JPS6313265A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPS6313265A
JPS6313265A JP61158499A JP15849986A JPS6313265A JP S6313265 A JPS6313265 A JP S6313265A JP 61158499 A JP61158499 A JP 61158499A JP 15849986 A JP15849986 A JP 15849986A JP S6313265 A JPS6313265 A JP S6313265A
Authority
JP
Japan
Prior art keywords
lithium
aluminum
bismuth
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61158499A
Other languages
Japanese (ja)
Inventor
Kazumi Yoshimitsu
由光 一三
Fusaji Kita
房次 喜多
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61158499A priority Critical patent/JPS6313265A/en
Publication of JPS6313265A publication Critical patent/JPS6313265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase charge-discharge performance by alloying lithium with an aluminium-bismuth alloy and using in a negative electrode. CONSTITUTION:Two lithium sheets and an aluminium-bismuth alloy containing 1wt% bismuth are used as negative material. A lithium sheet 3a, an aluminium- bismuth sheet 3b, and a lithium sheet 3c are placed in order inside a negative can 1, and a battery is assembled in a regular way. The lithium sheets 3a, 3c and the aluminium-bismuth alloy sheet 3b are electrochemically alloyed under the existence of electrolyte to form a negative electrode 3. Thereby, a lithium secondary battery having excellent charge-discharge cycle performance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリチウム二次電池に係わり、さらに詳しくは
その負極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lithium secondary battery, and more particularly to improvement of its negative electrode.

〔従来の技術〕[Conventional technology]

従来、リチウム二次電池では、負極に金属リチウムを単
独で用いていたが、充放電サイクルの繰り返しにより、
負極が劣化するという問題があった。これは充電時にリ
チウムがデンドライト状(樹枝状)に析出し、このデン
ドライト状リチウムが非常に活性で電解液と反応して充
放電反応に利用できなくなったり、あるいは上記デンド
ライト状リチウムが充放電の繰り返しにより成長して、
その根元から折れ脱落して充放電反応に利用できなくな
るからである。また、充放電の繰り返しによって成長し
たデンドライト状リチウムが正極と負極とを隔離するセ
パレータを貫通し、正極と接触して内部短絡を引き起こ
し、電池としての機能を喪失させるという問題も発生し
た。
Conventionally, lithium secondary batteries used metallic lithium alone as the negative electrode, but due to repeated charging and discharging cycles,
There was a problem that the negative electrode deteriorated. This is because lithium precipitates in a dendrite shape during charging, and this dendrite lithium is very active and reacts with the electrolyte, making it unusable for charging and discharging reactions, or the dendrite lithium is repeatedly charged and discharged. grow by,
This is because it breaks off from its base and falls off, making it unusable for charging and discharging reactions. There was also the problem that dendrite-like lithium, which had grown through repeated charging and discharging, penetrated the separator separating the positive and negative electrodes and came into contact with the positive electrode, causing an internal short circuit and causing the battery to lose its functionality.

そのため、リチウム−アルミニウム合金を負極に用いる
ことによって、負極の劣化を防止し、充放電サイクル特
性を向上させることが捷案されている(例えば、米国特
許第4,002,492号明細書)。
Therefore, it has been proposed to prevent deterioration of the negative electrode and improve charge/discharge cycle characteristics by using a lithium-aluminum alloy for the negative electrode (for example, US Pat. No. 4,002,492).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような負極にリチウム−アルミニウム合金を用い
る提案は、充電時に、リチウムとアルミニウムとの電気
化学的合金化反応を利用して、リチウムをアルミニウム
中に拡散させ、析出リチウムの電解液との反応やデンド
ライト成長を抑制しようとするものであるが、充電時に
おけるリチウムとアルミニウムとの電気化学的合金化反
応が充分に速いとはいえず、必ずしも満足し得るほどの
充放電サイクル特性の向上は得られなかった。
The proposal to use a lithium-aluminum alloy for the negative electrode as described above utilizes an electrochemical alloying reaction between lithium and aluminum during charging to diffuse lithium into the aluminum and cause the precipitated lithium to react with the electrolyte. However, the electrochemical alloying reaction between lithium and aluminum during charging is not fast enough, and it is not possible to improve charge/discharge cycle characteristics to a satisfactory level. I couldn't.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は上述した従来技術の問題点を解決するもので
、リチウムと、アルミニウム−ビスマス合金とを合金化
して負極に用いることによって、充放電サイクル特性の
優れたリチウム二次電池を提供したものである。
This invention solves the problems of the prior art described above, and provides a lithium secondary battery with excellent charge-discharge cycle characteristics by alloying lithium with an aluminum-bismuth alloy and using it for the negative electrode. be.

すなわち、リチウムをアルミニウムとビスマスで合金化
して負極に用いると、充電時のリチウムの電気化学的合
金化反応がリチウム−アルミニラ五合金を負極に用いる
場合より速(なり、析出リチウムの電解液との反応やデ
ンドライト成長がリチウム−アルミニウム合金の場合よ
りも一層防止されるようになり、それによって充放電サ
イクル特性がリチウム−アルミニウム合金の場合よりも
さらに向上するのである。
In other words, if lithium is alloyed with aluminum and bismuth and used for the negative electrode, the electrochemical alloying reaction of lithium during charging will be faster than when using a lithium-aluminum pentalloy for the negative electrode. Reactions and dendrite growth are further inhibited than in the case of lithium-aluminum alloys, thereby improving charge-discharge cycle characteristics even more than in the case of lithium-aluminum alloys.

上記のように、ビスマスをアルミニウムと合金化してお
くことによって、充電時のリチウムとの電気化学的合金
化反応がアルミニウム単独の場合よりも速くなり、充放
電サイクル特性が向上するが、このビスマスは少量でも
充放電サイクル特性の向上にあたり顕著な効果を発揮す
る。すなわち、ビスマスがアルミニウム中に少量添加さ
れると、このビスマスがアルミニウムと合金化した状態
でアルミニウム中で局在化して粒界を形成し、それによ
ってアルミニウムの結晶粒子が小さくなる。
As mentioned above, by alloying bismuth with aluminum, the electrochemical alloying reaction with lithium during charging becomes faster than when aluminum is used alone, improving charge-discharge cycle characteristics. Even in small amounts, it exhibits a remarkable effect in improving charge-discharge cycle characteristics. That is, when a small amount of bismuth is added to aluminum, this bismuth is alloyed with aluminum and localized in the aluminum to form grain boundaries, thereby reducing the size of aluminum crystal grains.

そして、このビスマスが粒界として存在するアルミニウ
ムにリチウムを電気化学的に合金化させると、合金化が
粒界部分から進行し、ついでアルミニウム結晶中にリチ
ウムが拡散するようになる。
When lithium is electrochemically alloyed with aluminum in which bismuth exists as grain boundaries, alloying progresses from the grain boundaries and lithium then diffuses into the aluminum crystal.

つまり、上記の粒界によってリチウムとアルミニウムと
の電気化学的合金化反応面積が広くなり、充電時の合金
化反応が速くなって、析出リチウムの電解液との反応や
デンドライト成長が防止されるようになり、充放電サイ
クル特性が向上する。
In other words, the above grain boundaries widen the electrochemical alloying reaction area between lithium and aluminum, speed up the alloying reaction during charging, and prevent the reaction of precipitated lithium with the electrolyte and the growth of dendrites. , and the charge/discharge cycle characteristics are improved.

アルミニウムとビスマスとの合金化は、通常、それらの
粉末を混合して加熱熔融する、いわゆる冶金学的合金化
によって行われるが、このアルミニウム−ビスマス合金
とリチウムとの合金化は、冶金学的合金化はもとより、
合金化作業がきわめて容易な電解液の存在下での電気化
学的合金化によっても行うことができる。通常、この電
気化学的合金化は電池内で行われるが電池外で行うこと
も可能である。
Alloying of aluminum and bismuth is usually done by so-called metallurgical alloying, in which powders of these are mixed and heated and melted. In addition to
It can also be carried out by electrochemical alloying in the presence of an electrolyte, which makes the alloying operation extremely easy. Usually, this electrochemical alloying is carried out inside the battery, but it can also be carried out outside the battery.

アルミニウムとビスマスの合金化は任意の割合で行い得
るが、本発明において、アルミニウム−ビスマス合金中
におけるビスマスの量は、通常、0.01〜lO重量%
、特に0.1〜5重量%にするのが好ましい。これは、
ビスマスの量が上記範囲より少なくなると、粒界の形成
量が少なくなって、充電時のリチウムとの電気化学的合
金化反応を速める効果が少なくなり、また、ビスマスの
量が上記範囲より多くなると、アルミニウムとの均一な
合金化ができがたくなり、フォイル状、つまり薄い板挟
に形成することが困難になって、負極形成に際して最も
容易な電池内でのリチウムとの電気化学的合金化が行い
がたくなるからである。
Aluminum and bismuth can be alloyed in any proportion, but in the present invention, the amount of bismuth in the aluminum-bismuth alloy is usually 0.01 to 10% by weight.
In particular, it is preferably 0.1 to 5% by weight. this is,
If the amount of bismuth is less than the above range, the amount of grain boundaries formed will be reduced and the effect of accelerating the electrochemical alloying reaction with lithium during charging will be reduced, and if the amount of bismuth is more than the above range , it becomes difficult to uniformly alloy with aluminum, and it becomes difficult to form a foil shape, that is, a thin plate, and electrochemical alloying with lithium inside the battery, which is the easiest way to form a negative electrode, becomes difficult. This is because it becomes difficult to act.

そして、このアルミニウム−ビスマス合金と合金化させ
るリチウムの量、いわゆるリチウムの仕込み量は、電池
の用途に応じて種々に変えられるが、特にリチウム合金
中リチウムが20〜48原子%(atomic%)にな
るようにするのが好ましい。
The amount of lithium to be alloyed with this aluminum-bismuth alloy, the so-called lithium charge amount, can be varied depending on the use of the battery, but in particular, the lithium content in the lithium alloy is 20 to 48 atomic%. It is preferable to do so.

本発明の電池において、リチウムイオン伝導性を機非水
電解液としては、例えば1.2−ジメトキシエタン、1
.2−ジメトキシエタン、エチレンカーボネート、プロ
ピレンカーボネート、T−ブチロラクトン、テトラヒド
ロフラン、1.3−ジオキソラン、4−メチル−1,3
−ジオキソランなどの単独または2種以上の混合溶媒に
、例えばLiClO4、LiPF6、LiAsF6、l
、iSbF6、l、1BF4、LiB(CaH2)4な
どの電解質を1種または2種以上熔解したものが用いら
れる。また、上記電解液中におけるLiPF5などの電
解質を安定化させるために、例えばヘキサメチルホスホ
リックトリアミドなどの安定化剤を電解液中に加えてお
くことも好ましく採用される。
In the battery of the present invention, the nonaqueous electrolyte having lithium ion conductivity may be, for example, 1,2-dimethoxyethane, 1
.. 2-dimethoxyethane, ethylene carbonate, propylene carbonate, T-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3
- For example, LiClO4, LiPF6, LiAsF6, l
, iSbF6, 1, 1BF4, LiB(CaH2)4 and the like are used. Furthermore, in order to stabilize the electrolyte such as LiPF5 in the electrolytic solution, it is also preferably employed to add a stabilizer such as hexamethylphosphoric triamide to the electrolytic solution.

そして、正極を構成する正極活物質としては、例えば二
硫化チタン(TiS2)、二硫化モリブデン(MO32
)、三硫化モリブデン(MoS3)、二硫化鉄(FeS
2)、硫化ジルコニウム(ZrS2)、二硫化ニオブ(
NbS2)、三硫化リンニッケル(NIPS3)、バナ
ジウムセレナイド(VSe2)などの遷移金属のカルコ
ゲン化合物が用いられる。特に二硫化チタンは結晶構造
が層状で、その内部でのリチウムイオンの拡散定数が大
きく、この二硫化チタンを正極活物質として用いると、
正極側における充放電反応がスムーズに進行し、リチウ
ムの可逆性が良好なことから好用される。
Examples of positive electrode active materials constituting the positive electrode include titanium disulfide (TiS2) and molybdenum disulfide (MO32).
), molybdenum trisulfide (MoS3), iron disulfide (FeS
2), zirconium sulfide (ZrS2), niobium disulfide (
Chalcogen compounds of transition metals such as NbS2), nickel phosphorous trisulfide (NIPS3), and vanadium selenide (VSe2) are used. In particular, titanium disulfide has a layered crystal structure, and the diffusion constant of lithium ions inside it is large, so when titanium disulfide is used as a positive electrode active material,
It is preferred because the charging and discharging reactions on the positive electrode side proceed smoothly and the reversibility of lithium is good.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 厚さ0.1mm、直径7.81のリチウム板2枚と、厚
さ0.31111、直径7.8m+aでビスマスを0.
1重量%含有するアルミニウム−ビスマス合金板とを負
極材料に用い、後に第2図に基づいて説明するように、
負極缶内に一方のリチウム板、アルミニウム−ビスマス
合金板、他方のリチウム板の順に配置し、以後、常法に
準じて電池組立を行い、電解液の存在下でリチウムとア
ルミニウム−ビスマス合金とを電気化学的に合金化して
負極とし、リチウム二次電池を作製した。
Example 1 Two lithium plates with a thickness of 0.1 mm and a diameter of 7.81 mm, and bismuth with a thickness of 0.31111 mm and a diameter of 7.8 m+a.
An aluminum-bismuth alloy plate containing 1% by weight was used as the negative electrode material, and as explained later based on FIG. 2,
One lithium plate, an aluminum-bismuth alloy plate, and the other lithium plate are placed in this order in the negative electrode can, and then the battery is assembled according to a conventional method, and the lithium and aluminum-bismuth alloy are combined in the presence of an electrolyte. A lithium secondary battery was fabricated by electrochemically alloying it into a negative electrode.

上記負極を有する電池を第1図に示す。図中、1はステ
ンレス鋼製で表面にニッケルメッキを施した負極缶で、
2は負極缶1の内面にスポット溶接したステンレス鋼網
よりなる負極集電体である。
A battery having the above negative electrode is shown in FIG. In the figure, 1 is a negative electrode can made of stainless steel with nickel plating on the surface.
2 is a negative electrode current collector made of a stainless steel mesh spot-welded to the inner surface of the negative electrode can 1.

3は負極で、この負極3は第2図に示すように一方のリ
チウム板3a、ビスマスを1重量%含有するアルミニウ
ム−ビスマス合金板3bおよび他方のリチウム板3cを
上記負極缶1内に配置して、電解液の存在下で合金化す
ることにより形成したものである。4は微孔性ポリプロ
ピレンフィルムからなるセパレータ、5はポリプロピレ
ン不織布からなる電解液吸収体である。6は二硫化チタ
ンを活物質とし、ポリテトラフルオロエチレンをバイン
ダーとして加圧成形した正極で、厚さ0.5mm、直径
7.0mmの円板状をしており、その一方の面にはステ
ンレス鋼網からなる正極集電体7が配置されている。8
はステンレス鋼製で表面にニッケルメッキを施した正極
缶で、9はポリプロピレン製のガスケットである。そし
て、この電池には、4−メチル−1,3−ジオキソラン
60容量%、1.2−ジメトキシエタン34.8容量%
およびヘキサメチルホスホリックトリアミド5.2容量
%からなる混合溶媒にl、1PF6を1.0蒙o1/1
溶解した有機非水電解液が使用されている。この電池の
負極中のリチウムの組成は約38原子%で、負極理論電
気量は約20mAhであり、正極の理論電気量は約8 
m A hである。上記電解液におけるヘキサメチルホ
スホリックトリアミドはLiPF6を安定化させるため
の安定化剤である。
3 is a negative electrode, and as shown in FIG. 2, this negative electrode 3 has one lithium plate 3a, an aluminum-bismuth alloy plate 3b containing 1% by weight of bismuth, and the other lithium plate 3c arranged in the negative electrode can 1. It is formed by alloying in the presence of an electrolyte. 4 is a separator made of a microporous polypropylene film, and 5 is an electrolyte absorber made of a polypropylene nonwoven fabric. 6 is a positive electrode that is pressure-molded using titanium disulfide as an active material and polytetrafluoroethylene as a binder. It has a disc shape with a thickness of 0.5 mm and a diameter of 7.0 mm, and one side is covered with stainless steel. A positive electrode current collector 7 made of steel mesh is arranged. 8
9 is a positive electrode can made of stainless steel with a nickel-plated surface, and 9 is a gasket made of polypropylene. This battery contains 60% by volume of 4-methyl-1,3-dioxolane and 34.8% by volume of 1,2-dimethoxyethane.
and 1.0 mole of PF6 in a mixed solvent consisting of 5.2% by volume of hexamethylphosphoric triamide.
A dissolved organic non-aqueous electrolyte is used. The composition of lithium in the negative electrode of this battery is approximately 38 at%, the theoretical amount of electricity in the negative electrode is approximately 20 mAh, and the theoretical amount of electricity in the positive electrode is approximately 8
m Ah. Hexamethylphosphoric triamide in the electrolyte is a stabilizer for stabilizing LiPF6.

実施例2 実施例1におけるアルミニウム−ビスマス合金板に代え
て、ビスマス含有量が0.5M量%のアルミニウム−ビ
スマス合金板を用いたほかは実施例1と同様の構成から
なるリチウム二次電池を作製した。
Example 2 A lithium secondary battery having the same configuration as Example 1 was used, except that an aluminum-bismuth alloy plate with a bismuth content of 0.5 M% was used in place of the aluminum-bismuth alloy plate in Example 1. Created.

実施例3 実施例1におけるアルミニウム−ビスマス合金板に代え
て、ビスマス含有量が2.0重量%のアルミニウム−ビ
スマス合金板を用いたほかは実施例1と同様の構成から
なるリチウム二次電池を作製した。
Example 3 A lithium secondary battery having the same structure as Example 1 was used, except that an aluminum-bismuth alloy plate with a bismuth content of 2.0% by weight was used in place of the aluminum-bismuth alloy plate in Example 1. Created.

実施例4 実施例1におけるアルミニウム−ビスマス合金板に代え
て、ビスマスを5.0重量%含有するアルミニウム−ビ
スマス合金板を用いたほかは実施例1と同様の構成から
なるリチウム二次電池を作製した。
Example 4 A lithium secondary battery was produced with the same configuration as Example 1, except that an aluminum-bismuth alloy plate containing 5.0% by weight of bismuth was used instead of the aluminum-bismuth alloy plate in Example 1. did.

比較例1 厚さ0.1mm、直径7.81のリチウム坂2攻と、厚
さ0.3mm、直径7.8mmの硬質アルミニウム板(
粒界が軟質アルミニウム板より多く、リチウムとの電気
化学的合金化反応が軟質アルミニウム板より速い)とを
負極材料として用い、負極缶に一方のリチウム板、アル
ミニウム板、他方のリチウム板の順に配置し、電解液の
存在下でリチウムとアルミニウムとを電気化学的に合金
化して負極としたほかは実施例1と同様の構成からなる
リチウム二次電池を作製した。
Comparative Example 1 A lithium slope 2 piece with a thickness of 0.1 mm and a diameter of 7.81 mm and a hard aluminum plate with a thickness of 0.3 mm and a diameter of 7.8 mm (
There are more grain boundaries than a soft aluminum plate, and the electrochemical alloying reaction with lithium is faster than a soft aluminum plate). A lithium secondary battery was fabricated having the same structure as in Example 1, except that lithium and aluminum were electrochemically alloyed in the presence of an electrolytic solution to form a negative electrode.

上記実施例1〜4の電池および比較例1の電池を0.5
mAの定電流で2mAhの充放電を1.5〜2.5vの
電圧範囲でサイクルさせたときの1.5V終止で見た2
mAh放電可能なサイクル数を調べ、その結果を第1表
に示した。
The batteries of Examples 1 to 4 and the battery of Comparative Example 1 were 0.5
2 observed at 1.5V end when cycling 2mAh charge/discharge at mA constant current in voltage range of 1.5-2.5V
The number of cycles capable of mAh discharge was investigated, and the results are shown in Table 1.

第      1      表 第1表に示すように、ビスマスをそれぞれ0.1重量%
、0.5重量%、2.0重量%、5.O3i量%含有す
るアルミニウム−ビスマス合金を用いた実施例1,2.
3および4の電池は、ビスマスをまったく含まないアル
ミニウムを用いた比較例1の電池に比べて、1.5v終
止で見た場合の2mAh放電可能な充放電サイクル数が
多く、充放電サイクル特性が優れていた。
Table 1 As shown in Table 1, each amount of bismuth was 0.1% by weight.
, 0.5% by weight, 2.0% by weight, 5. Examples 1 and 2 using aluminum-bismuth alloy containing % O3i.
Batteries No. 3 and No. 4 have a greater number of charge/discharge cycles capable of discharging 2 mAh when viewed at 1.5 V termination, and have better charge/discharge cycle characteristics than the battery of Comparative Example 1, which uses aluminum that does not contain any bismuth. It was excellent.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、リチウムと、アルミ
ニウム−ビスマス合金とを合金化して負極とすることに
より、充放電サイクル特性の優れたリチウム二次電池を
堤供することができた。
As explained above, in the present invention, by alloying lithium and an aluminum-bismuth alloy to form a negative electrode, it was possible to provide a lithium secondary battery with excellent charge-discharge cycle characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るリチウム二次電池の一例を示す断
面図であり、第2図は第1図に示す電池の負極材料とし
て用いられたリチウムとアルミニウム−ビスマス合金と
が合金化する前の伏動を示す断面図である。 3・・・負極、 3a、 3c・・・リチウム板、 3
b・・・アルミニウム−ビスマス合金板、 6・・・正
極非六# 第  1  図 3・・負極 32・・リチウム板 3b ・アルミニウム−ビスマス合金板3Cリチウム板
FIG. 1 is a cross-sectional view showing an example of a lithium secondary battery according to the present invention, and FIG. 2 shows a state before alloying of lithium and aluminum-bismuth alloy used as the negative electrode material of the battery shown in FIG. FIG. 3... Negative electrode, 3a, 3c... Lithium plate, 3
b... Aluminum-bismuth alloy plate, 6... Positive electrode non-sixth # 1 Figure 3... Negative electrode 32... Lithium plate 3b - Aluminum-bismuth alloy plate 3C lithium plate

Claims (4)

【特許請求の範囲】[Claims] (1)正極、リチウムイオン伝導性有機非水電解液およ
び負極を有するリチウム二次電池において、負極にリチ
ウムと、アルミニウム−ビスマス合金とを合金化したリ
チウム合金を用いたことを特徴とするリチウム二次電池
(1) A lithium secondary battery having a positive electrode, a lithium ion conductive organic nonaqueous electrolyte, and a negative electrode, characterized in that the negative electrode uses a lithium alloy obtained by alloying lithium with an aluminum-bismuth alloy. Next battery.
(2)アルミニウム−ビスマス合金のビスマスの含有量
が0.01〜10重量%である特許請求の範囲第1項記
載のリチウム二次電池。
(2) The lithium secondary battery according to claim 1, wherein the aluminum-bismuth alloy has a bismuth content of 0.01 to 10% by weight.
(3)負極として用いるリチウム合金のリチウムの仕込
み量が20〜48原子%である特許請求の範囲第1項ま
たは第2項記載のリチウム二次電池。
(3) The lithium secondary battery according to claim 1 or 2, wherein the lithium alloy used as the negative electrode contains 20 to 48 at.% of lithium.
(4)正極活物質が二硫化チタンである特許請求の範囲
第1項、第2項または第3項記載のリチウム二次電池。
(4) The lithium secondary battery according to claim 1, 2, or 3, wherein the positive electrode active material is titanium disulfide.
JP61158499A 1986-07-04 1986-07-04 Lithium secondary battery Pending JPS6313265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158499A JPS6313265A (en) 1986-07-04 1986-07-04 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158499A JPS6313265A (en) 1986-07-04 1986-07-04 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPS6313265A true JPS6313265A (en) 1988-01-20

Family

ID=15673071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158499A Pending JPS6313265A (en) 1986-07-04 1986-07-04 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS6313265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886221A4 (en) * 2018-11-22 2022-08-03 Sumitomo Chemical Company Limited Negative-electrode active material for non-aqueous electrolyte secondary cell, negative electrode, cell, and laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886221A4 (en) * 2018-11-22 2022-08-03 Sumitomo Chemical Company Limited Negative-electrode active material for non-aqueous electrolyte secondary cell, negative electrode, cell, and laminate

Similar Documents

Publication Publication Date Title
JP2597091B2 (en) Lithium secondary battery
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPH06342673A (en) Lithium secondary battery
JPH0574463A (en) Secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPS6313267A (en) Lithium secondary battery
JPS6166369A (en) Lithium secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPS62211873A (en) Lithium secondary battery
JP2000164207A (en) Nonaqueous electrolyte secondary battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JPH09102312A (en) Secondary battery
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JPS6313265A (en) Lithium secondary battery
JPS6220246A (en) Nonaqueous electrolyte secondary battery
JP3212018B2 (en) Non-aqueous electrolyte secondary battery
JP3324365B2 (en) Negative electrode for lithium secondary battery
JPH1064542A (en) Nonaqueous electrolyte secondary battery
JPS6220248A (en) Nonaqueous electrolyte secondary battery
JPS62139276A (en) Lithium secondary battery
JPS6313266A (en) Lithium secondary battery
JPS62119865A (en) Lithium secondary cell
JPS6220249A (en) Nonaqueous electrolyte secondary battery
JPS6220247A (en) Nonaqueous electrolyte secondary battery
JPS6326951A (en) Lithium secondary battery