JPH0244645A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0244645A
JPH0244645A JP63195597A JP19559788A JPH0244645A JP H0244645 A JPH0244645 A JP H0244645A JP 63195597 A JP63195597 A JP 63195597A JP 19559788 A JP19559788 A JP 19559788A JP H0244645 A JPH0244645 A JP H0244645A
Authority
JP
Japan
Prior art keywords
battery
aluminum
negative electrode
batteries
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63195597A
Other languages
Japanese (ja)
Other versions
JP2567674B2 (en
Inventor
Ikurou Nakane
育朗 中根
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63195597A priority Critical patent/JP2567674B2/en
Publication of JPH0244645A publication Critical patent/JPH0244645A/en
Application granted granted Critical
Publication of JP2567674B2 publication Critical patent/JP2567674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the cycle performance of a battery by forming a negative electrode with an alloy mainly comprising lithium and aluminum and having a specified characteristic. CONSTITUTION:A negative electrode is formed with an alloy mainly comprising lithium and aluminum. The half value width (beta1/2) on the face (400) of beta-phase Li-Al in the alloy at the X-ray diffraction peak measured with a copper tube is 0.45 deg. or more. The strain in beta-phase Li-Al is increased and forming of fine particles in the negative electrode or generation of its breakage caused by crystal deformation is difficult even if charge-discharge cycles are repeated. The cycle performance of a nonaqueous electrolyte secondary battery is increased.

Description

【発明の詳細な説明】 産業上夏且且分立 本発明は、リチウムを活物質とする負極と、二酸化マン
ガン、五酸化バナジウム、チタン、或いはニオブの硫化
物、セレン化物等を活物質とする正極と、非水電解液と
を備えた非水電解液二次電池に関するものである。
[Detailed Description of the Invention] Industrially and independently developed The present invention provides a negative electrode using lithium as an active material, and a positive electrode using manganese dioxide, vanadium pentoxide, titanium, or niobium sulfide, selenide, etc. as an active material. The present invention relates to a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte and a non-aqueous electrolyte.

災来勿伎歪 この種電池の問題点は、負極活物質であるリチウムが、
充電時に負極表面に樹枝状に成長することにより正極と
接して電池内部で短絡を生じたり、或いはモッシー状に
析出してリチウムの脱落等が生じ、この結果充放電サイ
クルが極めて短くなるということである。これは、放電
時にリチウムがイオンになって溶出すると、負極表面が
凹凸状になり、その後の充電時にリチウムが凸部に集中
的に電析することによるものである。
The problem with this type of battery is that lithium, the negative electrode active material,
During charging, dendritic growth on the surface of the negative electrode can cause a short circuit inside the battery when it comes into contact with the positive electrode, or it can deposit in a mossy pattern and cause lithium to fall off, resulting in extremely short charge/discharge cycles. be. This is because when lithium turns into ions and elutes during discharging, the negative electrode surface becomes uneven, and during subsequent charging, lithium is deposited intensively on the convex portions.

この対策として、特開昭52−5423号公報示すよう
に、負極をリチウム−アルミニウム合金で構成すること
が提案されている。このような構成とすれば、充電時に
、リチウムが基体となるアルミニウムと合金を形成する
ように復元されるため、リチウムの樹枝状成長が抑制さ
れるという利点がある。しかしながら、この場合には、
リチウム−アルミニウム合金の強度が弱いため、充放電
の繰り返しによって電掻の割れや、微細化が生じるため
、やはりサイクル特性がよくない。
As a countermeasure to this problem, as shown in Japanese Patent Laid-Open No. 52-5423, it has been proposed that the negative electrode be made of a lithium-aluminum alloy. Such a configuration has the advantage that lithium is restored to form an alloy with aluminum as a base during charging, and dendritic growth of lithium is suppressed. However, in this case,
Since the strength of the lithium-aluminum alloy is low, repeated charging and discharging causes cracking and micronization of the electric scraps, resulting in poor cycle characteristics.

そこで、特開昭63−131776号公報に示すように
、リチウム−アルミニウム合金電極の強度の向上を図る
べく、リチウム−アルミニウム合金を接着剤で接着させ
たものや、或いは、アルミニウムト、ffJ、 L ニ
ッケル、マンガン、コバルト、ケイ素、或いはジルコニ
ウム等の金属との合金を基体材料として用い、これらの
合金とリチウムとを合金化することにより、より強度の
高い電極を作成するもの等が提案されている。
Therefore, as shown in Japanese Patent Application Laid-open No. 63-131776, in order to improve the strength of lithium-aluminum alloy electrodes, lithium-aluminum alloy electrodes bonded with adhesive, aluminum alloys, ffJ, L. It has been proposed to create a stronger electrode by using alloys with metals such as nickel, manganese, cobalt, silicon, or zirconium as the base material and alloying these alloys with lithium. .

が”° しようとする しかしながら、このような構成とした場合であっても、
実用上満足できるような特性を得ることができない。こ
れは、アルミニウム合金中のβ相Li−Aj!は、放電
により、Liを放出して/lになる一方、充電時にLi
を吸蔵して再度β相−1,i −Alに変化する。この
とき、上記構成の負極であれば、初期のβ相−Li−A
Iの結晶性が良いため、歪みが少なくなる。したがって
、充放電サイクルを繰り返すと、β相−Li−A/とA
I間の結晶変化によって、電極の微細化や崩れが生じる
ことに起因することによるものである。
However, even with this configuration,
Practically satisfactory characteristics cannot be obtained. This is the β phase Li-Aj! in the aluminum alloy. When discharged, Li was released and became /l, while Li was released during charging.
is occluded and changes to β-phase-1,i-Al again. At this time, if the negative electrode has the above configuration, the initial β phase -Li-A
Since I has good crystallinity, distortion is reduced. Therefore, when the charge/discharge cycle is repeated, β phase -Li-A/ and A
This is due to the fact that the electrode becomes finer and crumbles due to crystal changes between I.

そこで本発明は、充放電サイクルを繰り返した場合であ
っても、電極の微細化や崩れが生じるのを抑制すること
により、サイクル特性に優れた非水電解液二次電池の提
供を目的とするものである。
Therefore, the present invention aims to provide a non-aqueous electrolyte secondary battery with excellent cycle characteristics by suppressing the occurrence of fineness and collapse of the electrode even when charge/discharge cycles are repeated. It is something.

i−”ン1 るための 本発明は上記目的を達成するために、リチウムを活物質
とする負極と、正極と、非水電解液とを備えた非水電解
液二次電池において、前記負極はリチウムとアルミニウ
ムとを主成分とする合金から成り、この合金中のβ相−
Li−Aj2の銅管法によるX線回折ピークの(400
)面における半値幅(βV2)が0.45°以上である
ことを特徴とする。
In order to achieve the above object, the present invention provides a nonaqueous electrolyte secondary battery comprising a negative electrode containing lithium as an active material, a positive electrode, and a nonaqueous electrolyte. consists of an alloy whose main components are lithium and aluminum, and the β phase in this alloy is
The X-ray diffraction peak of Li-Aj2 by copper tube method (400
) is characterized by a half width (βV2) of 0.45° or more.

作−−−一尻 上記の如くX線回折ピークの半値幅が0.450以上で
あれば、β相−Li−Aj!の歪みが大きくなる。した
がって、充放電サイクルを繰り返し行った場合であって
も、結晶変化による負極の微細化や崩れが生じ難くなる
ので、非水電解液二次電池のサイクル特性を向上させる
ことができる。
As mentioned above, if the half width of the X-ray diffraction peak is 0.450 or more, β phase -Li-Aj! distortion increases. Therefore, even when charge/discharge cycles are repeated, the negative electrode is less likely to become fine or crumble due to crystal changes, so that the cycle characteristics of the non-aqueous electrolyte secondary battery can be improved.

尚、β相−Li−Alの銅管法によるX線回折ピークの
(400)面における半値幅が0.65゜を超えると、
電極が脆くなるため、X線回折ピークの半値幅は0.6
5’以下であることが望ましい。
In addition, if the half-width in the (400) plane of the X-ray diffraction peak of β phase-Li-Al by the copper tube method exceeds 0.65°,
Because the electrode becomes brittle, the half width of the X-ray diffraction peak is 0.6
It is desirable that it is 5' or less.

第」101桝 (実施例I) 本発明の第1実施例を、第1図乃至第11図に基づいて
、以下に説明する。
Box 101 (Example I) A first example of the present invention will be described below with reference to FIGS. 1 to 11.

リチウム合金から成る負極2は負極集電体7の内面に圧
着されており、この負極集電体7はステンレスから成る
断面略コ字状の負極缶5の内底面に固着されている。上
記負極缶5の周端はポリプロピレン製の絶縁バッキング
8の内部に固定されており、絶縁バンキング8の外周に
はステンレスから成り上記負極缶5とは反対方向に断面
略コ字状を成す正極缶4が固定されている。この正極缶
4の内底面には正極集電体6が固定されており、この正
極集電体6の内面には正極1が固定さている。この正極
lと前記負極2との間には保液層を兼ねたセパレータ3
が介装されており、このセパレータ3には電解液が含浸
されている。この電解液としてはプロピレンカーボネー
トに過塩素酸リチウムを1moj2/j!加えたちを使
用している。尚、電池寸法は直径25關φ、厚み3.0
龍である。
A negative electrode 2 made of a lithium alloy is pressed onto the inner surface of a negative electrode current collector 7, and this negative electrode current collector 7 is fixed to the inner bottom surface of a negative electrode can 5 made of stainless steel and having a substantially U-shaped cross section. The peripheral end of the negative electrode can 5 is fixed inside an insulating backing 8 made of polypropylene, and the outer periphery of the insulating banking 8 is a positive electrode can made of stainless steel and having a substantially U-shaped cross section in the opposite direction to the negative electrode can 5. 4 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and a positive electrode 1 is fixed to the inner surface of this positive electrode current collector 6. A separator 3 which also serves as a liquid retaining layer is provided between the positive electrode 1 and the negative electrode 2.
is interposed, and this separator 3 is impregnated with an electrolyte. The electrolyte is propylene carbonate and lithium perchlorate at 1 moj2/j! Additions are used. In addition, the battery dimensions are 25 mm in diameter and 3.0 mm in thickness.
It's a dragon.

ここで、上記正極1は二酸マンガンと水酸化リチウムを
モル比で2=1の比に混合したものを375℃で20時
間熱処理を行ない、これを活物質とする。次に、この活
物質とアセチレンブラックW電材とフッ素樹脂結着材と
を、重量比で80:10:10の割合で混合して合剤を
作成した後、この合剤を加圧成型して乾燥させることに
より作製する。
Here, the positive electrode 1 is prepared by heat-treating a mixture of manganese dioxide and lithium hydroxide in a molar ratio of 2=1 at 375° C. for 20 hours, and uses this as an active material. Next, this active material, acetylene black W electrical material, and fluororesin binder were mixed in a weight ratio of 80:10:10 to create a mixture, and this mixture was pressure molded. Produced by drying.

一方、前記負極2は以下のように作製する。On the other hand, the negative electrode 2 is manufactured as follows.

先ず始めに、アルミニウムと銀とを97二3の割合で混
合して溶融させた後、これを冷却してインゴットを作成
する。次に、このインゴットを550℃で12時間均質
化処理を行なう。次いで、インゴットの表面の酸化膜を
除去すべくインゴットの表面層を切り落とした後、室温
にて圧延を繰り返して厚み0.5龍のアルミニウムー銀
合金の板を作成する。この後、上記合金を基体として、
非水電解液中、好ましくはLiC10いLiCF3SO
3、LiBF4、L+PF6、或いはLiSbF6等の
Li塩を溶解した1、3−ジオキソラン、2メチル−1
,3ジオキソラン、4メチル−1,3−ジオキソラン、
テトラヒドロフラン、或いは2メチル−テトラヒドロフ
ラン等の環状エーテル中に浸漬し、対極をLiとして電
解を行なってリチウム−アルミニウム合金を作製し、こ
れを負極として用いた。尚、この合金のアルミニウムと
リチウムとの比率は、モル比で65:35であった。
First, aluminum and silver are mixed in a ratio of 97:23 and melted, and then cooled to create an ingot. Next, this ingot is subjected to homogenization treatment at 550° C. for 12 hours. Next, the surface layer of the ingot was cut off to remove the oxide film on the surface of the ingot, and rolling was repeated at room temperature to produce an aluminum-silver alloy plate having a thickness of 0.5 mm. After this, using the above alloy as a base,
In the non-aqueous electrolyte, preferably LiC10 or LiCF3SO
3. 1,3-dioxolane, 2-methyl-1 in which Li salt such as LiBF4, L+PF6, or LiSbF6 is dissolved
, 3-dioxolane, 4-methyl-1,3-dioxolane,
A lithium-aluminum alloy was prepared by immersing it in a cyclic ether such as tetrahydrofuran or 2-methyl-tetrahydrofuran and electrolyzing with Li as a counter electrode, and this was used as a negative electrode. The molar ratio of aluminum to lithium in this alloy was 65:35.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery thus produced is hereinafter referred to as (A1) battery.

(実施例■〜■) アルミニウムと銀とを、下記第1表に示す割合で混合す
る他は、上記実施例Iと同様にして電池を作製した。
(Examples ■ to ■) Batteries were produced in the same manner as in Example I above, except that aluminum and silver were mixed in the proportions shown in Table 1 below.

このようにして作製した電池を、以下(A2)電池〜(
A、)電池と称する。
The batteries produced in this way are described below as (A2) batteries ~ (
A.) It is called a battery.

第1表 (比較例1、■) アルミニウムと銀とを、下記第2表に示す割合で混合す
る他は、上記実施例■と同様にして電池を作製した。
Table 1 (Comparative Example 1, ■) A battery was produced in the same manner as in Example ■ above, except that aluminum and silver were mixed in the proportions shown in Table 2 below.

このようにして作製した電池を、以下(Ul)電池、(
U2)電池と称する。
The battery thus produced is hereinafter referred to as (Ul) battery, (
U2) It is called a battery.

〔以下余白〕[Margin below]

第2表 第3表 (比較例■〜■) アルミニウムと銀とを上記第1表及び第2表に示す割合
で混合して溶融させた後、これを冷却してインゴットを
作成する。次に、このインゴットを550℃で12時間
均質化処理を行なう。次いで、インゴットの表面層を切
り落とした後、このインゴットをスライスして厚み0.
51のアルミニウムーマンガン合金の板を作成する他は
上記実施例Iと同様にして電池を作製した。
Table 2 Table 3 (Comparative Examples ■ to ■) Aluminum and silver are mixed and melted in the proportions shown in Tables 1 and 2 above, and then cooled to form an ingot. Next, this ingot is subjected to homogenization treatment at 550° C. for 12 hours. Next, after cutting off the surface layer of the ingot, the ingot is sliced to a thickness of 0.
A battery was produced in the same manner as in Example I above, except that a plate of aluminum-manganese alloy No. 51 was produced.

このようにして作製した電池を、以下(■1)電池〜(
■7)電池と称する。
The batteries produced in this way are described below (■1) Battery ~ (
■7) It is called a battery.

尚、(A1)電池〜(A5)電池、(U、)電池、(U
2)電池と上記(V+)電池〜(V、)電池との対応関
係(AgとAgとの重量比)を、下記第3表に示す。
In addition, (A1) battery to (A5) battery, (U,) battery, (U
2) The correspondence relationship (weight ratio of Ag to Ag) between the batteries and the above (V+) batteries to (V,) batteries is shown in Table 3 below.

(比較例X−XV) アルミニウムとリチウムと恨とを下記第4表に示す割合
で混合して溶融させた後、これを冷却してインゴットを
作成する。次に、このインゴットを550°Cで12時
間均質化処理を行なう。次いで、インゴットの表面層を
切り落とした後、このインゴットをスライスして厚み0
.51−のアルミニウムーマンガン合金の板を作製し、
これを負極として用いた。このような負極を用いる他は
、上記実施例Iと同様にして電池を作製した。
(Comparative Examples X-XV) Aluminum, lithium, and aluminum were mixed and melted in the proportions shown in Table 4 below, and then cooled to form an ingot. Next, this ingot is homogenized at 550°C for 12 hours. Next, after cutting off the surface layer of the ingot, the ingot is sliced to a thickness of 0.
.. A 51-aluminum-manganese alloy plate was prepared,
This was used as a negative electrode. A battery was produced in the same manner as in Example I above, except that such a negative electrode was used.

このようにして作製した電池を、以下(WI)電池〜(
W5)電池と称する。
The batteries produced in this way are described below as (WI) batteries ~ (
W5) It is called a battery.

〔以下余白〕[Margin below]

第4表 (実験I) 上記本発明の(A1)電池〜(A、)電池の負極と、比
較例の(U、)電池、(U2)電池及び(■1)電池〜
(■7)電池、及び(W、)電池〜(W5)電池の負極
とにおけるβ相−LiA1合金の銅管法によるX線回折
ピークの(400)面における半値幅(βlA)を調べ
たので、その結果を第2図、第3図、及び第4図に示す
Table 4 (Experiment I) Battery (A1) of the present invention - negative electrode of (A,) battery, comparative example (U,) battery, (U2) battery and (■1) battery -
We investigated the half-value width (βlA) in the (400) plane of the X-ray diffraction peak of the β-phase LiA1 alloy using the copper tube method in the (7) battery and the negative electrode of the (W,) battery to (W5) battery. , the results are shown in FIGS. 2, 3, and 4.

第2図、第3図、及び第4図に示すように、(A1)電
池〜(A5)電池の負極は半値幅が全て0.45°以上
であるのに対して、(Ul)電池、(U2)電池、(V
、)電池〜(■7)電池及び(W+ )電池〜(W5)
電池の負極は半値幅が全て0.45’以下であることが
認められる。
As shown in FIGS. 2, 3, and 4, the negative electrodes of batteries (A1) to (A5) all have half widths of 0.45° or more, whereas (Ul) batteries, (U2) Battery, (V
,) Battery ~ (■7) Battery and (W+) Battery ~ (W5)
It is recognized that all of the negative electrodes of the batteries have half widths of 0.45' or less.

これは、(U、)電池及び(U2)電池ではAgが添加
されていないか、或いは添加されていても微量であるこ
と、(■1)電池〜(■、)電池では冷間圧延されてい
ないこと、(Wl)電池〜(W、)電池では冷間圧延さ
れていないこと及び非水電解液中で合金化されていない
ことにより、リチウム−アルミニウム合金の結晶の歪み
を高めることが困難であるという理由による。
This is because Ag is not added in the (U,) battery and (U2) battery, or even if it is added, it is in a very small amount, and (■1) battery ~ (■,) battery is not cold rolled. It is difficult to increase the crystal strain of the lithium-aluminum alloy because it is not cold rolled and not alloyed in a non-aqueous electrolyte in the (Wl) battery ~ (W,) battery. For some reason.

(実験■) 本発明の(A1)電池〜(A、)電池と、比較例の(U
、)電池、(U2)電池、(Vl )電池〜(V7)電
池、及び(W+ )電池〜(W5)電池とのサイクル特
性を調べたので、その結果を第5図、第6図、及び第7
図に示す。尚、実験条件は2mAの電流で放電と充電と
を各々10時間づつ行い、放電終了時に2V以下となっ
たときに、その電池のサイクル寿命とした。
(Experiment ■) (A1) battery to (A,) battery of the present invention and (U
, ) battery, (U2) battery, (Vl) battery to (V7) battery, and (W+) battery to (W5) battery.The results are shown in Figures 5, 6, and 7th
As shown in the figure. The experimental conditions were that the battery was discharged and charged for 10 hours each at a current of 2 mA, and when the voltage dropped to 2 V or less at the end of discharge, the cycle life of the battery was determined.

第5図、第6図、及び第7図に示すように、比較例の(
Ul )電池、(U2)電池、(V、)電池〜(■、)
電池、及び(W、)電池〜(W5)電池では全て300
サイクル以下で寿命となるのに対して、本発明の(A、
)電池〜(A5)電池では全て400サイクル以上の寿
命を有していることが認められる。
As shown in FIGS. 5, 6, and 7, (
Ul ) battery, (U2) battery, (V,) battery ~ (■,)
Batteries and (W,) batteries to (W5) batteries are all 300
In contrast to the lifespan of the present invention (A,
) Batteries to (A5) All of the batteries were found to have a lifespan of 400 cycles or more.

星主爽施尉 (実施例I) アルミニウムとタングステンとを98:2の割合で混合
してアルミニウム合金を作る以外は前記第1実施例の実
施例1と同様にして電池を作製した。
A battery was prepared in the same manner as in Example 1 of the first example, except that aluminum and tungsten were mixed at a ratio of 98:2 to form an aluminum alloy.

このようにして作製した電池を、以下(B、)電池と称
する。
The battery thus produced is hereinafter referred to as a (B,) battery.

(実施例■〜■) アルミニウムとタングステンとを下記第5表に示す割合
で混合してアルミニウム合金を作る以外は前記第1実施
例の実施例1と同様にして電池を作製した。
(Examples ■ to ■) Batteries were prepared in the same manner as in Example 1 of the first example, except that aluminum and tungsten were mixed in the proportions shown in Table 5 below to form an aluminum alloy.

このようにして作製した電池を、以下(B2)電池〜(
B5)電池と称する。
The batteries produced in this way are described below as (B2) batteries ~ (
B5) It is called a battery.

第5表 (比較例I、■) アルミニウムと銀とを、下記第6表に示す割合で混合す
る他は、上記実施例■と同様にして電池を作製した。
Table 5 (Comparative Example I, ■) A battery was produced in the same manner as in Example ■ above, except that aluminum and silver were mixed in the proportions shown in Table 6 below.

このようにして作製した電池を、以下(Xl)電池、(
x2)電池と称する。
The battery thus produced is hereinafter referred to as (Xl) battery (
x2) It is called a battery.

第6表 (実験I) 上記本発明の(B1)電池〜(B、)電池の負極と、比
較例の(X、)電池、(X2)電池の負極とにおけるβ
相−Li−Aj2合金の銅管球によるX線回折ピークの
(400)面における半値幅(β2)を調べたので、そ
の結果を第8図に示す。
Table 6 (Experiment I) β in the negative electrodes of the (B1) batteries to (B,) batteries of the present invention and the negative electrodes of the (X,) batteries and (X2) batteries of the comparative examples
The half width (β2) of the X-ray diffraction peak in the (400) plane of the phase-Li-Aj2 alloy using a copper tube was investigated, and the results are shown in FIG.

第8図に示すように、(B1)電池〜(B5)電池の負
極は半値幅が全て0.45°以上であるのに対して、(
X、)電池、(×2)電池の負極は半値幅が全て0.4
5°以下であることが認められる。
As shown in Figure 8, the negative electrodes of batteries (B1) to (B5) all have half widths of 0.45° or more, whereas (
The half width of the negative electrodes of X, ) battery and (×2) battery are all 0.4.
It is recognized that the angle is 5° or less.

(実験■) 本発明の(B1)電池〜(B、)電池と、比較例の(X
、)電池、(X2)電池のサイクル特性を調べたので、
その結果を第9図に示す。尚、実験条件は前記第1実施
例の実験■と同様の条件で行った。
(Experiment ■) (B1) battery to (B,) battery of the present invention and (X
, ) battery, and (X2) battery, as we investigated the cycle characteristics of the battery.
The results are shown in FIG. The experimental conditions were the same as those in Experiment (2) of the first example.

第9図に示すように、比較例のくXl)電池、(X2)
電池では共に300サイクル以下で寿命となるのに対し
て、本発明の(B1)電池〜(B5)電池では全て30
0サイクル以上の寿命を有していることが認められる。
As shown in FIG. 9, the comparative example (Xl) battery, (X2)
While both batteries have a lifespan of 300 cycles or less, batteries (B1) to (B5) of the present invention all have a lifespan of 300 cycles or less.
It is recognized that the product has a lifespan of 0 cycles or more.

第1実上± (実施例■) アルミニウムとレニウムとを98;3の割合で混合して
アルミニウム合金を作る以外は前記第1実施例の実施例
1と同様にして電池を作製した。
First Example (Example ■) A battery was prepared in the same manner as in Example 1 of the first example except that an aluminum alloy was prepared by mixing aluminum and rhenium in a ratio of 98:3.

このようにして作製した電池を、以下(C1)電池と称
する。
The battery thus produced is hereinafter referred to as a (C1) battery.

(実施例■〜■) アルミニウムとレニウムとを下記第7表に示す割合で混
合してアルミニウム合金を作る以外は前記第1実施例の
実施例1と同様にして電池を作製した。
(Examples ■ to ■) Batteries were produced in the same manner as in Example 1 of the first embodiment, except that aluminum and rhenium were mixed in the proportions shown in Table 7 below to produce an aluminum alloy.

このようにして作製した電池を、以下(C2)電池〜(
C1)電池と称する。
The batteries produced in this way are described below as (C2) batteries ~ (
C1) It is called a battery.

〔以下余白〕[Margin below]

第7表 (比較例■、■) アルミニウムとレニウムとを、下記第8表に示す割合で
混合する他は、上記実施例Iと同様にして電池を作製し
た。
Table 7 (Comparative Examples ■, ■) A battery was produced in the same manner as in Example I above, except that aluminum and rhenium were mixed in the proportions shown in Table 8 below.

このようにして作製した電池を、以下(Y、)電池、(
Y2)電池と称する。
The batteries produced in this way are hereinafter referred to as (Y,) battery, (
Y2) It is called a battery.

第2表 (実験I) 上記本発明の(C3)電池〜(C5)電池の負極と、比
較例の(Y、)電池、(Y2)電池の負極とにおけるβ
相−Li−A4合金の銅管球によるX線回折ピークの(
400)面における半値幅(β2)を調べたので、その
結果を第10図に示す。
Table 2 (Experiment I) β in the negative electrodes of the (C3) batteries to (C5) batteries of the present invention and the negative electrodes of the (Y,) batteries and (Y2) batteries of the comparative examples.
Phase-Li-A4 alloy X-ray diffraction peak (
The half width (β2) in the 400) plane was investigated, and the results are shown in FIG.

第10図に示すように、(C1)電池〜(C3)電池の
負極は半値幅が全て0.45°以上であるのに対して、
(Yl)電池、(Y2)電池の負極は半値幅が全て0.
456以下であることが認められる。
As shown in Fig. 10, the half width of the negative electrodes of batteries (C1) to (C3) are all 0.45° or more, whereas
The negative electrodes of the (Yl) battery and (Y2) battery all have half widths of 0.
It is recognized that the number is 456 or less.

(実験■) 本発明の(C1)電池〜(C5)電池と、比較例の(Y
、)電池、(Y2)電池のサイクル特性を調べたので、
その結果を第11図に示す。尚、実験条件は前記第1実
施例の実験■と同様の条件で行った。
(Experiment ■) Batteries (C1) to (C5) of the present invention and (Y
, ) battery, (Y2) battery, we investigated the cycle characteristics of the battery.
The results are shown in FIG. The experimental conditions were the same as those in Experiment (2) of the first example.

第11図に示すように、比較例の(Yl)電池、(Y2
)電池では共に300サイクル以下で寿命となるのに対
して、本発明の(C4)電池〜(C、)電池では全て4
00サイクル以上の寿命を有していることが認められる
As shown in FIG. 11, the comparative example (Yl) battery, (Y2
) batteries have a service life of 300 cycles or less, whereas the (C4) to (C,) batteries of the present invention all have a lifespan of 300 cycles or less.
It is recognized that the product has a lifespan of 00 cycles or more.

上記の如く、β相−Li−A1合金の(400)面の半
値幅が0.45°以上(歪みが大きい)のりチウム−ア
ルミニウム合金を負極に使用した電池では、サイクル特
性を向上させることができる。
As mentioned above, it is not possible to improve the cycle characteristics in a battery using Lithium-Aluminum alloy for the negative electrode, which has a half-value width of the (400) plane of β-phase-Li-A1 alloy of 0.45° or more (large strain). can.

このように、アルミニウム或いはアルミニウム合金の歪
みを大きくするには上記実施例のようにして負極を作製
すればよい。これを以下にまとめる。
In this way, in order to increase the strain of aluminum or aluminum alloy, a negative electrode may be manufactured as in the above embodiment. This is summarized below.

■アルミニウム中に金属結合半径が1.23Å以上1.
63Å以下の金属を添加して合金化する。
■The metal bond radius in aluminum is 1.23 Å or more1.
Add a metal of 63 Å or less to form an alloy.

このようにして合金化すれば、結晶化する際に格子欠陥
ができるので、結晶内に多くの歪みが生じ、β相−Li
−AA金合金歪みを増加させることが可能となる。この
ような金属としては上記第1実施例〜第3実施例で示し
たAg、W、Reの他、Mg、Ca、Sc、Ti、V、
Cr、Mn、FeCo、Ni、Cu、Zn、Zr、Nb
、Mo、Ru、Rh、Pd、Cd、In、Ta等がある
。尚、上記範囲外の金属をアルミニウムに添加した場合
には、このような金属はアルミニウムと固溶し難いため
、アルミニウムの結晶歪みを高めることは困難である。
When alloyed in this way, lattice defects are created during crystallization, which causes a lot of strain in the crystal, and the β phase-Li
-It becomes possible to increase the strain of the AA gold alloy. Such metals include, in addition to Ag, W, and Re shown in the first to third embodiments, Mg, Ca, Sc, Ti, V,
Cr, Mn, FeCo, Ni, Cu, Zn, Zr, Nb
, Mo, Ru, Rh, Pd, Cd, In, Ta, etc. Note that when a metal outside the above range is added to aluminum, it is difficult to increase the crystal strain of aluminum because such a metal is difficult to form a solid solution with aluminum.

■アルミニウムを冷間圧延する。このように冷間圧延す
れば、アルミニウムの結晶は圧延方向に延びるが、低温
で行われるため金属内の原子の拡散が十分に行われず、
結晶内に多くの歪みが生じる。
■ Cold rolling aluminum. When cold rolling is performed in this way, the aluminum crystals extend in the rolling direction, but because the process is carried out at a low temperature, atoms within the metal do not diffuse sufficiently.
Many strains occur within the crystal.

したがって、このようなアルミニウムをリチウムと合金
化させればβ相−Li−AA金合金歪みを増加させるこ
とが可能となる。特に、上記Ag等の金属を添加すれば
、結晶内により多くの歪みを発生させることが可能とな
る。
Therefore, if such aluminum is alloyed with lithium, it becomes possible to increase the β-phase-Li-AA gold alloy strain. In particular, by adding a metal such as the above-mentioned Ag, it becomes possible to generate more strain within the crystal.

■室温程度の温度下の非水電解液中で短絡、或いは電解
してリチウムとアルミニウムとを合金化する。これは、
冶金学的、或いは溶融塩中で電解してリチウム−アルミ
ニウム合金を作製した場合には、−船釣に300℃以上
の高温で作製されるため、金属内の原子の拡散が早くな
り歪みの多いリチウム−アルミニウム合金を作製するこ
とは困難であるのに対して、室温程度の温度下の非水電
解液中で電解等を行って合金化すれば、合金化時の結晶
変化によりβ相−Li−A1合金の歪みが多くなる。
(2) Alloy lithium and aluminum by short-circuiting or electrolyzing in a non-aqueous electrolyte at a temperature around room temperature. this is,
When a lithium-aluminum alloy is produced by metallurgy or by electrolysis in molten salt, - Because it is produced at high temperatures of over 300°C during boat fishing, the atoms in the metal diffuse quickly and become distorted. Although it is difficult to produce a lithium-aluminum alloy, if alloying is performed by electrolysis in a non-aqueous electrolyte at a temperature around room temperature, the β phase-Li - The distortion of the A1 alloy increases.

尚、前記アルミニウム合金において、アルミニウム以外
の金属の含有量は0.1重量パーセント以上、5重量パ
ーセント以下であることが望ましい。これは、0.1重
量パーセント以下では添加効果が余り現れない一方、5
重量パーセント以上ではアルミニウム基体が脆くなって
微細化することに起因するものである。
In addition, in the aluminum alloy, the content of metals other than aluminum is preferably 0.1 weight percent or more and 5 weight percent or less. This means that if the addition effect is less than 0.1% by weight, the effect of addition will not appear much, but if the addition is less than 0.1% by weight,
This is due to the aluminum base becoming brittle and becoming finer when the weight percentage is higher than that.

主凱立訪来 以上のように本発明によれば、β相−Li−AAの歪み
が大きくなるので、充放電サイクルを繰り返し行った場
合であっても、結晶変化による負極の微細化や崩れが生
じ難くなる。この結果、非水電解液二次電池のサイクル
特性を飛躍的に向上させることができるという効果を奏
する。
As described above, according to the present invention, the distortion of the β-phase-Li-AA increases, so even when repeated charge/discharge cycles are performed, the negative electrode becomes finer and crumbles due to crystal changes. becomes less likely to occur. As a result, it is possible to dramatically improve the cycle characteristics of the non-aqueous electrolyte secondary battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非水電解液二次電池の断面図、第2図
は本発明の(A、)電池〜(A、)電池と比較例の(U
、)電池及び(U2)電池における負極のβ相−Li−
A2合金の(400)面の半値幅を示すグラフ、第3図
は比較例の(■1)電池〜(■7)電池における負極の
β相−Li−Ajl!合金の(400)面の半値幅を示
すグラフ、第4図は比較例の(WI)電池〜(W、)電
池における負極のβ相−Li−A42合金の(400)
面の半値幅を示すグラフ、第5図は(A、)電池〜(A
s)電池と(U、)電池及び(U2)電池のサイクル特
性を示すグラフ、第6図は(Vl)電池〜(■、)電池
のサイクル特性を示すグラフ、第7図は(Wl)電池〜
(W5)電池のサイクル特性を示すグラフ、第8図は本
発明の(B、)電池〜(B、)電池と比較例の(Wl)
電池及び(W Z)電池における負極のβ相−Li−A
42合金の(400)面の半値幅を示すグラフ、第9図
は(B。 )電池〜(B、)電池と(WI)電池及び(W2)電池
のサイクル特性を示すグラフ、第10図は本発明の(C
,)電池〜(C3)電池と比較例の(Yl)電池及び(
Y2)電池における負極のβ相−Li A/金合金 面の半値幅を示す グラフ、第1 1図は (C。 電池〜 (0゜ 電池 と (Yl 電池及び (Y。 電池のサイクル特性 を示すグラフである。 ■・・・正極、 2・・・負極、 3・・・セパレータ。
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention, and FIG.
, ) battery and (U2) β phase -Li- of the negative electrode in the battery
A graph showing the half-value width of the (400) plane of the A2 alloy, FIG. 3, shows the β-phase -Li-Ajl! of the negative electrode in the comparative examples (■1) to (■7) batteries. A graph showing the half-width of the (400) plane of the alloy, Figure 4 shows the (400) β phase of the negative electrode in the comparative example (WI) battery to (W,) battery of the Li-A42 alloy.
A graph showing the half-width of the surface, Figure 5 is (A,) battery ~ (A
s) A graph showing the cycle characteristics of the battery, the (U,) battery, and the (U2) battery. Figure 6 is a graph showing the cycle characteristics of the (Vl) battery to (■,) battery. Figure 7 is the (Wl) battery. ~
(W5) A graph showing the cycle characteristics of the battery, Figure 8 shows the (B,) battery of the present invention ~ (B,) battery and the comparative example (Wl)
β-phase -Li-A of negative electrode in batteries and (WZ) batteries
A graph showing the half-width of the (400) plane of the 42 alloy, Fig. 9 is a graph showing the cycle characteristics of (B.) battery to (B,) battery, (WI) battery, and (W2) battery, Fig. 10 is (C) of the present invention
, ) battery ~ (C3) battery and comparative example (Yl) battery and (
Figure 11 is a graph showing the half-width of the β-phase-Li A/gold alloy surface of the negative electrode in the Y2) battery. It is a graph.■...Positive electrode, 2...Negative electrode, 3...Separator.

Claims (1)

【特許請求の範囲】[Claims] (1)リチウムを活物質とする負極と、正極と、非水電
解液とを備えた非水電解液二次電池において、前記負極
はリチウムとアルミニウムとを主成分とする合金から成
り、この合金中のβ相−Li−Alの銅管球によるX線
回折ピークの(400)面における半値幅(β1/2)
が0.45゜以上であることを特徴とする非水電解液二
次電池。
(1) In a non-aqueous electrolyte secondary battery comprising a negative electrode using lithium as an active material, a positive electrode, and a non-aqueous electrolyte, the negative electrode is made of an alloy mainly composed of lithium and aluminum, and the negative electrode is made of an alloy mainly composed of lithium and aluminum. Half width (β1/2) of the X-ray diffraction peak in the (400) plane of the β phase-Li-Al in the copper tube
A non-aqueous electrolyte secondary battery characterized in that the angle is 0.45° or more.
JP63195597A 1988-08-04 1988-08-04 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2567674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63195597A JP2567674B2 (en) 1988-08-04 1988-08-04 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63195597A JP2567674B2 (en) 1988-08-04 1988-08-04 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0244645A true JPH0244645A (en) 1990-02-14
JP2567674B2 JP2567674B2 (en) 1996-12-25

Family

ID=16343796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63195597A Expired - Lifetime JP2567674B2 (en) 1988-08-04 1988-08-04 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2567674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864182A (en) * 2019-04-26 2020-10-30 丰田自动车株式会社 All-solid-state battery and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313266A (en) * 1986-07-04 1988-01-20 Hitachi Maxell Ltd Lithium secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313266A (en) * 1986-07-04 1988-01-20 Hitachi Maxell Ltd Lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864182A (en) * 2019-04-26 2020-10-30 丰田自动车株式会社 All-solid-state battery and method for manufacturing same

Also Published As

Publication number Publication date
JP2567674B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
KR101817664B1 (en) Si-based-alloy anode material
JP4368139B2 (en) Anode material for non-aqueous electrolyte secondary battery
US6599663B2 (en) Negative electrode for lithium secondary battery
JPH10294112A (en) Lithium secondary battery
JP4056183B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2001015102A (en) Nonaqueous electrolyte secondary battery and its manufacture
TW201505241A (en) Si-based alloy negative electrode material for storage device, and electrode obtained using same
JP2005063767A (en) Negative electrode material for nonaqueous electrolyte solution secondary battery
JP4281055B2 (en) Nonaqueous electrolyte, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery
JP2001250559A (en) Lithium secondary cell
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JP4439660B2 (en) Nonaqueous electrolyte secondary battery
JP2006172777A (en) Lithium secondary battery
JP3054477B2 (en) Hydrogen storage alloy electrode
JPH0244645A (en) Nonaqueous electrolyte secondary battery
JP4032893B2 (en) Anode material for non-aqueous electrolyte secondary battery
JPS6119063A (en) Hydrogen occlusion electrode
JP5769578B2 (en) Method for producing negative electrode active material for lithium secondary battery
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same
JP4844503B2 (en) Anode material for lithium ion secondary battery
JP4100175B2 (en) Negative electrode for lithium ion secondary battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JPH10237563A (en) Hydrogen storage alloy powder and its production
JPH0636763A (en) Lithium alloy negative electrode for secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

EXPY Cancellation because of completion of term