JPS6313266A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPS6313266A
JPS6313266A JP61158500A JP15850086A JPS6313266A JP S6313266 A JPS6313266 A JP S6313266A JP 61158500 A JP61158500 A JP 61158500A JP 15850086 A JP15850086 A JP 15850086A JP S6313266 A JPS6313266 A JP S6313266A
Authority
JP
Japan
Prior art keywords
lithium
titanium
boron
aluminum
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61158500A
Other languages
Japanese (ja)
Inventor
Kazumi Yoshimitsu
由光 一三
Fusaji Kita
房次 喜多
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61158500A priority Critical patent/JPS6313266A/en
Publication of JPS6313266A publication Critical patent/JPS6313266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase charge-discharge cycle performance by alloying lithium with an aluminium alloy obtained by adding titanium and boron to aluminium, and using in a negative electrode. CONSTITUTION:Two lithium sheets and an aluminium-titanium-boron alloy containing 0.2wt% titanium and 0.05wt% boron are used as negative material. A lithium sheet 3a, an aluminium-titanium-boron alloy sheet 3b, and a lithium sheet 3c are placed in order inside a negative can 1, and a battery is assembled in a regular way. The lithium sheets 3a, 3c and the aluminium-titanium-boron alloy sheet 3b are alloyed under the existence of electrolyte to form a negative electrode 3. Thereby, a lithium secondary battery having excellent chargedischarge performance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリチウム二次電池に係わり、さらに詳しくは
その負極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lithium secondary battery, and more particularly to improvement of its negative electrode.

〔従来の技術〕[Conventional technology]

従来、リチウム二次電池では、負極に金属リチウムを単
独で用いていたが、充放電サイクルの繰り返しにより、
負極が劣化するという問題があった。これは充電時にリ
チウムがデンドライト状(樹枝状)に析出し、このデン
ドライト状リチウムが非常に活性で電解液と反応して充
放電反応に利用できなくなったり、あるいは上記デンド
ライト状リチウムが充放電の繰り返しにより成長して、
その根元から折れ脱落して充放電反応に利用できなくな
るからである。また充放電の繰り返しによって成長した
デンドライト状リチウムが正極と負極とを隔離するセパ
レータを貫通し、正極と接触して内部短絡を引き起こし
、電池としての機能を喪失させるという問題も発生した
Conventionally, lithium secondary batteries used metallic lithium alone as the negative electrode, but due to repeated charging and discharging cycles,
There was a problem that the negative electrode deteriorated. This is because lithium precipitates in a dendrite shape during charging, and this dendrite lithium is very active and reacts with the electrolyte, making it unusable for charging and discharging reactions, or the dendrite lithium is repeatedly charged and discharged. grow by,
This is because it breaks off from its base and falls off, making it unusable for charging and discharging reactions. There was also the problem that dendrite-like lithium, which had grown through repeated charging and discharging, penetrated the separator separating the positive and negative electrodes and came into contact with the positive electrode, causing an internal short circuit and causing the battery to lose its function.

そのため、リチウム−アルミニウム合金を負極に用いる
ことによって、負極の劣化を防止し、充放電サイクル特
性を向上させることが提案されている(例えば、米国特
許第4,002,492号明III書)。
Therefore, it has been proposed to prevent deterioration of the negative electrode and improve charge/discharge cycle characteristics by using a lithium-aluminum alloy for the negative electrode (for example, US Pat. No. 4,002,492, Book III).

上記のような負極にリチウム−アルミニウム合金を用い
る提案は、充電時に、リチウムとアルミニウムとの電気
化学的合金化反応を利用して、リチウムをアルミニウム
中に拡散させ、析出リチウムの電解液との反応やデンド
ライト成長を抑制しようとするものであるが、充電時に
おけるリチウムとアルミニウムとの電気化学的合金化反
応が充分に速いとはいえず、必ずしも満足し得るほどの
充放電サイクル特性の向上は得られなかった。
The proposal to use a lithium-aluminum alloy for the negative electrode as described above utilizes an electrochemical alloying reaction between lithium and aluminum during charging to diffuse lithium into the aluminum and cause the precipitated lithium to react with the electrolyte. However, the electrochemical alloying reaction between lithium and aluminum during charging is not fast enough, and it is not possible to improve charge/discharge cycle characteristics to a satisfactory level. I couldn't.

そこで、本発明者らは、アルミニウムを母材にし、これ
に少量のホウ素CB)やチタン(Ti)を添加する(た
だし、それぞれを単独で添加する)ことによって、結晶
の微細化を行い、粒界を多く存在させ、リチウムの粒界
拡散により、リチウムとアルミニウムの電気化学的合金
化を速めて、充放電サイクル特性を向上させ得ることを
見出し、それについて既に特許出願をしてきた(特願昭
60−159723号、特願昭60−259335号)
Therefore, the present inventors made the crystals finer by using aluminum as the base material and adding small amounts of boron (CB) and titanium (Ti) (however, each was added alone). We have discovered that by increasing the presence of many boundaries and diffusing lithium at grain boundaries, we can speed up the electrochemical alloying of lithium and aluminum and improve the charge/discharge cycle characteristics, and have already filed a patent application for this. No. 60-159723, patent application No. 60-259335)
.

上記のよう記、ホウ素やチタンをアルミニウムと合金化
しておくことにより、充電時のリチウムとアルミニウム
との電気化学的合金化反応がアルミニウムを単独で用い
る場合より速くなって、活性な析出リチウムの状態でと
どまる時間が少なくなり、また析出リチウムのデンドラ
イト成長が抑制されて、充放電サイクル特性がアルミニ
ウムを単独で用いる場合に比べて大幅に向上する。
As mentioned above, by alloying boron or titanium with aluminum, the electrochemical alloying reaction between lithium and aluminum during charging becomes faster than when aluminum is used alone, resulting in active precipitated lithium. The amount of time the precipitated lithium remains in the aluminum layer is reduced, and dendrite growth of precipitated lithium is suppressed, resulting in significantly improved charge-discharge cycle characteristics compared to when aluminum is used alone.

しかしながら、電池を使用する立場からは、電池がより
高い充放電サイクル特性を有することが望ましく、上記
のような先願技術による充放電サイクル特性の向上では
必ずしも満足できない面があった。
However, from the standpoint of using the battery, it is desirable for the battery to have higher charge-discharge cycle characteristics, and the improvements in charge-discharge cycle characteristics provided by the prior art described above are not necessarily satisfactory.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は前述のような従来技術の問題点を解決すると
共に、本出願人が先に特許出願した先願技術によるより
もさらに充放電サイクル特性を向上させたリチウム二次
電池を提供することを目的とする。
The present invention solves the problems of the prior art as described above, and also aims to provide a lithium secondary battery with improved charge/discharge cycle characteristics than the prior art for which the present applicant previously filed a patent application. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、アルミニウムを母材にし、これにチタンとホ
ウ素を添加して合金化しておくことにより、充電時のリ
チウムとの電気化学的合金化反応をアルミニウム単独の
場合はもとより、アルミニウムーチタン合金やアルミニ
ウムーホウ素合金の場合よりも速くさせ、充放電サイク
ル特性を高めたものである。
The present invention uses aluminum as a base material and alloys it with titanium and boron, which enables the electrochemical alloying reaction with lithium during charging to be performed not only with aluminum alone but also with aluminum-titanium alloys. It has improved charge-discharge cycle characteristics and is faster than aluminum-boron alloys.

すなわち、アルミニウムに少量のチタンとホウ素を加え
ると、アルミニウム中にニホウ化チタン(Ti82)が
形成され、このTiB2が存在したアルミニウム合金で
は、充放電を繰り返しても、結晶粒子の微細化が持続し
、充電時のリチウムとの電気化学的合金化反応が速いと
いう長所が長期間維持され、充放電サイクル特性がアル
ミニウムーチタン合金やアルミニウムーホウ素合金の場
合よりも向上する。
In other words, when small amounts of titanium and boron are added to aluminum, titanium diboride (Ti82) is formed in the aluminum, and in aluminum alloys in which TiB2 is present, the crystal grains continue to become finer even after repeated charging and discharging. The advantage of fast electrochemical alloying reaction with lithium during charging is maintained over a long period of time, and the charge/discharge cycle characteristics are improved compared to aluminum-titanium alloys and aluminum-boron alloys.

アルミニウムとチタン、ホウ素との合金化は、通常、そ
れらの粉末を混合して加熱熔融する、いわゆる冶金学的
合金化によって行われるが、このアルミニウムーチタン
−ホウ素合金とリチウムとの合金化は、冶金学的合金化
はもとより、合金化作業がきわめて容易な電解液の存在
下での電気化学的合金化によっても行うことができる。
Alloying of aluminum, titanium, and boron is usually carried out by so-called metallurgical alloying, in which powders of these materials are mixed and heated and melted, but alloying of this aluminum-titanium-boron alloy with lithium is In addition to metallurgical alloying, it is also possible to carry out electrochemical alloying in the presence of an electrolyte, which makes the alloying operation extremely easy.

通常、この電気化学的合金化は電池内で行われるが電池
外で行うことも可能である。
Usually, this electrochemical alloying is carried out inside the battery, but it can also be carried out outside the battery.

アルミニウム合金中におけるチタンやホウ素の量は、チ
タンを0.01〜2.0重量%、ホう素を0.005〜
0.3重量%にするのが好ましい、これは、チタンやホ
ウ素の量が上記範囲より少なくなると、粒界の形成量が
少なくなって、充電時のリチウムとの電気化学的合金化
反応を速める効果が少なくなり、また、チタンやホウ素
の量が上記範囲より多くなると、アルミニウムとの均一
な合金化が進みにくくなり、チタンやホう素がそのまま
の状態でアルミニウム中に存在し、フォイル状、つまり
薄い板状に形成することが困難になって、負極形成に際
して最も容易な電池内でのリチウムとの電気化学的合金
化が行いがたくなるからである。なお、チタン量とホウ
素量の若干の相違は、基本的にはTi82を生成するの
に4・要な化学量論化を重量%に換算して表示している
ことに基づくものであるが、本発明においては、TiB
2が形成されさえすれば、さらに過剰のチタンやホウ素
が少量存在していてもかまわず、チタン量、ホウ素量と
も前記範囲内で適宜選択することができる。
The amount of titanium and boron in the aluminum alloy is 0.01 to 2.0% by weight for titanium and 0.005 to 2.0% for boron.
It is preferable to set the amount to 0.3% by weight, because if the amount of titanium or boron is less than the above range, the amount of grain boundaries formed will be reduced and the electrochemical alloying reaction with lithium will be accelerated during charging. If the effect decreases, and if the amount of titanium or boron exceeds the above range, uniform alloying with aluminum will be difficult to proceed, and titanium and boron will remain in the aluminum as they are, resulting in a foil-like, In other words, it becomes difficult to form the material into a thin plate shape, and it becomes difficult to perform electrochemical alloying with lithium within the battery, which is the easiest method for forming the negative electrode. The slight difference between the amount of titanium and the amount of boron is basically based on the fact that the stoichiometry required to produce Ti82 is expressed in terms of weight percent. In the present invention, TiB
As long as 2 is formed, a small amount of excess titanium or boron may be present, and both the amount of titanium and the amount of boron can be appropriately selected within the above ranges.

そして、このアルミニウムーチタン−ホウ素合金と合金
化させるリチウムの量、いわゆるリチウムの仕込み量は
、電池の用途に応じて種々に変えられるが、特にリチウ
ム合金中リチウムが20〜48原子%(atomic%
)になるようにするのが好ましい。
The amount of lithium to be alloyed with this aluminum-titanium-boron alloy, the so-called lithium charge amount, can be varied depending on the purpose of the battery.
) is preferable.

本発明の電池において、リチウムイオン伝導性有機非水
電解液としては、例えば1.2−ジメトキシエタン、1
.2−ジェトキシエタン、エチレンカーボネート、プロ
ピレンカーボネート、γ−ブチロラクトン、テトラヒド
ロフラン、1.3−ジオキソラン、4−メチル−1,3
−ジオキソランなどの単独または2種以上の混合溶媒に
、例えばLiClO4、LiPF6、LiAsF6、L
i5bFs、LiBFa、L iB (C6Hc+) 
4などの電解質を1種または2種以上熔解したものが用
いられる。また、上記電解液中におけるLiPF5など
の電解質を安定化させるために、例えばヘキサメチルホ
スホリックトリアミドなどの安定化剤を電解液中に加え
ておくことも好ましく採用される。
In the battery of the present invention, the lithium ion conductive organic nonaqueous electrolyte includes, for example, 1,2-dimethoxyethane, 1
.. 2-jethoxyethane, ethylene carbonate, propylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3
- For example, LiClO4, LiPF6, LiAsF6, L
i5bFs, LiBFa, LiB (C6Hc+)
A solution obtained by dissolving one or more electrolytes such as No. 4 is used. Furthermore, in order to stabilize the electrolyte such as LiPF5 in the electrolytic solution, it is also preferably employed to add a stabilizer such as hexamethylphosphoric triamide to the electrolytic solution.

そして、正極を構成する正極活物質としては、例えば二
硫化チタン(Ti32)、二硫化モリブデン(MnS2
)、三硫化モリブデン(MnS2)、二硫化鉄(FeS
2)、硫化ジルコニウム(ZrS2)、二硫化ニオブ(
NbS2)、三硫化リンニッケル(NiPS3)、バナ
ジウムセレナイド(VSe2)などの遷移金属のカルコ
ゲン化合物が用いられる。特に二硫化チタンは結晶構造
が層状で、その内部でのリチウム°イオンの拡散定数が
太き(、この二硫化チタンを正極活物質として用いると
、正極側における充放電反応がスムーズに進行し、リチ
ウムの可逆性が良好なことから好用される。
Examples of positive electrode active materials constituting the positive electrode include titanium disulfide (Ti32) and molybdenum disulfide (MnS2).
), molybdenum trisulfide (MnS2), iron disulfide (FeS
2), zirconium sulfide (ZrS2), niobium disulfide (
Chalcogen compounds of transition metals such as NbS2), nickel phosphorous trisulfide (NiPS3), and vanadium selenide (VSe2) are used. In particular, titanium disulfide has a layered crystal structure, and the diffusion constant of lithium ions within it is large (When titanium disulfide is used as a positive electrode active material, the charge/discharge reaction on the positive electrode side proceeds smoothly, It is preferred because lithium has good reversibility.

(実施例〕 つぎに実施例をあげて本発明をさらに詳細に説明する。(Example〕 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 厚さ0.1mm、直径7.hmのリチウム板2枚と、厚
さ0.3sN、直径7.hmでチタンを0.2重量%お
よびホウ素を0.05重量%含有するアルミニウムーチ
タン−ホウ素合金板とを負極材料に用い、後に第2図に
基づいて説明するように、負極缶内に一方のリチウム板
、アルミニウムーチタン−ホウ素合金板、他方のリチウ
ム板の順に配置し、以後、常法に準じて電池組立を行い
、電解液の存在下でリチウムとアルミニウムーチタン−
ホウ素合金とを合金化して負極とした。
Example 1 Thickness: 0.1 mm, diameter: 7. Two lithium plates of hm, thickness 0.3sN, diameter 7. An aluminum-titanium-boron alloy plate containing 0.2% by weight of titanium and 0.05% by weight of boron was used as the negative electrode material, and as explained later based on FIG. 2, one side was placed in the negative electrode can. The lithium plate, the aluminum-titanium-boron alloy plate, and the other lithium plate are placed in this order, and then the battery is assembled according to the usual method, and the lithium and aluminum-titanium-alloy are combined in the presence of an electrolyte.
It was alloyed with a boron alloy to form a negative electrode.

上記負極を有する電池を第1図に示す0図中、1はステ
ンレス鋼製で表面にニッケルメッキを施した負極缶で、
2は負極缶1の内面にスボ−/ )溶接したステンレス
鋼製網よりなる負極集電体である。
A battery having the above negative electrode is shown in Figure 1. In Figure 0, 1 is a negative electrode can made of stainless steel with nickel plating on the surface.
2 is a negative electrode current collector made of a stainless steel mesh welded to the inner surface of the negative electrode can 1.

3は負極で、この負極3は第2図に示すようにリチウム
板3a、チタンを0.2重量%およびホウ素を0.05
重量%含有するアルミニウムーチタン−ホウ素合金板3
bおよびリチウム板3Cを上記負極缶1内に配置して、
電解液の存在下で合金化することにより形成したもので
ある。4は微孔性ポリプロピレンフィルムからなるセパ
レータ、5はポリプロピレン不織布からなる電解液吸収
体である。6は二硫化チタンを活物質とし、ポリテトラ
フルオロエチレンをバインダーとして加圧成形した正極
で、厚さ0.5am、直径7.0ffimの円板状をし
ており、その一方の面にはステンレス鋼製網からなる正
極集電体7が配設されている。8はステンレス鋼製で表
面にニッケルメッキを施した正極缶で、9はポリプロピ
レン製のガスケットである。そして、この電池には、4
−メチル−1,3−ジオキソラン60容量%、1,2−
ジメトキシエタン34.8容量%およびヘキサメチルホ
スホリックトリアミド5.2容量%からなる混合溶媒に
LiPF5を1.0 mo!/ 1 f8解した有機非
水電解液が使用されている。この電池の負極中のリチウ
ムの組成は約38原子%で、負極理論電気量は約20m
Ahであり、正極の理論電気量は約8mAhである。上
記電解液におけるへキサメチルホスホリックトリアミド
はl、1PF6を安定化させるための安定化剤である。
Reference numeral 3 denotes a negative electrode, and as shown in FIG.
Aluminum-titanium-boron alloy plate containing 3% by weight
b and the lithium plate 3C are placed in the negative electrode can 1,
It is formed by alloying in the presence of an electrolyte. 4 is a separator made of a microporous polypropylene film, and 5 is an electrolyte absorber made of a polypropylene nonwoven fabric. 6 is a positive electrode that is pressure-molded using titanium disulfide as an active material and polytetrafluoroethylene as a binder. It has a disc shape with a thickness of 0.5 am and a diameter of 7.0 ffim, and one side is covered with stainless steel. A positive electrode current collector 7 made of steel mesh is provided. 8 is a positive electrode can made of stainless steel with a nickel-plated surface, and 9 is a gasket made of polypropylene. And this battery has 4
-Methyl-1,3-dioxolane 60% by volume, 1,2-
1.0 mo! of LiPF5 was added to a mixed solvent consisting of 34.8% by volume of dimethoxyethane and 5.2% by volume of hexamethylphosphoric triamide. /1 An organic non-aqueous electrolyte is used. The composition of lithium in the negative electrode of this battery is approximately 38 at%, and the theoretical amount of electricity in the negative electrode is approximately 20 m
Ah, and the theoretical amount of electricity of the positive electrode is about 8 mAh. Hexamethylphosphoric triamide in the electrolyte is a stabilizer for stabilizing l,1PF6.

実施例2 実施例1におけるアルミニウムーチタン−ホウ素合金板
に代えて、チタン含有量が1.0重量%、ホウ集金を量
が0,1重量%のアルミニウムーチタン−ホウ素合金板
を用いたほかは実施例1と同様の構成からなるリチウム
二次電池を作製した。
Example 2 In place of the aluminum-titanium-boron alloy plate in Example 1, an aluminum-titanium-boron alloy plate with a titanium content of 1.0% by weight and a boron collection amount of 0.1% by weight was used. A lithium secondary battery having the same configuration as in Example 1 was manufactured.

実施例3 実施例1におけるアルミニウムーチタン−ホウ素合金板
に代えて、チタン含有量が1.5重量%、ホウ素含有量
が0.2重量%のアルミニウムーチタン−ホウ素合金板
を用いたほかは実施例1と同様の構成からなるリチウム
二次電池を作製した。
Example 3 In place of the aluminum-titanium-boron alloy plate in Example 1, an aluminum-titanium-boron alloy plate with a titanium content of 1.5% by weight and a boron content of 0.2% by weight was used. A lithium secondary battery having the same configuration as in Example 1 was produced.

実施例4 実施例1におけるアルミニウムーチタン−ホウ素合金板
に代えて、チタン含有量が0.01重量%、ホウ集金を
量がQ、01i11%のアルミニカムーチタン−ホウ素
合金板を用いたほかは実施例1と同様の構成からなるリ
チウム二次電池を作製した。
Example 4 In place of the aluminum-titanium-boron alloy plate in Example 1, an aluminum cam titanium-boron alloy plate with a titanium content of 0.01% by weight, a boron collection amount of Q, and 01i11% was used. A lithium secondary battery having the same configuration as in Example 1 was produced.

比較例1 厚さ0.1+m、直径7.81のリチウム板2枚と、厚
さ0.311I11直径7.8t+gの硬質アルミニウ
ム板(粒界が軟質アルミニウム板より多く、リチウムと
の電気化学的合金化反応が軟質アルミニウム板より速い
)とを負極材料として用い、負極缶に一方のリチウム板
、アルミニウム板、他方のリチウム板の順に配置し、電
解液の存在下でリチウムとアルミニウムとを合金化して
負極としたほかは実施例1と同様の構成からなるリチウ
ム二次電池を作製した。
Comparative Example 1 Two lithium plates with a thickness of 0.1+m and a diameter of 7.81 and a hard aluminum plate with a thickness of 0.311I11 and a diameter of 7.8t+g (more grain boundaries than the soft aluminum plate, electrochemical alloy with lithium) lithium plate, aluminum plate, and the other lithium plate are placed in the negative electrode can in this order, and the lithium and aluminum are alloyed in the presence of an electrolyte. A lithium secondary battery having the same configuration as in Example 1 except for the use of a negative electrode was produced.

参考例1 実施例1におけるアルミニウムーチタン−ホウ素合金板
に代えて、チタン含有量が1.7重量%のアルミニウム
ーチタン合金板を用いたほかは実施例1と同様の構成か
らなるリチウム二次電池を作製した。
Reference Example 1 Lithium secondary having the same structure as Example 1 except that an aluminum-titanium alloy plate with a titanium content of 1.7% by weight was used in place of the aluminum-titanium-boron alloy plate in Example 1. A battery was created.

参考例2 実施例1におけるアルミニウムーチタン−ホウ素合金板
に代えて、ホウ素含有量が0.3重量%のアルミニウム
ーホウ素合金板を用いたほかは実施例1と同様の構成か
らなるリチウム二次電池を作製した。
Reference Example 2 Lithium secondary having the same configuration as Example 1 except that an aluminum-boron alloy plate with a boron content of 0.3% by weight was used in place of the aluminum-titanium-boron alloy plate in Example 1. A battery was created.

上記実施例1〜4の電池、比較例1の電池および参考例
1〜2の電池をQ、5mAhの定電流で2mAhの充放
電を1.5〜2.5■の電圧範囲でサイクルさせたとき
の1.5v終止で見た2mAh放電可能なサイクル数を
調べ、その結果を第1表に示した。
The batteries of Examples 1 to 4, the batteries of Comparative Example 1, and the batteries of Reference Examples 1 to 2 were charged and discharged at 2 mAh at a constant current of Q, 5 mAh, and cycled in a voltage range of 1.5 to 2.5 ■. The number of cycles capable of discharging 2 mAh at 1.5 V was investigated, and the results are shown in Table 1.

第     1     表 第1表に示すように、チタンおよびホウ素を含有するア
ルミニウム合金板を用いた実施例1.2.3および4の
電池は、チタンおよびホウ素をまったく含まないアルミ
ニウムを用いた比較例1の電池に比べて、2mAh放電
可能な充放電サイクル数が多く、充放電サイクル特性が
優れていることはもとより、チタン、ホウ素をそれぞれ
単独でアルミニウムに添加した参考例1〜2の電池に比
べても、充放電サイクル特性が優れていた。
Table 1 As shown in Table 1, the batteries of Examples 1, 2, 3 and 4 using aluminum alloy plates containing titanium and boron are different from those of Comparative Example 1 using aluminum containing no titanium or boron. The number of charge/discharge cycles that can be discharged at 2 mAh is greater than that of the batteries described above, and the charge/discharge cycle characteristics are excellent. They also had excellent charge-discharge cycle characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、アルミニウムを母材
とし、これにチタンとホウ素を加えて合金化したアルミ
ニウムーチタン−ホウ素合金と、リチウムとを合金化し
て負極とすることにより、充放電サイクル特性の優れた
リチウム二次電池を提供することができた。
As explained above, in the present invention, by alloying an aluminum-titanium-boron alloy, which is made of aluminum as a base material and alloyed with titanium and boron, and lithium to form a negative electrode, the charging/discharging cycle can be improved. We were able to provide a lithium secondary battery with excellent characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るリチウム二次電池の一例を示す断
面図であり、第2図は第1図に示す電池の負極材料とし
て用いられたリチウムとアルミニウムーチタン−ホウ素
合金とが合金化する前の状態を示す断面図である。 3・・・負極、 3a、 3c・・・リチウム板、3b
・・・アルミニウムーチタン−ホウ素合金板、6・コ・
正極
FIG. 1 is a cross-sectional view showing an example of a lithium secondary battery according to the present invention, and FIG. 2 shows an alloy of lithium and aluminum-titanium-boron alloy used as the negative electrode material of the battery shown in FIG. FIG. 3... Negative electrode, 3a, 3c... Lithium plate, 3b
...Aluminum-titanium-boron alloy plate, 6.
positive electrode

Claims (4)

【特許請求の範囲】[Claims] (1)正極、リチウムイオン伝導性有機非水電解液およ
び負極を備えてなるリチウム二次電池において、負極に
リチウムと、アルミニウムを母材としこれにチタンとホ
ウ素を添加したアルミニウム合金とを合金化したリチウ
ム合金を用いたことを特徴とするリチウム二次電池。
(1) In a lithium secondary battery comprising a positive electrode, a lithium ion conductive organic non-aqueous electrolyte, and a negative electrode, the negative electrode is an alloy of lithium and an aluminum alloy made of aluminum as a base material and titanium and boron added thereto. A lithium secondary battery characterized by using a lithium alloy.
(2)アルミニウム合金中におけるチタンの量が0.0
1〜2.0重量%、ホウ素の量が0.005〜0.3重
量%である特許請求の範囲第1項記載のリチウム二次電
池。
(2) The amount of titanium in the aluminum alloy is 0.0
The lithium secondary battery according to claim 1, wherein the amount of boron is 1 to 2.0% by weight, and the amount of boron is 0.005 to 0.3% by weight.
(3)負極に用いるリチウム合金のリチウムの仕込み量
が20〜48原子%である特許請求の範囲第1項または
第2項記載のリチウム二次電池。
(3) The lithium secondary battery according to claim 1 or 2, wherein the lithium alloy used for the negative electrode contains 20 to 48 at.% of lithium.
(4)正極活物質が二硫化チタンである特許請求の範囲
第1項、第2項または第3項記載のリチウム二次電池。
(4) The lithium secondary battery according to claim 1, 2, or 3, wherein the positive electrode active material is titanium disulfide.
JP61158500A 1986-07-04 1986-07-04 Lithium secondary battery Pending JPS6313266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158500A JPS6313266A (en) 1986-07-04 1986-07-04 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158500A JPS6313266A (en) 1986-07-04 1986-07-04 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPS6313266A true JPS6313266A (en) 1988-01-20

Family

ID=15673091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158500A Pending JPS6313266A (en) 1986-07-04 1986-07-04 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS6313266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244645A (en) * 1988-08-04 1990-02-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244645A (en) * 1988-08-04 1990-02-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2567674B2 (en) * 1988-08-04 1996-12-25 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2597091B2 (en) Lithium secondary battery
US6410188B1 (en) Non-aqueous electrolyte secondary cell
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPH06342673A (en) Lithium secondary battery
JPH0574463A (en) Secondary battery
KR101840885B1 (en) Thin film alloy electrodes
JPS6313267A (en) Lithium secondary battery
JPS6166369A (en) Lithium secondary battery
JP2003282147A (en) Lithium ion secondary battery
JP2000164207A (en) Nonaqueous electrolyte secondary battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JPH10112306A (en) Secondary battery
JPH08180875A (en) Lithium secondary battery
JPS6313266A (en) Lithium secondary battery
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JP2002260661A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP3212018B2 (en) Non-aqueous electrolyte secondary battery
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same
JP2000277115A (en) Lithium secondary battery
JPS6220248A (en) Nonaqueous electrolyte secondary battery
JPS6313265A (en) Lithium secondary battery
JPS6220246A (en) Nonaqueous electrolyte secondary battery
JPH1064541A (en) Nonaqueous electrolyte secondary battery
JPS62119865A (en) Lithium secondary cell
JPS6220249A (en) Nonaqueous electrolyte secondary battery