JP2567674B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP2567674B2 JP2567674B2 JP63195597A JP19559788A JP2567674B2 JP 2567674 B2 JP2567674 B2 JP 2567674B2 JP 63195597 A JP63195597 A JP 63195597A JP 19559788 A JP19559788 A JP 19559788A JP 2567674 B2 JP2567674 B2 JP 2567674B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- aluminum
- alloy
- negative electrode
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、リチウムを活物質とする負極と、二酸化マ
ンガン、五酸化バナジウム、チタン、或いはニオブの硫
化物,セレン化物等を活物質とする正極と、非水電解液
とを備えた非水電解液二次電池に関するものである。Description: TECHNICAL FIELD The present invention relates to a negative electrode using lithium as an active material, and a positive electrode using manganese dioxide, vanadium pentoxide, titanium, or a sulfide or selenide of niobium as an active material. , A non-aqueous electrolyte secondary battery including a non-aqueous electrolyte.
従来の技術 この種電池の問題点は、負極活物質であるリチウム
が、充電時に負極表面に樹枝状に成長することにより正
極と接して電池内部で短絡を生じたり、或いはモッシー
状に析出してリチウムの脱落等が生じ、この結果充放電
サイクルが極めて短くなるということである。これは、
放電時にリチウムがイオンになって溶出すると、負極表
面が凹凸状になり、その後の充電時にリチウムが凸部に
集中的に電析することによるものである。2. Description of the Related Art The problem with this type of battery is that the negative electrode active material, lithium, grows in a dendritic manner on the negative electrode surface during charging, resulting in a short circuit inside the battery in contact with the positive electrode, or in the form of mossy deposition. Lithium is lost, and as a result, the charge / discharge cycle becomes extremely short. this is,
This is because the surface of the negative electrode becomes uneven when lithium is turned into ions and eluted during discharging, and lithium is concentrated on the convex portions during subsequent charging.
この対策として、特開昭52−5423号公報示すように、
負極をリチウム−アルミニウム合金で構成することが提
案されている。このような構成とすれば、充電時に、リ
チウムが基体となるアルミニウムと合金を形成するよう
に復元されるため、リチウムの樹枝状成長が抑制される
という利点がある。しかしながら、この場合には、リチ
ウム−アルミニウム合金の強度が弱いため、充放電の繰
り返しによって電極の割れや、微細化が生じるため、や
はりサイクル特性がよくない。As a countermeasure against this, as shown in JP-A-52-5423,
It has been proposed to construct the negative electrode with a lithium-aluminum alloy. With such a configuration, lithium is restored so as to form an alloy with aluminum as a base during charging, and thus there is an advantage that dendritic growth of lithium is suppressed. However, in this case, since the strength of the lithium-aluminum alloy is weak, cracking and miniaturization of the electrode occur due to repeated charging / discharging, and thus the cycle characteristics are also not good.
そこで、特開昭63−131776号公報に示すように、リチ
ウム−アルミニウム合金電極の強度の向上を図るべく、
リチウム−アルミニウム合金を接着剤で接着させたもの
や、或いは、アルミニウムと、銅,鉄,ニッケル,マン
ガン,コバルト,ケイ素,或いはジルコニウム等の金属
との合金を基体材料として用い、これらの合金とリチウ
ムとを合金化することにより、より強度の高い電極を作
成するもの等が提案されている。Therefore, as shown in JP-A-63-131776, in order to improve the strength of the lithium-aluminum alloy electrode,
A lithium-aluminum alloy adhered with an adhesive or an alloy of aluminum and a metal such as copper, iron, nickel, manganese, cobalt, silicon, or zirconium is used as a base material, and these alloys and lithium are used. There is proposed a method of forming an electrode having higher strength by alloying and.
発明が解決しようとする課題 しかしながら、このような構成とした場合であって
も、実用上満足できるような特性を得ることができな
い。これは、アルミニウム合金中のβ相−Li−Alは、放
電により、Liを放出してAlになる一方、充電時にLiを吸
蔵して再度β相−Li−Alに変化する。このとき、上記構
成の負極であれば、初期のβ相−Li−Alの結晶性が良い
ため、歪みが少なくなる。したがって、充放電サイクル
を繰り返すと、β相−Li−AlとAl間の結晶変化によっ
て、電極の微細化や崩れが生じることに起因することに
よるものである。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, even with such a configuration, it is not possible to obtain practically satisfactory characteristics. This is because the β phase-Li-Al in the aluminum alloy releases Li to become Al by discharge, while it occludes Li during charging and changes to β phase-Li-Al again. At this time, in the case of the negative electrode having the above-described structure, the initial β-phase-Li-Al crystallinity is good, and thus the strain is reduced. Therefore, this is because when the charge and discharge cycles are repeated, the crystal change between β-phase-Li-Al and Al causes miniaturization and collapse of the electrode.
そこで本発明は、充放電サイクルを繰り返した場合で
あっても、電極の微細化や崩れが生じるのを抑制するこ
とにより、サイクル特性に優れた非水電解液二次電池の
提供を目的とするものである。Therefore, the present invention aims to provide a non-aqueous electrolyte secondary battery having excellent cycle characteristics by suppressing the miniaturization or collapse of the electrodes even when the charge / discharge cycle is repeated. It is a thing.
課題を解決するための手段 本発明は上記目的を達成するために、リチウムを活物
質とする負極と、正極と、非水電解液とを備えた非水電
解液二次電池において、前記負極はリチウムとアルミニ
ウムとを主成分とする合金から成り、この合金中のβ相
−Li−Alの銅管球によるX線回折ピークの(400)面に
おける半値幅(β 1/2)が0.45゜以上0.65゜以下である
ことを特徴とする。Means for Solving the Problems The present invention, in order to achieve the above object, a negative electrode using lithium as an active material, a positive electrode, and a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, wherein the negative electrode is It consists of an alloy containing lithium and aluminum as its main components, and the half-value width (β 1/2) on the (400) plane of the β-phase-Li-Al copper tube in the alloy is 0.45 ° or more. It is characterized by being less than 0.65 °.
作用 上記の如くX線回折ピークの半値幅が0.45゜以上であ
れば、β相−Li−Alの歪みが大きくなる。したがって、
充放電サイクルを繰り返し行った場合であっても、結晶
変化による負極の微細化や崩れが生じ難くなるので、非
水電解液二次電池のサイクル特性を向上させることがで
きる。Action As described above, when the half width of the X-ray diffraction peak is 0.45 ° or more, the strain of β-phase-Li-Al becomes large. Therefore,
Even when the charge-discharge cycle is repeated, the negative electrode is less likely to be miniaturized or collapsed due to the crystal change, so that the cycle characteristics of the non-aqueous electrolyte secondary battery can be improved.
そして、β相−Li−Alの銅管球によるX線回折ピーク
の(400)面における半値幅が0.65゜を越えると、電極
が脆くなるため、X線回折ピークの幅は0.65゜以下とす
ることが必要である。If the full width at half maximum of the X-ray diffraction peak of the β-phase-Li-Al copper tube at the (400) plane exceeds 0.65 °, the electrode becomes brittle, so the width of the X-ray diffraction peak is set to 0.65 ° or less. It is necessary.
第1実施例 (実施例I) 本発明の第1実施例を、第1図乃至第11図に基づい
て、以下に説明する。First Example (Example I) A first example of the present invention will be described below with reference to FIGS. 1 to 11.
リチウム合金から成る負極2は負極集電体7の内面に
圧着されており、この負極集電体7はステンレスから成
る断面略コ字状の負極缶5の内底面に固着されている。
上記負極缶5の周端はポリプロピレン製の絶縁パッキン
グ8の内部に固定されており、絶縁パッキング8の外周
にはステンレスから成り上記負極缶5とは反対方向に断
面略コ字状を成す正極缶4が固定されている。この正極
缶4の内底面には正極集電体6が固定されており、この
正極集電体6の内面には正極1が固定さている。この正
極1と前記負極2との間には保液層を兼ねたセパレータ
3が介装されており、このセパレータ3には電解液が含
浸されている。この電解液としてはプロピレンカーボネ
ートに過塩素酸リチウムを1mol/加えたもを使用して
いる。尚、電池寸法は直径25mmφ,厚み3.0mmである。The negative electrode 2 made of a lithium alloy is pressure-bonded to the inner surface of the negative electrode current collector 7, and the negative electrode current collector 7 is fixed to the inner bottom surface of the negative electrode can 5 made of stainless steel and having a substantially U-shaped cross section.
A peripheral end of the negative electrode can 5 is fixed inside an insulating packing 8 made of polypropylene, and an outer periphery of the insulating packing 8 is made of stainless steel and has a substantially U-shaped cross section in a direction opposite to the negative electrode can 5. 4 is fixed. The positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and the positive electrode 1 is fixed to the inner surface of the positive electrode current collector 6. A separator 3, which also functions as a liquid retaining layer, is interposed between the positive electrode 1 and the negative electrode 2, and the separator 3 is impregnated with an electrolytic solution. As this electrolyte, propylene carbonate containing 1 mol / liter of lithium perchlorate was used. The battery dimensions are 25 mm in diameter and 3.0 mm in thickness.
ここで、上記正極1は二酸マンガンと水酸化リチウム
をモル比で2:1の比に混合したものを375℃で20時間熱処
理を行ない、これを活物質とする。次に、この活物質と
アセチレンブラック導電材とフッ素樹脂結着材とを、重
量比で80:10:10の割合で混合して合剤を作成した後、こ
の合剤を加圧成型して乾燥させることにより作製する。Here, for the positive electrode 1, a mixture of manganese diacid and lithium hydroxide in a molar ratio of 2: 1 is heat-treated at 375 ° C. for 20 hours, and this is used as an active material. Next, the active material, the acetylene black conductive material, and the fluororesin binder are mixed at a weight ratio of 80:10:10 to prepare a mixture, and then the mixture is pressure-molded. It is prepared by drying.
一方、前記負極2は以下のように作製する。 On the other hand, the negative electrode 2 is manufactured as follows.
先ず始めに、アルミニウムと銀とを97:3の割合で混合
して溶融させた後、これを冷却してインゴット(ベース
合金)を作製する。次に、このインゴットからなるベー
ス合金を550℃で12時間均質化処理を行なう。次いで、
インゴットの表面の酸化膜を除去すべくインゴットの表
面層を切り落とした後、室温にて圧延を繰り返して厚み
0.5mmのアルミニウム−銀合金の板(冷間圧延されたベ
ース合金)を作製する。その後、この冷間圧延されたベ
ース合金を基体として、非水電解液中、好ましくはLiCl
O4、LiCF3SO3、LiBF4、LiPF6、或いはLiSbF6等のLi塩を
溶解した1.3−ジオキソラン、2メチル−1.3−ジオキソ
ラン、4−メチル−1.3−ジオキソラン、テトラヒドロ
フラン、或いは2メチル−テトラヒドロフラン等の環状
エーテル中に浸漬し、対極をLiとして電解を行なってリ
チウム−アルミニウム合金を作製し、これを負極として
用いた。尚、この合金のアルミニウムとリチウムとの比
率は、モル比で65:35であった。First, aluminum and silver are mixed and melted at a ratio of 97: 3, and then this is cooled to prepare an ingot (base alloy). Next, the base alloy consisting of this ingot is homogenized at 550 ° C. for 12 hours. Then
After cutting off the surface layer of the ingot to remove the oxide film on the surface of the ingot, repeatedly rolling at room temperature
A 0.5 mm aluminum-silver alloy plate (cold rolled base alloy) is made. Then, using this cold-rolled base alloy as a substrate, in a non-aqueous electrolyte, preferably LiCl
1.3-dioxolane, 2-methyl-1.3-dioxolane, 4-methyl-1.3-dioxolane, tetrahydrofuran, or 2-methyl-tetrahydrofuran in which Li salt such as O 4 , LiCF 3 SO 3 , LiBF 4 , LiPF 6 , or LiSbF 6 is dissolved It was immersed in a cyclic ether such as the above, electrolysis was performed using Li as the counter electrode, and a lithium-aluminum alloy was prepared, which was used as the negative electrode. The molar ratio of aluminum to lithium in this alloy was 65:35.
このようにして作製した電池を、以下(A1)電池と称
する。The battery thus manufactured is hereinafter referred to as (A 1 ) battery.
(実施例II〜V) アルミニウムと銀とを、下記第1表に示す割合で混合
する他は、上記実施例Iと同様にして電池を作製した。(Examples II to V) A battery was produced in the same manner as in Example I except that aluminum and silver were mixed in the proportions shown in Table 1 below.
このようにして作製した電池を、以下(A2)電池〜
(A5)電池と称する。The battery produced in this way is referred to as (A 2 ) battery-
(A 5 ) Battery.
(比較例I、II) アルミニウムと銀とを、下記第2表に示す割合で混合
する他は、上記実施例Iと同様にして電池を作製した。 (Comparative Examples I and II) A battery was prepared in the same manner as in Example I except that aluminum and silver were mixed in the proportions shown in Table 2 below.
このようにして作製した電池を、以下(U1)電池、
(U2)電池と称する。The battery produced in this way is referred to below as (U 1 ) battery,
(U 2 ) Battery.
(比較例III〜IX) アルミニウムと銀とを上記第1表及び第2表に示す割
合で混合して溶融させた後、これを冷却してインゴット
を作製する。次に、このインゴットを550℃で12時間均
質化処理を行なう。次いで、インゴットの表面層を切り
落とした後、このインゴットをスライスして厚み0.5mm
のアルミニウム−銀合金の板を作成する他は上記実施例
Iと同様にして電池を作製した。 (Comparative Examples III to IX) Aluminum and silver are mixed at a ratio shown in Tables 1 and 2 above and melted, and then cooled to prepare an ingot. Next, this ingot is homogenized at 550 ° C. for 12 hours. Then, after cutting off the surface layer of the ingot, this ingot is sliced to a thickness of 0.5 mm.
A battery was prepared in the same manner as in Example I above, except that the aluminum-silver alloy plate was prepared.
このようにして作製した電池を、以下(V1)電池〜
(V7)電池と称する。The battery produced in this way is referred to as (V 1 ) battery to
(V 7 ) Battery.
尚、(A1)電池〜(A5)電池、(U1)電池、(U2)電
池と上記(V1)電池〜(V7)電池との対応関係(AlとAg
との重量比)を、下記第3表に示す。The correspondence between (A 1 ) battery to (A 5 ) battery, (U 1 ) battery, (U 2 ) battery and the above (V 1 ) battery to (V 7 ) battery (Al and Ag
The weight ratio) is shown in Table 3 below.
(比較例X〜XV) アルミニウムとリチウムと銀とを下記第4表に示す割
合で混合して溶融させた後、これを冷却してインゴット
を作成する。次に、このインゴットを550℃で12時間均
質化処理を行なう。次いで、インゴットの表面層を切り
落とした後、このインゴットをスライスして厚み0.5mm
のアルミニウム−リチウム−銀合金の板を作製し、これ
を負極として用いた。このような負極を用いる他は、上
記実施例Iと同様にして電池を作製した。 (Comparative Examples X to XV) Aluminum, lithium and silver are mixed at a ratio shown in Table 4 below and melted, and then cooled to prepare an ingot. Next, this ingot is homogenized at 550 ° C. for 12 hours. Then, after cutting off the surface layer of the ingot, this ingot is sliced to a thickness of 0.5 mm.
Of aluminum-lithium-silver alloy plate was prepared and used as a negative electrode. A battery was made in the same manner as in Example I except that such a negative electrode was used.
このようにして作製した電池を、以下(W1)電池〜
(W5)電池と称する。The battery produced in this way is referred to below as (W 1 ) battery
(W 5 ) Battery.
(実験I) 上記本発明の(A1)電池〜(A5)電池の負極と、比較
例の(U1)電池、(U2)電池及び(V1)電池〜(V7)電
池、及び(W1)電池〜(W5)電池の負極とにおけるβ相
−Li−Al合金の鋼管球によるX線回折ピークの(400)
面における半値幅(β 1/2)を調べたので、その結果を
第2図、第3図、及び第4図に示す。 (Experiment I) The negative electrodes of the (A 1 ) battery to the (A 5 ) battery of the present invention, the (U 1 ) battery, the (U 2 ) battery, and the (V 1 ) battery to the (V 7 ) battery of Comparative Examples, And (W 1 ) battery to (W 5 ) battery negative electrode and β phase-Li-Al alloy X-ray diffraction peak (400) of the steel tube
The full width at half maximum (β 1/2) was examined, and the results are shown in FIGS. 2, 3, and 4.
第2図、第3図、及び第4図に示すように、(A1)電
池〜(A5)電池の負極は半値幅が全て0.45゜以上である
のに対して、(U1)電池、(U2)電池、(V1)電池〜
(V7)電池及び(W1)電池〜(W5)電池の負極は半値幅
が全て0.45゜以下であることが認められる。As shown in FIG. 2, FIG. 3, and FIG. 4, the half widths of the negative electrodes of the (A 1 ) battery to the (A 5 ) battery are all 0.45 ° or more, whereas the (U 1 ) battery is , (U 2 ) battery, (V 1 ) battery ~
It is recognized that the full width at half maximum of the negative electrodes of the (V 7 ) battery and the (W 1 ) battery to the (W 5 ) battery is 0.45 ° or less.
これは、(U1)電池及び(U2)電池ではAgが添加され
ていないか、或いは添加されていても微量であること、
(V1)電池〜(V7)電池では冷間圧延されていないこ
と、(W1)電池〜(W5)電池では冷間圧延されていない
こと及び非水電解液中で合金化さていないことにより、
リチウム−アルミニウム合金の結晶の歪みを高めること
が困難であるという理由による。This means that Ag is not added to the (U 1 ) battery and (U 2 ) battery, or the amount is very small even if Ag is added,
(V 1) cell ~ (V 7) that is not cold rolled in battery, not alloyed with (W 1) cell ~ (W 5) that is not cold rolled in battery and the nonaqueous electrolytic solution By
This is because it is difficult to increase the strain of crystals of the lithium-aluminum alloy.
(実験II) 本発明の(A1)電池〜(A5)電池と、比較例の(U1)
電池、(U2)電池、(V1)電池〜(V7)電池、及び
(W1)電池〜(W5)電池とのサイクル特性を調べたの
で、その結果を第5図、第6図、及び第7図に示す。
尚、実験条件は2mAの電流で放電と充電とを各々10時間
づつ行い、放電終了時に2V以下となったときに、その電
池のサイクル寿命とした。(Experiment II) (A 1 ) Battery to (A 5 ) Battery of the Present Invention and (U 1 ) of Comparative Example
The cycle characteristics of the battery, the (U 2 ) battery, the (V 1 ) battery to the (V 7 ) battery, and the (W 1 ) battery to the (W 5 ) battery were examined. The results are shown in FIGS. It is shown in FIG.
The experimental condition was that discharge and charge were performed at a current of 2 mA for 10 hours each, and when the discharge reached 2 V or less at the end of discharge, the cycle life of the battery was defined.
第5図、第6図、及び第7図に示すように、比較例の
(U1)電池、(U2)電池、(V1)電池〜(V7)電池、及
び(W1)電池〜(W5)電池では全て300サイクル以下で
寿命となるのに対して、本発明の(A1)電池〜(A5)電
池では全て400サイクル以下の寿命を有していることが
認められる。As shown in FIGS. 5, 6, and 7, (U 1 ) battery, (U 2 ) battery, (V 1 ) battery to (V 7 ) battery, and (W 1 ) battery of Comparative Examples ~ It is recognized that all of the (W 5 ) batteries have a life of 300 cycles or less, while the (A 1 ) batteries of the present invention to (A 5 ) have a life of 400 cycles or less. .
第2実施例 (実施例I) アルミニウムとタングステンとを98:2の割合で混合し
てアルミニウム合金を作る以外は前記第1実施例の実施
例1と同様にして電池を作製した。Second Example (Example I) A battery was produced in the same manner as in Example 1 of the first example except that aluminum and tungsten were mixed at a ratio of 98: 2 to produce an aluminum alloy.
このようにして作製した電池を、以下(B1)電池と称
する。The battery thus manufactured is hereinafter referred to as a (B 1 ) battery.
(実施例II〜V) アルミニウムとタングステンとを下記第5表に示す割
合で混合してアルミニウム合金を作る以外は前記第1実
施例の実施例1と同様にして電池を作製した。(Examples II to V) A battery was produced in the same manner as in Example 1 of the first example except that aluminum and tungsten were mixed in the proportions shown in Table 5 below to produce an aluminum alloy.
このようにして作製した電池を、以下(B2)電池〜
(B5)電池と称する。The battery produced in this way is referred to as (B 2 ) battery to
(B 5) is referred to as a battery.
(比較例I、II) アルミニウムとタングステンとを、下記第6表に示す
割合で混合する他は、上記実施例Iと同様にして電池を
作製した。 (Comparative Examples I and II) A battery was prepared in the same manner as in Example I except that aluminum and tungsten were mixed in the ratios shown in Table 6 below.
このようにして作製した電池を、以下(X1)電池、
(X2)電池と称する。The battery prepared in this manner is referred to as (X 1 ) battery,
(X 2 ) Battery.
(実験I) 上記本発明の(B1)電池〜(B5)電池の負極と、比較
例の(X1)電池、(X2)電池の負極とにおけるβ相−Li
−Al合金の銅管球によるX線回折ピークの(400)面に
おける半値幅(β 1/2)を調べたので、その結果を第8
図に示す。 (Experiment I) β-phase-Li in the negative electrodes of the (B 1 ) battery to the (B 5 ) battery of the present invention and the negative electrodes of the (X 1 ) battery and the (X 2 ) battery of Comparative Examples.
The full width at half maximum (β 1/2) on the (400) plane of the X-ray diffraction peak of the copper tube of the -Al alloy was investigated.
Shown in the figure.
第8図に示すように、(B1)電池〜(B5)電池の負極
は半値幅が全て0.45゜以上であるのに対して、(X1)電
池、(X2)電池の負極は半値幅が全て0.45゜以下である
ことが認められる。As shown in FIG. 8, the half-widths of the negative electrodes of the (B 1 ) battery to the (B 5 ) battery are all 0.45 ° or more, whereas the negative electrodes of the (X 1 ) battery and the (X 2 ) battery are It is recognized that the full width at half maximum is 0.45 ° or less.
(実験II) 本発明の(B1)電池〜(B5)電池と、比較例の(X1)
電池、(X2)電池のサイクル特性を調べたので、その結
果を第9図に示す。尚、実験条件は前記第1実施例の実
験IIと同様の条件で行った。(Experiment II) (B 1 ) Battery to (B 5 ) Battery of the Present Invention and (X 1 ) of Comparative Example
The cycle characteristics of the battery and the (X 2 ) battery were examined, and the results are shown in FIG. 9. The experimental conditions were the same as those of Experiment II of the first embodiment.
第9図に示すように、比較例の(X1)電池、(X2)電
池では共に300サイクル以下で寿命となるのに対して、
本発明の(B1)電池〜(B5)電池では全て300サイクル
以上の寿命を有していることが認められる。As shown in FIG. 9, both the (X 1 ) battery and the (X 2 ) battery of the comparative example have a life of 300 cycles or less.
It is recognized that the batteries (B 1 ) to (B 5 ) of the present invention all have a life of 300 cycles or more.
第3実施例 (実施例I) アルミニウムとレニウムとを98:3の割合で混合してア
ルミニウム合金を作る以外は前記第1実施例の実施例1
と同様にして電池を作製した。Third Example (Example I) Example 1 of the first example except that aluminum and rhenium were mixed at a ratio of 98: 3 to form an aluminum alloy.
A battery was prepared in the same manner as in.
このようにして作製した電池を、以下(C1)電池と称
する。The battery thus manufactured is hereinafter referred to as a (C 1 ) battery.
(実施例II〜V) アルミニウムとレニウムとを下記第7表に示す割合で
混合してアルミニウム合金を作る以外は前記第1実施例
の実施例1と同様にして電池を作製した。(Examples II to V) A battery was produced in the same manner as in Example 1 of the first example except that aluminum and rhenium were mixed in the ratios shown in Table 7 below to produce an aluminum alloy.
このようにして作製した電池を、以下(C2)電池〜
(C5)電池と称する。The battery prepared in this way is referred to as (C 2 ) battery
(C 5) is referred to as a battery.
(比較例I、II) アルミニウムとレニウムとを、下記第8表に示す割合
で混合する他は、上記実施例Iと同様にして電池を作製
した。 (Comparative Examples I and II) A battery was produced in the same manner as in Example I except that aluminum and rhenium were mixed in the proportions shown in Table 8 below.
このようにして作製した電池を、以下(Y1)電池、
(Y2)電池と称する。The battery produced in this way is referred to below as (Y 1 ) battery,
(Y 2 ) battery.
(実験I) 上記本発明の(C1)電池〜(C5)電池の負極と、比較
例の以下(Y1)電池、(Y2)電池の負極とにおけるβ相
−Li−Al合金の銅管球によるX線回折ピークの(400)
面における半値幅(β 1/2)を調べたので、その結果を
第10図に示す。 (Experiment I) Of the β-phase-Li-Al alloy in the negative electrodes of the (C 1 ) battery to the (C 5 ) battery of the present invention and the negative electrodes of the following (Y 1 ) batteries and (Y 2 ) batteries of Comparative Examples. X-ray diffraction peak of copper tube (400)
The full width at half maximum (β 1/2) was examined, and the results are shown in FIG.
第10図に示すように、(C1)電池〜(C5)電池の負極
は半値幅が全て0.45゜以上であるのに対して、(Y1)電
池、(Y2)電池の負極は半値幅が全て0.45゜以下である
ことが認められる。As shown in FIG. 10, the negative electrodes of the (C 1 ) battery to the (C 5 ) battery all have a half width of 0.45 ° or more, whereas the negative electrodes of the (Y 1 ) battery and the (Y 2 ) battery are It is recognized that the full width at half maximum is 0.45 ° or less.
(実験II) 本発明の(C1)電池〜(C5)電池と、比較例の(Y1)
電池、(Y2)電池のサイクル特性を調べたので、その結
果を第11図に示す。尚、実験条件は前記第1実施例の実
験IIと同様の条件で行った。(Experiment II) (C 1 ) Battery to (C 5 ) Battery of the Present Invention and (Y 1 ) of Comparative Example
The cycle characteristics of the battery and (Y 2 ) battery were examined. The results are shown in FIG. 11. The experimental conditions were the same as those of Experiment II of the first embodiment.
第11図に示すように、比較例の(Y1)電池、(Y2)電
池では共に300サイクル以下で寿命となるのに対して、
本発明の(C1)電池〜(C5)電池では全て400サイクル
以上の寿命を有していることが認められる。As shown in FIG. 11, both the (Y 1 ) battery and the (Y 2 ) battery of the comparative example have a life of 300 cycles or less.
It is recognized that the (C 1 ) battery to the (C 5 ) battery of the present invention all have a life of 400 cycles or more.
上記の如く、β相−Li−Al合金の(400)面の半値幅
が0.45゜以上(歪みが大きい)のリチウム−アルミニウ
ム合金を負極に使用した電池では、サイクル特性を向上
させることができる。このように、アルミニウム或いは
アルミニウム合金の歪みを大きくするには上記実施例の
ようにして負極を、作製すればよい。この手順を、以下
〜に述べる。As described above, the cycle characteristics can be improved in the battery using the lithium-aluminum alloy in which the half-value width of the (400) plane of the β-phase-Li-Al alloy is 0.45 ° or more (large strain) as the negative electrode. As described above, in order to increase the strain of aluminum or aluminum alloy, the negative electrode may be manufactured as in the above embodiment. This procedure will be described below.
まず、アルミニウム中に金属結合半径が1.23Å以上
1.63Å以下の金属を添加して合金化しベース合金を準備
する。このようにしてベース合金を準備すれば、結晶化
する際に格子欠陥ができるので、結晶内に多くの歪みが
生じる。このような金属としては、上記第1実施例〜第
3実施例で示したAg,W,Reの他、Mg,Ca,Sc,Ti,V,Cr,Mn,F
e,Co,Ni,Cu,Zn,Zr,Nb,Mo,Ru,Rh,Pd,Cd,In,Ta等がある。
上記範囲以外の金属をアルミニウムに添加した場合に
は、このような金属はアルミニウムと固溶し難いため、
ベース合金中のアルミニウムの結晶歪みを高めることは
困難である。First, the metal bond radius is 1.23Å or more in aluminum
Prepare a base alloy by alloying by adding a metal of 1.63Å or less. When the base alloy is prepared in this manner, lattice defects are generated during crystallization, so that many strains occur in the crystal. Examples of such metals include Mg, Ca, Sc, Ti, V, Cr, Mn and F in addition to Ag, W and Re shown in the first to third embodiments.
There are e, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Cd, In and Ta.
When a metal other than the above range is added to aluminum, such a metal is difficult to form a solid solution with aluminum,
It is difficult to increase the crystal strain of aluminum in the base alloy.
次に、アルミニウムを含むベース合金を冷間圧延す
る。このように冷間圧延すれば、アルミニウムの結晶は
圧延方向に伸びるが、低温で行われるため金属内の原子
の拡散が十分に行われず、結晶内に多くの歪みが生じ
る。このようなアルミニウムを、次の手順により、リチ
ウムと合金化させる。Next, the base alloy containing aluminum is cold-rolled. If cold rolling is performed in this way, the aluminum crystal extends in the rolling direction, but since it is carried out at a low temperature, the atoms in the metal are not sufficiently diffused, and many strains occur in the crystal. Such aluminum is alloyed with lithium by the following procedure.
そして、この冷間圧延を行ったベース合金を用い、
室温程度の温度下の非水電解液中で短絡、有るいは電解
してリチウムと合金化して、リチウムとアルミニウムと
を主成分とする合金を得る。尚、冶金学的、或るいは溶
融塩中で電解してリチウム−アルミニウム合金を作製し
た場合には、一般的に300℃以上の高温で作製されるた
め、金属内の原子の拡散が早くなり、歪みの多いリチウ
ム−アルミニウム合金を作製することは困難である。そ
して、上述の如く、室温程度の温度下の非水電解液中で
電解などを行って合金化すれば、合金化時の結晶変化に
より、β相−Li−Al合金の歪みが多くなる。Then, using this cold-rolled base alloy,
Short-circuit or electrolyze in a non-aqueous electrolyte solution at a temperature of about room temperature to alloy with lithium to obtain an alloy containing lithium and aluminum as main components. In addition, when metallurgically or when a lithium-aluminum alloy is produced by electrolysis in a molten salt, it is generally produced at a high temperature of 300 ° C or higher, so that diffusion of atoms in the metal is accelerated. However, it is difficult to produce a lithium-aluminum alloy with a large amount of strain. Then, as described above, when electrolysis or the like is performed in a non-aqueous electrolytic solution at a temperature of about room temperature to alloy, the β-phase-Li-Al alloy has a large strain due to a crystal change at the time of alloying.
尚、前記アルミニウム合金において、アルミニウム以
外の金属の含有量は0.1重量パーセント以上、5重量パ
ーセント以下であることが望ましい。これは、0.1重量
パーセント以下では添加効果が余り現れない一方、5重
量パーセント以上ではアルミニウム基体が脆くなって微
細化することに起因するものである。In the aluminum alloy, the content of metals other than aluminum is preferably 0.1% by weight or more and 5% by weight or less. This is because when the content is less than 0.1% by weight, the effect of addition is not significant, whereas when the content is more than 5% by weight, the aluminum substrate becomes brittle and becomes fine.
発明の効果 以上のように本発明によれば、β相−Li−Alの歪みが
大きくなるので、充放電サイクルを繰り返し行った場合
であっても、結晶変化による負極の微細化や崩れが生じ
難くなる。この結果、非水電解液二次電池のサイクル特
性を飛躍的に向上させることができるという効果を奏す
る。As described above, according to the present invention, since the β-phase-Li-Al strain becomes large, even when the charge / discharge cycle is repeatedly performed, miniaturization or collapse of the negative electrode due to crystal change occurs. It will be difficult. As a result, it is possible to dramatically improve the cycle characteristics of the non-aqueous electrolyte secondary battery.
第1図は本発明の非水電解液二次電池の断面図、第2図
は本発明の(A1)電池〜(A5)電池と比較例の(U1)電
池及び(U2)電池における負極のβ相−Li−Al合金の
(400)面の半値幅を示すグラフ、第3図は比較例の(V
1)電池〜(V7)電池における負極のβ相−Li−Al合金
の(400)面の半値幅を示すグラフ、第4図は比較例の
(W1)電池〜(W5)電池における負極のβ相−Li−Al合
金の(400)面の半値幅を示すグラフ、第5図は(A1)
電池〜(A5)電池と(U1)電池及び(U2)電池のサイク
ル特性を示すグラフ、第6図は(V1)電池〜(V7)電池
のサイクル特性を示すグラフ、第7図は(W1)電池〜
(W5)電池のサイクル特性を示すグラフ、第8図は本発
明の(B1)電池〜(B5)電池と比較例の(W1)電池及び
(W2)電池における負極のβ相−Li−Al合金の(400)
面の半値幅を示すグラフ、第9図は(B1)電池〜(B5)
電池と(W1)電池及び(W2)電池のサイクル特性を示す
グラフ、第10図は本発明の(C1)電池〜(C5)電池と比
較例の(Y1)電池及び(Y2)電池における負極のβ相−
Li−Al合金の(400)面の半値幅を示すグラフ、第11図
は(C1)電池〜(C5)電池と(Y1)電池及び(Y2)電池
のサイクル特性を示すグラフである。 1……正極、2……負極、3……セパレータ。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention, and FIG. 2 is a (A 1 ) battery to (A 5 ) battery of the present invention and (U 1 ) battery and (U 2 ) of a comparative example. Fig. 3 is a graph showing the full width at half maximum of the (400) plane of the β-phase-Li-Al alloy of the negative electrode in the battery.
1 ) A graph showing the full width at half maximum of the (400) plane of the β-phase-Li-Al alloy of the negative electrode in the battery to the (V 7 ) battery, and FIG. 4 shows the (W 1 ) battery to the (W 5 ) battery of the comparative example. Fig. 5 is a graph showing the full width at half maximum of the (400) plane of the negative electrode β-phase-Li-Al alloy, (A 1 )
Batteries to (A 5 ) battery, (U 1 ) battery and (U 2 ) battery showing cycle characteristics, FIG. 6 shows (V 1 ) battery to (V 7 ) battery showing cycle characteristics, 7th battery The illustration shows (W 1 ) battery ~
(W 5 ) A graph showing the cycle characteristics of the battery, and FIG. 8 is a β phase of the negative electrode in the (B 1 ) battery to (B 5 ) battery of the present invention and the (W 1 ) battery and (W 2 ) battery of Comparative Example. -Li-Al alloy (400)
Fig. 9 is a graph showing the full width at half maximum of the surface. Fig. 9 shows (B 1 ) battery to (B 5 )
FIG. 10 is a graph showing cycle characteristics of the battery, the (W 1 ) battery and the (W 2 ) battery, and FIG. 10 shows the (C 1 ) battery to the (C 5 ) battery of the present invention and the (Y 1 ) battery and (Y) of the comparative example. 2 ) β phase of negative electrode in battery −
A graph showing the full width at half maximum of the (400) plane of the Li-Al alloy, and Fig. 11 is a graph showing the cycle characteristics of the (C 1 ) battery to the (C 5 ) battery and the (Y 1 ) battery and the (Y 2 ) battery. is there. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator.
Claims (1)
非水電解液とを備えた非水電解液二次電池において、 前記負極はリチウムとアルミニウムとを主成分とする合
金からなり、この合金中のβ相−Li−Alの銅管球による
X線回折ピークの(400)面における半値幅(β 1/2)
が0.45゜以上0.65゜以下であることを特徴とする非水電
解液二次電池。1. A negative electrode using lithium as an active material, a positive electrode,
In a non-aqueous electrolyte secondary battery provided with a non-aqueous electrolyte, the negative electrode is made of an alloy containing lithium and aluminum as main components, and X-rays from a β-phase-Li-Al copper tube in the alloy. Full width at half maximum on the (400) plane of the diffraction peak (β 1/2)
Is 0.45 ° or more and 0.65 ° or less, a non-aqueous electrolyte secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63195597A JP2567674B2 (en) | 1988-08-04 | 1988-08-04 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63195597A JP2567674B2 (en) | 1988-08-04 | 1988-08-04 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0244645A JPH0244645A (en) | 1990-02-14 |
JP2567674B2 true JP2567674B2 (en) | 1996-12-25 |
Family
ID=16343796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63195597A Expired - Lifetime JP2567674B2 (en) | 1988-08-04 | 1988-08-04 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2567674B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111864182A (en) * | 2019-04-26 | 2020-10-30 | 丰田自动车株式会社 | All-solid-state battery and method for manufacturing same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6313266A (en) * | 1986-07-04 | 1988-01-20 | Hitachi Maxell Ltd | Lithium secondary battery |
-
1988
- 1988-08-04 JP JP63195597A patent/JP2567674B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6313266A (en) * | 1986-07-04 | 1988-01-20 | Hitachi Maxell Ltd | Lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JPH0244645A (en) | 1990-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2302720B1 (en) | Electrode material for lithium secondary battery and electrode structure including the same | |
KR100346542B1 (en) | Lithium secondary battery | |
JP5143852B2 (en) | Nonaqueous electrolyte secondary battery | |
US7258950B2 (en) | Electrode for rechargeable lithium battery and rechargeable lithium battery | |
JP4201509B2 (en) | Electrode for lithium secondary battery and lithium secondary battery | |
JP4152086B2 (en) | Electrode for lithium secondary battery and lithium secondary battery | |
JPH08153541A (en) | Lithium secondary battery | |
JP2001015102A (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
JP4281055B2 (en) | Nonaqueous electrolyte, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery | |
JP3081336B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0636800A (en) | Lithium secondary battery | |
JP2001250559A (en) | Lithium secondary cell | |
US6593030B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0665044B2 (en) | Lithium organic primary battery | |
JPH08180853A (en) | Separator and lithium secondary battery | |
JPH07245099A (en) | Negative electrode for nonaqueous electrolyte type lithium secondary battery | |
JP2567674B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH07142054A (en) | Nonaqueous or solid electrolyte secondary battery | |
JP2000133261A (en) | Nonaqueous electrolyte secondary battery and manufacture of same | |
JPH0864239A (en) | Nonaqueous electrolyte battery | |
JP4055268B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2989212B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2673836B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH01274359A (en) | Nonaqueous electrolyte secondary battery | |
JPH0636763A (en) | Lithium alloy negative electrode for secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081003 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |