondary battery
JPS6220248A (en) Nonaqueous electrolyte secondary battery
JPS62119865A (en) Lithium secondary cell
JPS6313265A (en) Lithium secondary battery
JPS6313266A (en) Lithium secondary battery
JPH0582128A (en) Lithium secondary battery
JPS58111276A (en) Organic electrolyte secondary battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JPS62119866A (en) Lithium secondary cell
JPS6220249A (en) Nonaqueous electrolyte secondary battery
JPS6166370A (en) Lithium secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term