JPH10294112A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10294112A
JPH10294112A JP10046299A JP4629998A JPH10294112A JP H10294112 A JPH10294112 A JP H10294112A JP 10046299 A JP10046299 A JP 10046299A JP 4629998 A JP4629998 A JP 4629998A JP H10294112 A JPH10294112 A JP H10294112A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
electrode material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10046299A
Other languages
Japanese (ja)
Other versions
JP3846661B2 (en
Inventor
Motoe Nakajima
源衛 中嶋
Muneyuki Tanaka
宗幸 田中
Akira Kawakami
章 川上
Naoki Shinoda
直樹 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Maxell Ltd filed Critical Hitachi Metals Ltd
Priority to JP04629998A priority Critical patent/JP3846661B2/en
Publication of JPH10294112A publication Critical patent/JPH10294112A/en
Application granted granted Critical
Publication of JP3846661B2 publication Critical patent/JP3846661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a problem in safety such as firing, and enhance discharge capacity per the volume by arranging a lithium oxide composed of LiCoO2 in a positive electrode, and specifying the composition of a negative electrode material arranged in a negative electrode of a lithium secondary battery constituted by filling a nonaqueous electrolyte. SOLUTION: A material having the composition shown by M100-x Six (x>=50 a t%) is used as a negative electrode material of a lithium secondary battery. In this case, M is composed of at least one kind of element selected from Ni, Fe, Co and Mn. When a quantity of Si exceeds 50 a t%, a crystal of Si easily deposits. Since it is difficult to be industrially manufactured when the quantity of Si becomes 90 a t% or more, the quantity of Si is preferably set to a range of 55 to 85 a t%. Since the area in which Li and Si contact with each other can also be expanded by forming metallic silicide as a fine crystal, chemical reaction can be efficiently made to progress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
関するものであり、特に高容量化に最適な負極材に係わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a negative electrode material most suitable for increasing the capacity.

【0002】[0002]

【従来の技術】半導体の技術の急速な進歩に伴い、近年
の電子機器、特にパーソナルコンピュータ、携帯電話、
AV機器などの小形、軽量、多機能化が進み、同時に利
便性が大幅に向上されてきた。これらに使用される二次
電池にも高エネルギー密度、長寿命、軽量化などの要求
が強まってきている。従来、民生用小型二次電池はニッ
ケルーカドミウム電池が主に使用されてきたが、90年
代になってニッケルー水素電池が本格的に商品化され、
さらにリチウム二次電池が二次電池市場に参入するなど
目覚ましい技術の革新がなされている。
2. Description of the Related Art With the rapid progress of semiconductor technology, recent electronic devices, especially personal computers, mobile phones,
AV equipment and the like have become smaller, lighter, and multifunctional, and at the same time, convenience has been greatly improved. The demand for high energy density, long life, light weight, and the like is increasing for the secondary batteries used in these batteries. Conventionally, nickel-cadmium batteries have been mainly used as small secondary batteries for consumer use, but in the 1990s, nickel-metal hydride batteries were commercialized in earnest.
In addition, remarkable technological innovations have been made such as the entry of the lithium secondary battery into the secondary battery market.

【0003】さて、リチウム電池の特徴をまとめると、
エネルギー密度が従来の電池に比べて大きい。 自己
放電が少ない。 動作可能な温度範囲が-20 〜+45 ℃と
広い。 メモリー効果がない。等である。このような長
所を有するため、二次電池市場において現状はニッケル
ーカドミウム電池やニッケル- 水素電池が主流である
が、近い将来リチウム二次電池が取って代わることが予
想されている。
[0003] To summarize the characteristics of lithium batteries,
Higher energy density than conventional batteries. Low self-discharge. The operable temperature range is as wide as -20 to + 45 ° C. No memory effect. And so on. Due to these advantages, nickel-cadmium batteries and nickel-hydrogen batteries are currently the mainstream in the secondary battery market, but lithium secondary batteries are expected to replace them in the near future.

【0004】現在市販されているリチウム二次電池の正
極材には、高い放電電圧が得られるコバルト酸リチウム
(LiCoO2)が、またその負極材にはカーボンが用いられ
ている。電極材は粉末状にされ、導電性バインダーと混
ぜた状態で集電体に塗布され電極を形成する。正極の集
電体にはアルミニウム箔、負極の集電体には銅箔が用い
られている。正極と負極とを電池内部で絶縁するセパレ
ーターにはポリエチレン等の多孔質膜が用いられる。実
際の電池では、正極、セパレーター、負極の順で重ね合
せてロール状に巻いた状態で円筒管内に収納される。さ
らに、円筒管内には支持電解質(LiClO4,LiPF6,LiBF
4等)を溶かした非水系の有機電解液が満たされる。
[0004] Lithium cobalt oxide (LiCoO 2 ), which can provide a high discharge voltage, is used as the positive electrode material of currently marketed lithium secondary batteries, and carbon is used as the negative electrode material. The electrode material is made into a powder form, mixed with a conductive binder, and applied to a current collector to form an electrode. Aluminum foil is used for the current collector of the positive electrode, and copper foil is used for the current collector of the negative electrode. A porous film made of polyethylene or the like is used as a separator that insulates the positive electrode and the negative electrode inside the battery. In an actual battery, a positive electrode, a separator, and a negative electrode are placed in a cylindrical tube in a stacked state and wound in a roll. Furthermore, supporting electrolytes (LiClO 4 , LiPF 6 , LiBF
4 )) is filled with a non-aqueous organic electrolyte.

【0005】このように構成されたリチウム二次電池
は、正極材LiCoO2中のリチウムの一部が有機電解液中に
イオンとして放出され、これに伴って有機電解液中に溶
解した支持電解質(LiClO4,LiPF6,LiBF4等)のリチウム
イオンが、負極材のカーボンの層間に吸蔵されることに
よって、充電動作が行われる。一方、放電時には負極に
吸蔵されたリチウムイオンが放出されることになり、そ
の際発生した電子が外部回路に流れ電気エネルギーを出
すことになる。以上述べた反応を下式に示す。式中の矢
印の向きは充電時には右方向に、放電時には逆に左方向
に化学反応が進行することを示す。 LiCoO2⇔ Li1-nCoO2+nLi++ne- (正極) (1) C +nLi++ne- ⇔ Li n C (負極) (2) 従って、正極と負極を合わせた電池全体の充放電時の反
応式は LiCoO2+C ⇔ Li1-nCoO2+ LinC (3) となる。
[0005] In the lithium secondary battery configured as described above, a part of lithium in the positive electrode material LiCoO 2 is released as ions into the organic electrolyte, and accordingly, the supporting electrolyte (dissolved in the organic electrolyte). The lithium ion of LiClO 4 , LiPF 6 , LiBF 4 and the like is inserted between carbon layers of the negative electrode material, whereby a charging operation is performed. On the other hand, at the time of discharging, lithium ions occluded in the negative electrode are released, and the generated electrons flow to an external circuit to generate electric energy. The reaction described above is shown in the following formula. The direction of the arrow in the formula indicates that the chemical reaction proceeds to the right during charging and conversely to the left during discharging. LiCoO 2 ⇔ Li 1-n CoO 2 + nLi ++ ne- ( positive electrode) (1) C + nLi ++ ne- ⇔ Li n C ( negative electrode) (2) Accordingly, the reaction during charging and discharging the entire battery combined positive and negative electrodes The formula is LiCoO 2 + C ⇔ Li 1-n CoO 2 + LinC (3).

【0006】式(1)から(3)の化学反応過程をリチ
ウムイオンの動きで説明すると、次のようである。即
ち、充電時には正極のLiCoO2中のリチウムはイオンとな
って電解質中に移動し、電解質中のリチウムイオンは負
極のカーボンに吸蔵され、リチウムイオンの状態で蓄積
される。放電時は逆の反応を起こさせるものであり、負
極材のカーボン中のリチウムイオンが電解質中に移動
し、電解質中のリチウムイオンは正極材中に吸蔵されて
LiCoO2となる。このように、正極および負極の活物質が
リチウムイオンを放出あるいは吸蔵放出して充放電を行
うため、正極および負極に用いられる材料はこの化学反
応が効率よく行われる材質を具備している必要がある。
[0006] The chemical reaction process of the formulas (1) to (3) will be described below with reference to the movement of lithium ions. That is, at the time of charging, lithium in the LiCoO 2 of the positive electrode becomes ions and moves into the electrolyte, and the lithium ions in the electrolyte are occluded by the carbon of the negative electrode and accumulated in a state of lithium ions. At the time of discharge, the opposite reaction occurs, and lithium ions in the carbon of the negative electrode material move into the electrolyte, and the lithium ions in the electrolyte are occluded in the positive electrode material.
LiCoO 2 As described above, since the active materials of the positive electrode and the negative electrode release or occlude and release lithium ions to perform charge and discharge, the materials used for the positive electrode and the negative electrode need to have a material capable of efficiently performing this chemical reaction. is there.

【0007】[0007]

【発明が解決しようとする課題】現在、リチウム二次電
池の負極にはカーボン電極が最も多く使用されている。
負極にカーボンが用いられると急速に充放電した場合、
電解質中のリチウムイオンがカーボンの表面までも金属
リチウムとして樹枝状に析出し、内部短絡を生じて容量
の低下につながる虞がある。また、リチウム電池はエネ
ルギー密度が他の二次電池に較べ高いため、特に発火等
の安全性に問題のある材料は使用することを控える必要
がある。このため、可燃性のカーボンに代わる材料が求
められている。さらに、体積当たりの放電容量は密度が
高いほど有利であるが、カーボンは密度2. 2g/mlと金
属材料に比して数倍程度低いため、高放電容量を得るこ
とが困難であった。
At present, a carbon electrode is most often used as a negative electrode of a lithium secondary battery.
When carbon is used for the negative electrode, it is charged and discharged rapidly,
Lithium ions in the electrolyte may be deposited as metallic lithium in a dendritic manner even on the surface of the carbon, causing an internal short circuit and leading to a reduction in capacity. In addition, since a lithium battery has a higher energy density than other secondary batteries, it is necessary to refrain from using a material having a problem in safety such as ignition. For this reason, there is a need for a material that can replace flammable carbon. Further, the discharge capacity per volume is more advantageous as the density is higher, but it is difficult to obtain a high discharge capacity because carbon has a density of 2.2 g / ml, which is about several times lower than that of a metal material.

【0008】一方、負極材としてのカーボンは充電時に
リチウムイオンを結晶の層間に格納するため、充電能力
はリチウム収容量に左右されることになるが、カーボン
ではその収容量に限界がある。カーボン系負極にリチウ
ムを最大収容した場合、負極はLiC6になる。この時の重
量当たりの容量は、370mAh/gと比較的大きいものである
が、これらカーボン材料の密度は2. 2g/ml程度と小さ
く、体積当たりの容量では700mAh/ml 程度が限界であっ
た。このため、規格化された2次電池の容量を向上させ
るには、700mA-h/ml以上の能力を持つ負極材の開発が必
要である。
On the other hand, carbon as a negative electrode material stores lithium ions between crystal layers at the time of charging, so that the charging capacity depends on the lithium capacity. However, the carbon capacity is limited. When lithium is contained in the carbon-based negative electrode at the maximum, the negative electrode becomes LiC 6 . At this time, the capacity per weight is relatively large at 370 mAh / g, but the density of these carbon materials is as small as about 2.2 g / ml, and the capacity per volume is limited to about 700 mAh / ml. . For this reason, in order to improve the capacity of a standardized secondary battery, it is necessary to develop a negative electrode material having a capacity of 700 mA-h / ml or more.

【0009】そこで、特開平7-240201号公報に開示され
ているように、合金材を負極材に適用しようとする提案
がある。そこには、遷移元素からなる非鉄金属の珪化
物、例えばCoSi2-3, Mn2Si, Mo3Si, NiSi, WSi2 等の適
用が開示されている。また、1995年の電池討論会におい
て、「ZnS 型・CaF2型構造金属間化合物のリチウム二次
電池電極特性」の中でNiSi2 の金属間化合物による放電
特性の改良に関する発表があった。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 7-240201, there is a proposal to apply an alloy material to a negative electrode material. It discloses the application of a non-ferrous metal silicide composed of a transition element, for example, CoSi 2-3 , Mn 2 Si, Mo 3 Si, NiSi, WSi 2 and the like. Further, in the battery debate 1995, a presentation to an improvement in discharge characteristics of NiSi 2 by intermetallic compounds in the "lithium secondary battery electrode characteristics of ZnS type · CaF 2 -type structure intermetallic compound".

【0010】この論文には、 NiSi2の金属間化合物を負
極材に使ったことが書かれているが、工業上冶金的なプ
ロセスでNiSi2 の溶湯から金属間化合物を容易に作製で
きない。Ni- Coの二元状態図から明らかなように、
Niに66.7 at% Si を含有する位置には、αNiSi2 の金
属間化合物があるが、 NiSi2の溶湯を冷却していくと1
100℃よりも少し高い温度でSiが析出してそれが成
長する。溶湯が966℃の共晶点まで冷却されるNiSiと
NiSi2 とが生成する。しかしながら、 NiSi2金属間化合
物はほんのわずかである。このようにNiSi2 は溶湯から
金属間化合物を容易に作製できないため、工業上の利用
価値が低いものであった。
[0010] This article describes that an intermetallic compound of NiSi 2 was used as a negative electrode material, but an intermetallic compound cannot be easily produced from a molten metal of NiSi 2 by an industrial metallurgical process. As is clear from the binary phase diagram of Ni-Co,
At the position where Ni contains 66.7 at% Si, there is an intermetallic compound of αNiSi 2 , but as the NiSi 2 melt cools, 1
At a temperature slightly higher than 100 ° C., Si precipitates and grows. NiSi whose molten metal is cooled to the eutectic point of 966 ℃
NiSi 2 is formed. However, the amount of NiSi 2 intermetallic compounds is very small. As described above, NiSi 2 cannot easily produce an intermetallic compound from a molten metal, and therefore has low industrial utility value.

【0011】本発明は、負極材として放電容量の大きな
金属珪化物を有するリチウム二次電池を提供することを
目的としている。
An object of the present invention is to provide a lithium secondary battery having a metal silicide having a large discharge capacity as a negative electrode material.

【0012】[0012]

【課題を解決するための手段】本発明は、負極材として
金属との珪化物を用いることにより従来の技術課題を解
決する過程において想到したものである。即ち、Ni, F
e, CoおよびMnの珪化物は結晶質かもしくは一部に非晶
質を含むことによって、著しい充放電容量の改善が得ら
れることを見出したことによる。さらに、Sn, V 等の金
属を一部析出させることにより、一層の改善が得られる
ものである。本発明に係る負極材は、前述したように金
属間珪化物であるが、その組成はM100-x Six (x ≧
50at%)であり、MはNi, Fe, Co, Mnから選ばれた少
なくとも1種の元素からなるものである。シリコンの量
が50at%を超えると、シリコンの結晶を析出しやすく
なる。また、90at%以上になると、工業的に製造する
ことが難しくなるため、55〜85at%の範囲が好まし
い。
SUMMARY OF THE INVENTION The present invention has been made in the course of solving the conventional technical problems by using a silicide with a metal as a negative electrode material. That is, Ni, F
This is because the silicide of e, Co, and Mn is found to have a remarkable improvement in charge / discharge capacity by being crystalline or partially containing amorphous. Further, by partially depositing metals such as Sn and V, further improvement can be obtained. The negative electrode material according to the present invention is an intermetallic silicide as described above, the composition of M 100-x Si x (x
M is at least one element selected from Ni, Fe, Co, and Mn. When the amount of silicon exceeds 50 at%, it becomes easy to precipitate silicon crystals. On the other hand, if it is 90 at% or more, it becomes difficult to industrially produce the same, so the range of 55 to 85 at% is preferable.

【0013】さらに、上に述べた負極材に添加物を加え
たM100-x-y y Six (x ≧50at%、0 <y <10at%)
の一般式で示される負極材は、放電容量を改善できる。
この式において、MがNi, Fe, Co, Mnから選ばれた少な
くとも1種の元素であると共に、BがSn, V, Cu, Ag, A
l から選ばれた少なくとも1種を含む珪化物である。B
で表される元素Sn, V, Cu, Ag, Al は放電容量を高める
効果を持つ。その限度は10at%である。特に、SnとV
は他の添加元素よりも放電容量を高めるが、その好まし
い範囲は3〜8at%である。Bと表した元素は、シリコ
ンとリチウムイオンとの充電時の合金化作用と放電時の
分解作用を促進する働きをしている。特に、SnとV は樹
枝状のシリコン結晶と金属珪化物との間に析出して、他
の元素より放電容量を高める効果を持つ。
Furthermore, xy 100-M was added an additive to the negative electrode material described above B y Si x (x ≧ 50at %, 0 <y <10at%)
The negative electrode material represented by the general formula can improve the discharge capacity.
In this formula, M is at least one element selected from Ni, Fe, Co, and Mn, and B is Sn, V, Cu, Ag, A
l is a silicide containing at least one selected from l. B
The elements Sn, V, Cu, Ag, and Al represented by have the effect of increasing the discharge capacity. The limit is 10 at%. In particular, Sn and V
Has a higher discharge capacity than other additive elements, but the preferred range is 3 to 8 at%. The element represented by B functions to promote the alloying action of silicon and lithium ions during charging and the decomposition action during discharging. In particular, Sn and V precipitate between the dendritic silicon crystal and the metal silicide, and have the effect of increasing the discharge capacity over other elements.

【0014】上の金属珪化物を微細な結晶にすることに
よって、リチウムとシリコンとが接触する面積を広げる
ことが出来るため、化学反応を効率よく進行させること
が可能となる。これは充放電の改善に寄与すると共に、
高容量化にもつながるものである。微細なシリコン結晶
を得るには、例えば溶湯急冷の方法等がある。金属珪化
物を作製する場合、一般的な溶解法で作ると冷却過程で
結晶が成長する時間が十分あるため、シリコンの結晶は
大きくなってしまう。しかし、溶湯急冷法では製造条件
によっては微結晶と非晶質の混在したものが得られる。
全てが微結晶である必要はなく、本発明の効果を奏する
ことができる程度に微結晶を有すればよい。
By making the above-mentioned metal silicide into fine crystals, the contact area between lithium and silicon can be increased, so that the chemical reaction can proceed efficiently. This contributes to the improvement of charging and discharging,
This leads to higher capacity. In order to obtain fine silicon crystals, for example, there is a method of quenching molten metal. When a metal silicide is produced, if it is produced by a general dissolution method, the crystal grows in the cooling process, so that the silicon crystal becomes large. However, in the molten metal quenching method, a mixture of microcrystals and amorphous can be obtained depending on production conditions.
Not all need to be microcrystals, as long as they have microcrystals to the extent that the effects of the present invention can be achieved.

【0015】さらに、シリコン結晶を樹枝状にすること
によりリチウムとの接触面積を拡大する効果が得られ、
充放電容量を高めることができる。従来材であるカーボ
ン材料を負極にした場合に比べ、同じ大きさの電池でも
充放電容量のより大きなリチウム二次電池を提供するこ
とができる。シリコンに添加するNi, Fe, Co, Mnはシリ
コンと非晶質合金を形成し、微細な樹枝状シリコン結晶
を保持するマトリックスであると同時に、シリコン原子
と電子の授受を行うための電極としての作用がある。以
下、本発明の具体的な実施例について詳細に説明するこ
とにする。
Further, by forming the silicon crystal into a dendritic shape, the effect of increasing the contact area with lithium can be obtained.
The charge / discharge capacity can be increased. Compared to a case where a carbon material as a conventional material is used as a negative electrode, a lithium secondary battery having a larger charge / discharge capacity can be provided even with batteries of the same size. Ni, Fe, Co, and Mn added to silicon form an amorphous alloy with silicon and are a matrix that retains fine dendritic silicon crystals.At the same time, they serve as electrodes for transferring electrons between silicon atoms and electrons. There is action. Hereinafter, specific examples of the present invention will be described in detail.

【0016】[0016]

【発明の実施の形態】まず試料の作製方法を以下説明す
る。組成金属を所定のモル比に秤量し、大気中で高周波
溶解しする。この溶湯を単ロール法(周速30m/s の銅製
ロール上に注湯し、104 K /sec 以上の早さで急冷する
方法)によって試料用薄片を作製した。急冷方法には各
種あり、水槽に投入する方法での冷却速度は102K/se
c 程度、窒素ガスや水と溶解した金属材料を噴霧するア
トマイズ法等では104-5K/sec 程度とされているが、
本発明の微細なSi結晶を得るには水槽に投入する急冷
方法ではシリコンの結晶が成長してしまい、冷却速度が
不十分である。従って、アトマイズ法、単ロール法等で
の冷却が適しているが、微細な結晶が得られる方法なら
ば、本発明の効果は充分得られるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a method for preparing a sample will be described below. The composition metal is weighed to a predetermined molar ratio, and is subjected to high frequency melting in the atmosphere. A sample flake was prepared by a single roll method (a method of pouring the molten metal on a copper roll having a peripheral speed of 30 m / s and rapidly cooling at a speed of 10 4 K / sec or more). There are various quenching methods, and the cooling rate in the method of putting into a water tank is 10 2 K / se.
c, about 10 4 -5 K / sec by atomizing method or the like which sprays a metal material dissolved with nitrogen gas or water.
In order to obtain the fine Si crystal of the present invention, the rapid cooling method of putting into a water tank results in the growth of silicon crystals, and the cooling rate is insufficient. Therefore, cooling by an atomizing method, a single-roll method or the like is suitable, but the method of the present invention can sufficiently obtain the effects of the present invention as long as fine crystals can be obtained.

【0017】単ロール法で得られた薄片はディスクミル
で荒粉砕し、目開き100μmの篩いを通過させ、ジェ
ットミルによる微粉砕の工程を通し、粉砕粒径を一定に
した後負極材料とした。粒径があまり大きすぎると、リ
チウムイオンとの接触表面積を所定値以上取ることがで
きないこと、また負極形成工程で導電性バインダの充填
率を考慮して、粉砕粉の平均粒径は30μm以下が望ま
しい。しかし、あまり粒径を小さくすると、多量のバイ
ンダが必要になり電極部の抵抗が高くなるため、10μm
程度が適当である。この粉砕粉に導電剤として黒鉛(K
S- 15)を21wt%、またバインダーとしてポリフッ
化ビニリデン(PDVF)7wt%を混ぜて導電性バイン
ダとした。ポリフッ化ビニリデン7wt%は圧着する際の
作業性を考慮したものである。試料粉と導電性バインダ
を混練して圧着(プレス圧:1t/cm2)し試験極を作製し
た。
The flakes obtained by the single roll method are roughly pulverized by a disk mill, passed through a sieve having an opening of 100 μm, and finely pulverized by a jet mill to make the pulverized particle diameter constant and then used as a negative electrode material. . If the particle size is too large, the average particle size of the pulverized powder is not more than 30 μm in consideration of the fact that the contact surface area with lithium ions cannot be more than a predetermined value, and in consideration of the filling rate of the conductive binder in the negative electrode forming step. desirable. However, if the particle size is too small, a large amount of binder is required, and the resistance of the electrode part becomes high.
The degree is appropriate. Graphite (K
A conductive binder was prepared by mixing 21 wt% of S-15) and 7 wt% of polyvinylidene fluoride (PDVF) as a binder. 7% by weight of polyvinylidene fluoride is obtained in consideration of workability in pressure bonding. The test powder was prepared by kneading the sample powder and the conductive binder and pressing them together (press pressure: 1 t / cm 2 ).

【0018】充放電試験装置は図1に示すように、定電
流電源により充電・放電が可能な装置、電解液槽、試験
極、参照極(リチウムフォイル)、正極(リチウムフォ
イル)等から構成される。この充放電試験装置は負極の
特性試験用のため、正極3はリチウムを用い、試験極1
を取り替えながら充放電特性を測定することにした。電
解液12にはエチレンカーボネート(EC)とメチルエチ
ルカーボネート(MEC)を1:2で混合した有機溶媒の
中にLiPF6 を1モル/リッター溶解したものを使用
した。スイッチ7を充電側に倒し、試験極1の電流密度
0.5mA/cm2 になるように電源23を制御し、対向する参
照極2の電位が10mVに低下するまで充電を行った。放電
容量の測定にはスイッチ7を切り換えて、試験極1の電
位が参照極2に対し0.8Vに上昇するまで放電させ、電流
と時間から電気量をまず求めたものである。その電気量
を試料重量で割った値を放電容量として算出したもので
ある。
As shown in FIG. 1, the charge / discharge test apparatus comprises a device capable of charging / discharging with a constant current power supply, an electrolyte bath, a test electrode, a reference electrode (lithium foil), a positive electrode (lithium foil), and the like. You. Since this charge / discharge test apparatus is used for testing the characteristics of the negative electrode, the positive electrode 3 uses lithium and the test electrode 1
The charge and discharge characteristics were measured while replacing. As the electrolytic solution 12, a solution obtained by dissolving 1 mol / liter of LiPF 6 in an organic solvent obtained by mixing ethylene carbonate (EC) and methyl ethyl carbonate (MEC) at a ratio of 1: 2 was used. Flip switch 7 to the charging side, and set the current density
The power supply 23 was controlled so as to be 0.5 mA / cm 2 , and charging was performed until the potential of the opposing reference electrode 2 dropped to 10 mV. To measure the discharge capacity, the switch 7 is switched to discharge until the potential of the test electrode 1 rises to 0.8 V with respect to the reference electrode 2, and the quantity of electricity is first determined from the current and time. The value obtained by dividing the quantity of electricity by the weight of the sample was calculated as the discharge capacity.

【0019】上に述べた作成方法にしたがって、負極材
とするM100-x Six (x : at %)を作製し、それを
用いて放電容量を測定した。その結果を図2に、金属間
珪化合物のシリコン量と放電容量との関係として示す。
図示するようにシリコンが50at%以上になれば、急激に
放電容量を増加でき85at%付近から飽和する傾向をも
つ。シリコンを50at%以上含むことにより500mA-h/ccを
超える特性が得られ、70at%以上になると従来のカーボ
ンに比べて大幅に放電容量を改善できることが図2から
わかる。
[0019] According to creating method described above, M 100-x Si x to negative electrode material: to produce a (x at%), and a discharge capacity was measured using the same. The results are shown in FIG. 2 as a relationship between the silicon content of the intermetallic silicon compound and the discharge capacity.
As shown in the figure, when the silicon content exceeds 50 at%, the discharge capacity can be rapidly increased and tends to saturate from around 85 at%. It can be seen from FIG. 2 that the characteristics exceeding 500 mA-h / cc can be obtained by containing silicon at 50 at% or more, and the discharge capacity can be greatly improved at 70 at% or more as compared with conventional carbon.

【0020】次に、M100-x Six およびM100-x-y
y Six で、x, yを種々に変えたものについて負極材を作
製し、それを用いて放電容量を求めた。ここでM=Ni
とし、で、x=56 at%, 67, 71, 73, 85とした組成の負極
材を各々実施例1、2、3、4、5とし、x=45 at%の組
成のものを比較例1とした。Mとして、NiとMnを含
有するものを、実施例6とした。添加元素Bを含むもの
については、x=71 at%,y=5 at%のNi24B5Si71でBをCu,
Sn, V, Ag, Al としたものを各々実施例7〜11とし
た。また、現行材との比較のため、試験極1をカーボン
で作製して同じ方法で評価しそれを比較例2とした。実
施例2と同じ組成のものであるが、溶湯を1400℃か
ら常温まで徐冷して得た合金を比較例3とした。これら
の評価結果をまとめて表1に示す。
[0020] Then, M 100-x Si x and M 100-xy B
In y Si x, to prepare a negative electrode material for those with different x, a y variously to obtain the discharge capacity by using the same. Where M = Ni
The negative electrode materials having compositions of x = 56 at%, 67, 71, 73, and 85 are referred to as Examples 1, 2, 3, 4, and 5, respectively, and those having a composition of x = 45 at% are comparative examples. It was set to 1. As M, Example 6 containing Ni and Mn was used. For those containing an additive element B is, x = 71 at%, y = 5 at% of Ni 24 Cu and B in B 5 Si 71,
Examples 7 to 11 were Sn, V, Ag, and Al. For comparison with the current material, the test electrode 1 was made of carbon and evaluated by the same method. An alloy having the same composition as that of Example 2 but obtained by gradually cooling the molten metal from 1400 ° C. to normal temperature was used as Comparative Example 3. Table 1 summarizes the results of these evaluations.

【0021】[0021]

【表1】 [Table 1]

【0022】表1からわかるように、実施例として示し
たNi(Mn)100-x Six およびNi100-x-y y Si
x はいずれも従来材(比較例)と比較して極めて大きな
放電容量を持つ。Ni100-x Six で、xが50以上に
なり、それから増えるに従い、放電容量が増している。
添加元素Bとして、Sn,Vを添加したものは、添加し
ていないものに比較して大きな放電容量を持つ。
[0022] As can be seen from Table 1, Ni, shown as Example (Mn) 100-x Si x and Ni 100-xy B y Si
Each of x has an extremely large discharge capacity as compared with the conventional material (comparative example). In Ni 100-x Si x, in accordance with x becomes 50 or more, more Then, the discharge capacity is increased.
A sample to which Sn and V are added as the additional element B has a larger discharge capacity than a sample to which Sn and V are not added.

【0023】比較例3に示すものは、実施例2と同じ組
成であるが、溶湯を1400℃から常温まで徐冷して合
金を得たものである。この合金を負極材として放電容量
を測定したものは125mAh/mlと本発明のものに
比して極めて小さな放電容量しか示さなかった。この実
施例2の合金のX線回折パターンを図3に、その合金を
50倍で見た顕微鏡組織写真を図4に、また比較例3の
X線回折パターンを図5に、その合金を50倍で見た顕
微鏡組織写真を図6に示す。実施例2のものではシリコ
ンのピークのみが明確に出ているが、比較例3のもので
はシリコンのピークとNiSiのピークとが明確に出て
おり、それ以外にNiSi2 のピークらしきものが出て
いる。比較例3でシリコンのピークが強く出ているの
は、その顕微鏡組織写真(図6参照)にあるように大き
なシリコン結晶が析出していることに対応する。実施例
2のように微細なシリコン結晶の析出しているものは、
放電容量が大である。
The composition shown in Comparative Example 3 is the same as that of Example 2, except that the molten alloy is gradually cooled from 1400 ° C. to normal temperature to obtain an alloy. When the discharge capacity was measured using this alloy as a negative electrode material, the discharge capacity was 125 mAh / ml, which was extremely small as compared with that of the present invention. The X-ray diffraction pattern of the alloy of Example 2 is shown in FIG. 3, the microstructure photograph of the alloy at a magnification of 50 is shown in FIG. 4, and the X-ray diffraction pattern of Comparative Example 3 is shown in FIG. FIG. 6 shows a microstructure photograph taken at a magnification of ×. In the case of Example 2, only the silicon peak clearly appears, but in the case of Comparative Example 3, the silicon peak and the NiSi peak clearly appear, and in addition, those likely to be NiSi 2 peaks appear. ing. The strong peak of silicon in Comparative Example 3 corresponds to the precipitation of large silicon crystals as shown in the microstructure photograph (see FIG. 6). In the case where fine silicon crystals are precipitated as in Example 2,
The discharge capacity is large.

【0024】次に、Snの添加効果を見るために、表1
の実施例3にあるNi29Si71の組成を基にしてSnを10at
%まで添加した場合の放電容量を求めた。その結果を図
7に示す。これから明らかなように、Snが3 〜8at %の
範囲で、Snを添加しない場合に比べて大幅に改善され
る。特に、5at %付近で最大値を示す。以上、Snの場合
について言及したが、V もまた同様の効果を示すもので
ある。
Next, in order to see the effect of adding Sn, Table 1 was used.
10 at Sn based on the composition of Ni 29 Si 71 in Example 3 of
% Was determined. FIG. 7 shows the result. As is clear from this, when the Sn content is in the range of 3 to 8 at%, it is greatly improved as compared with the case where no Sn is added. In particular, the maximum value is shown around 5 at%. Although the case of Sn has been described above, V also exhibits the same effect.

【0025】図8は実施例8の顕微鏡組織写真である。
この顕微鏡組織写真において、樹枝状のシリコン結晶の
隙間に白色の小さい点がSnの析出であり、金属珪化物に
ほぼ一様に分布していることを示している。微細な樹枝
状シリコン結晶が存在するとともに、このようにSnが析
出している合金を負極材として用いると極めて容量の大
きなリチウム電池が得られる。微細な樹枝状シリコン結
晶はリチウムイオンと合金を作り、可逆的にリチウムイ
オンを吸蔵放出するものと推定される。顕微鏡観察によ
ると、容量の大きな実施例程、急冷プロセスで生じた微
細な樹枝状シリコン結晶の占める割合が高いことがわか
った。
FIG. 8 is a micrograph of Example 8.
In this microstructure photograph, small white spots are formed in the gaps between the dendritic silicon crystals by the precipitation of Sn, which indicates that they are distributed almost uniformly in the metal silicide. When an alloy in which fine dendritic silicon crystals are present and Sn is thus precipitated is used as a negative electrode material, a lithium battery having an extremely large capacity can be obtained. It is presumed that fine dendritic silicon crystals form an alloy with lithium ions and reversibly occlude and release lithium ions. According to the microscope observation, it was found that the proportion of fine dendritic silicon crystals generated by the quenching process was higher in the example having a larger capacity.

【0026】上記の実施例では、いずれもMとしてNi
を用いているものであるが、実施例6に示すようにその
一部分をMnで置換してもよい。また、Niに代えてF
e,Co,Mnの一種あるいはそれ以上を組み合せて使
用することができる。
In each of the above embodiments, M is Ni
However, as shown in Example 6, a part thereof may be substituted with Mn. Also, instead of Ni, F
One or more of e, Co, and Mn can be used in combination.

【0027】[0027]

【発明の効果】本発明によって従来から負極に使用され
ているカーボンに比べて、大幅に充放電容量を改善でき
る上に、可燃性でない金属との間で形成した珪化物を使
用するため、安全性と信頼性を向上できる。
According to the present invention, the charge / discharge capacity can be greatly improved as compared with carbon conventionally used for a negative electrode, and a silicide formed with a non-flammable metal is used. Performance and reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】充放電試験装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a charge / discharge test apparatus.

【図2】本発明に用いている負極材でSi量を変えた場
合の放電容量特性を示すグラフである。
FIG. 2 is a graph showing discharge capacity characteristics when the amount of Si is changed in the negative electrode material used in the present invention.

【図3】本発明に用いた実施例2の負極材(急冷したNi
33Si67合金)のX線回折図である。
FIG. 3 shows a negative electrode material of Example 2 used in the present invention (quenched Ni
33 Si 67 is an X-ray diffraction pattern of the alloy).

【図4】本発明に用いた実施例2の負極材(急冷したNi
33Si67合金)の顕微鏡組織写真である。
FIG. 4 shows a negative electrode material of Example 2 used in the present invention (quenched Ni
33 is a microstructure photograph of ( 33Si67 alloy).

【図5】比較例3の負極材(徐冷したNi33Si67合金)の
X線回折図である。
FIG. 5 is an X-ray diffraction diagram of a negative electrode material (slow-cooled Ni 33 Si 67 alloy) of Comparative Example 3.

【図6】比較例3の負極材(徐冷したNi33Si67合金)の
顕微鏡組織写真である。
FIG. 6 is a micrograph of a negative electrode material (slow-cooled Ni 33 Si 67 alloy) of Comparative Example 3.

【図7】本発明に用いている負極材にSnの添加量を増
加させた場合の放電容量特性を示すグラフである。
FIG. 7 is a graph showing discharge capacity characteristics when the amount of Sn added to the negative electrode material used in the present invention is increased.

【図8】本発明に用いた実施例8(急冷したNi24Sn5Si
71 合金)の負極材の顕微鏡組織写真である。
FIG. 8 shows Example 8 (quenched Ni 24 Sn 5 Si) used in the present invention.
31 is a photomicrograph of a negative electrode material of Example No. 71 alloy).

【符号の説明】[Explanation of symbols]

1 試験極、2 参照極(Li)、3 正極、11
槽、12 電解液、21電源、22 放電用電流計、2
3 電源、24 充電用電流計
1 test electrode, 2 reference electrode (Li), 3 positive electrode, 11
Tank, 12 electrolyte, 21 power supply, 22 discharge ammeter, 2
3 power supply, 24 ammeters for charging

フロントページの続き (72)発明者 川上 章 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 篠田 直樹 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内(72) Inventor Akira Kawakami 1-1-88 Ushitora, Ibaraki City, Osaka Prefecture Inside Hitachi Maxell Co., Ltd. (72) Naoki Shinoda 1-188 Ushitora, Ibaraki City, Osaka Prefecture Hitachi Maxell Stock In company

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極との間に多孔質のセパレータ
を備え、前記正極にはリチウム酸化物を配し、非水電解
質を充填してなるリチウム二次電池において、 前記負極に配する負極材はM100-x Six (x ≧50at
%)で表せる組成であり、MがNi, Fe, Co, Mnから選ば
れた少なくとも1種の元素からなることを特徴とするリ
チウム二次電池。
1. A lithium secondary battery comprising a porous separator between a positive electrode and a negative electrode, wherein the positive electrode is provided with a lithium oxide, and is filled with a non-aqueous electrolyte. wood is M 100-x Si x (x ≧ 50at
%), Wherein M is at least one element selected from the group consisting of Ni, Fe, Co, and Mn.
【請求項2】 請求項1において、前記負極材は55<
x <85at%であることを特徴とするリチウム二次電
池。
2. The method according to claim 1, wherein the negative electrode material is 55 <
A lithium secondary battery characterized by x <85 at%.
【請求項3】 正極と負極との間に多孔質のセパレータ
を備え、前記正極にはリチウム酸化物を配し、非水電解
質を充填してなるリチウム二次電池において、 前記負極に配する負極材はM100-x-y y Six (x ≧50
at% 、0 <y <10at%)で表される組成を有し、MがN
i, Fe, Co, Mnから選ばれた少なくとも1種の元素であ
り、またBがSn, V, Cu, Ag, Al から選ばれた少なくと
も1種であることを特徴とするリチウム二次電池。
3. A lithium secondary battery comprising a porous separator between a positive electrode and a negative electrode, wherein the positive electrode is provided with a lithium oxide, and is filled with a non-aqueous electrolyte. Material is M 100-xy B y Si x (x ≧ 50
at%, 0 <y <10 at%), and M is N
A lithium secondary battery, wherein at least one element selected from i, Fe, Co, and Mn, and B is at least one element selected from Sn, V, Cu, Ag, and Al.
【請求項4】 請求項3において、前記負極材はBのう
ち少なくともSnもしくはV を3〜8at%含むことを特徴
とするリチウム二次電池。
4. The lithium secondary battery according to claim 3, wherein the negative electrode material contains at least 3 to 8 at% of Sn or V of B.
【請求項5】 請求項1〜4のいずれかにおいて、前記
負極材は全体が結晶質であるかもしくは一部分に非晶質
を有することを特徴とするリチウム二次電池。
5. The lithium secondary battery according to claim 1, wherein the negative electrode material is entirely crystalline or partially amorphous.
【請求項6】 請求項5において、前記負極材の結晶質
は樹枝状Si結晶を持つことを特徴とするリチウム二次
電池。
6. The lithium secondary battery according to claim 5, wherein the crystalline material of the negative electrode material has dendritic Si crystals.
【請求項7】 請求項4〜6のいずれかにおいて、前記
負極材にはBの一部が析出していることを特徴とするリ
チウム二次電池。
7. The lithium secondary battery according to claim 4, wherein B is partially deposited on the negative electrode material.
JP04629998A 1997-02-24 1998-02-12 Lithium secondary battery Expired - Fee Related JP3846661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04629998A JP3846661B2 (en) 1997-02-24 1998-02-12 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-55589 1997-02-24
JP5558997 1997-02-24
JP04629998A JP3846661B2 (en) 1997-02-24 1998-02-12 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH10294112A true JPH10294112A (en) 1998-11-04
JP3846661B2 JP3846661B2 (en) 2006-11-15

Family

ID=26386409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04629998A Expired - Fee Related JP3846661B2 (en) 1997-02-24 1998-02-12 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3846661B2 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2001006677A (en) * 1999-04-20 2001-01-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001148247A (en) * 1999-11-19 2001-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and alloy for battery and its manufacturing method
JP2002508577A (en) * 1998-03-26 2002-03-19 ミネソタ マイニング アンド マニュファクチャリング カンパニー Tin alloy electrode composition for lithium batteries
US6576366B1 (en) 1999-02-22 2003-06-10 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, and material for negative electrode used therefor
JP2003520398A (en) * 2000-01-13 2003-07-02 スリーエム イノベイティブ プロパティズ カンパニー Amorphous electrode composition
KR100389908B1 (en) * 2000-11-18 2003-07-04 삼성에스디아이 주식회사 Anode thin film for Lithium secondary battery
US6664004B2 (en) 2000-01-13 2003-12-16 3M Innovative Properties Company Electrode compositions having improved cycling behavior
US6817254B2 (en) 1999-02-08 2004-11-16 Takata Corporation Diagnostic method for a seat load
US6893621B2 (en) 2001-09-05 2005-05-17 Shin-Etsu Chemical Co., Ltd. Lithium-containing silicon oxide powder and making method
US7037581B2 (en) 2002-05-17 2006-05-02 Shin-Etsu Chemical Co., Ltd. Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2006185716A (en) * 2004-12-27 2006-07-13 Samsung Sdi Co Ltd Lithium secondary battery
CN1298065C (en) * 2003-08-22 2007-01-31 三星Sdi株式会社 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery
US7223498B2 (en) 2003-10-09 2007-05-29 Samsung Sdi Co., Ltd. Electrode for a lithium secondary battery and a lithium secondary battery comprising the same
JP2007257866A (en) * 2006-03-20 2007-10-04 Sony Corp Negative electrode and battery
US7358011B2 (en) 2002-11-26 2008-04-15 Shin-Etsu Chemical Co., Ltd Non-aqueous electrolyte secondary battery negative electrode material, making method, and lithium ion secondary battery
EP1974408A2 (en) * 2005-12-23 2008-10-01 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
US7476469B2 (en) 2001-01-18 2009-01-13 Santo Electric Co., Ltd. Lithium secondary battery
CN100454613C (en) * 2004-10-21 2009-01-21 松下电器产业株式会社 Negative electrode for battery and battery using same
US7537862B2 (en) 2004-11-15 2009-05-26 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
EP2088221A1 (en) 2008-02-07 2009-08-12 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
US7658871B2 (en) * 2003-08-22 2010-02-09 Samsung Sdi Co., Ltd. Method of preparing a negative active material for rechargeable lithium battery
US7658863B2 (en) 2004-07-30 2010-02-09 Shin-Etsu Chemical Co., Ltd. Si-C-O composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US7732095B2 (en) 2005-12-01 2010-06-08 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US7858232B2 (en) 2004-11-15 2010-12-28 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP4666854B2 (en) * 1999-07-01 2011-04-06 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN102263231A (en) * 2010-05-28 2011-11-30 株式会社日立制作所 Anode for nonaqueous secondary battery and nonaqueous secondary battery
US20120264015A1 (en) * 2010-06-10 2012-10-18 Lg Chem, Ltd. Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Having The Same
WO2013168786A1 (en) 2012-05-11 2013-11-14 国立大学法人鳥取大学 Negative electrode for lithium-ion secondary battery
WO2014034494A1 (en) * 2012-08-31 2014-03-06 中央電気工業株式会社 Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
WO2014185005A1 (en) 2013-05-15 2014-11-20 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery
WO2014199554A1 (en) 2013-06-14 2014-12-18 信越化学工業株式会社 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
WO2014207967A1 (en) 2013-06-28 2014-12-31 住友精化株式会社 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
WO2015049836A1 (en) 2013-10-03 2015-04-09 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
WO2015064633A1 (en) * 2013-10-30 2015-05-07 古河電気工業株式会社 Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery
WO2015115055A1 (en) 2014-01-31 2015-08-06 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary cell, method for producing negative electrode material for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
KR20160011633A (en) 2013-05-27 2016-02-01 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material and method for manufacturing nonaqueous electrolyte secondary battery
KR20160012152A (en) 2013-05-23 2016-02-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
JP2016508280A (en) * 2012-12-12 2016-03-17 イルジン エレクトリック カンパニー リミテッド Method for producing composite metal for cathode active material
KR20160059428A (en) 2014-11-18 2016-05-26 신에쓰 가가꾸 고교 가부시끼가이샤 Rotary cylindrical furnace, producing method of negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20160118274A (en) 2014-02-06 2016-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
US9608262B2 (en) 2004-07-01 2017-03-28 Shin-Etsu Chemical Co., Ltd. Silicon composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US9887418B2 (en) 2014-04-14 2018-02-06 Shin-Etsu Chemical Co., Ltd. Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing negative electrode material for lithium-ion secondary battery
KR20180031761A (en) 2015-07-31 2018-03-28 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
CN108365186A (en) * 2018-01-11 2018-08-03 湖南立方新能源科技有限责任公司 A kind of silicon substrate composite negative pole material and preparation method thereof
CN110828794A (en) * 2019-10-28 2020-02-21 珠海格力绿色再生资源有限公司 Preparation method of multiple modified silicon-manganese alloy composite negative electrode material
US10873086B2 (en) 2016-03-30 2020-12-22 Sumitomo Seika Chemicals Co., Ltd. Binder for nonaqueous electrolyte secondary battery electrodes, electrode mixture for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electrical device
WO2021100520A1 (en) 2019-11-19 2021-05-27 住友精化株式会社 Binder for secondary batteries
WO2021100521A1 (en) 2019-11-19 2021-05-27 住友精化株式会社 Binder for secondary batteries
WO2021172385A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Production method for polymer compound used in binder for secondary batteries
WO2021172383A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Binding agent for secondary battery
WO2021172384A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Binder for secondary battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522963B1 (en) 2007-11-12 2015-05-26 산요덴키가부시키가이샤 Negative electrode material for rechargeable battery with nonaqueous electrolyte, negative electrode for rechargeable battery with nonaqueous electrolyte, rechargeable battery with nonaqueous electrolyte, and process for producing polycrystalline silicon particles for active material for negative electrode material for rechargeable battery with nonaqueous electrolyte
KR101406013B1 (en) 2008-03-17 2014-06-11 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP4883323B2 (en) 2008-08-26 2012-02-22 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material, Si-O-Al composite manufacturing method, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP5454353B2 (en) 2010-05-21 2014-03-26 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode silicon oxide and method for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
JP6010279B2 (en) 2011-04-08 2016-10-19 信越化学工業株式会社 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP5675546B2 (en) 2011-10-14 2015-02-25 信越化学工業株式会社 Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP6020331B2 (en) 2012-05-16 2016-11-02 信越化学工業株式会社 Silicon oxide particles, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5737265B2 (en) 2012-10-23 2015-06-17 信越化学工業株式会社 Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP6156089B2 (en) 2012-12-10 2017-07-05 信越化学工業株式会社 Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508577A (en) * 1998-03-26 2002-03-19 ミネソタ マイニング アンド マニュファクチャリング カンパニー Tin alloy electrode composition for lithium batteries
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
US6817254B2 (en) 1999-02-08 2004-11-16 Takata Corporation Diagnostic method for a seat load
US6576366B1 (en) 1999-02-22 2003-06-10 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, and material for negative electrode used therefor
JP2001006677A (en) * 1999-04-20 2001-01-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP4666854B2 (en) * 1999-07-01 2011-04-06 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2001148247A (en) * 1999-11-19 2001-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and alloy for battery and its manufacturing method
JP2003520398A (en) * 2000-01-13 2003-07-02 スリーエム イノベイティブ プロパティズ カンパニー Amorphous electrode composition
US6664004B2 (en) 2000-01-13 2003-12-16 3M Innovative Properties Company Electrode compositions having improved cycling behavior
US6699336B2 (en) 2000-01-13 2004-03-02 3M Innovative Properties Company Amorphous electrode compositions
KR100389908B1 (en) * 2000-11-18 2003-07-04 삼성에스디아이 주식회사 Anode thin film for Lithium secondary battery
US7476469B2 (en) 2001-01-18 2009-01-13 Santo Electric Co., Ltd. Lithium secondary battery
US6893621B2 (en) 2001-09-05 2005-05-17 Shin-Etsu Chemical Co., Ltd. Lithium-containing silicon oxide powder and making method
US7037581B2 (en) 2002-05-17 2006-05-02 Shin-Etsu Chemical Co., Ltd. Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US7358011B2 (en) 2002-11-26 2008-04-15 Shin-Etsu Chemical Co., Ltd Non-aqueous electrolyte secondary battery negative electrode material, making method, and lithium ion secondary battery
CN1298065C (en) * 2003-08-22 2007-01-31 三星Sdi株式会社 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery
US7658871B2 (en) * 2003-08-22 2010-02-09 Samsung Sdi Co., Ltd. Method of preparing a negative active material for rechargeable lithium battery
US7223498B2 (en) 2003-10-09 2007-05-29 Samsung Sdi Co., Ltd. Electrode for a lithium secondary battery and a lithium secondary battery comprising the same
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US9608262B2 (en) 2004-07-01 2017-03-28 Shin-Etsu Chemical Co., Ltd. Silicon composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US7658863B2 (en) 2004-07-30 2010-02-09 Shin-Etsu Chemical Co., Ltd. Si-C-O composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
CN100454613C (en) * 2004-10-21 2009-01-21 松下电器产业株式会社 Negative electrode for battery and battery using same
US7537862B2 (en) 2004-11-15 2009-05-26 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
US7955735B2 (en) 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7635540B2 (en) 2004-11-15 2009-12-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
US7858232B2 (en) 2004-11-15 2010-12-28 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2006185716A (en) * 2004-12-27 2006-07-13 Samsung Sdi Co Ltd Lithium secondary battery
US7732095B2 (en) 2005-12-01 2010-06-08 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
US7972727B2 (en) 2005-12-01 2011-07-05 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
EP1974408A4 (en) * 2005-12-23 2010-01-20 3M Innovative Properties Co Silicon-containing alloys useful as electrodes for lithium-ion batteries
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP2009521792A (en) * 2005-12-23 2009-06-04 スリーエム イノベイティブ プロパティズ カンパニー Silicon-containing alloys useful for lithium-ion battery electrodes
EP1974408A2 (en) * 2005-12-23 2008-10-01 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
US8071238B2 (en) 2005-12-23 2011-12-06 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
EP3249722A1 (en) * 2005-12-23 2017-11-29 3M Innovative Properties Co. Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP2007257866A (en) * 2006-03-20 2007-10-04 Sony Corp Negative electrode and battery
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
EP2088221A1 (en) 2008-02-07 2009-08-12 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
US8895186B2 (en) 2010-05-28 2014-11-25 Hitachi, Ltd. Anode for lithium-ion rechargeable battery and lithium-ion rechargeable battery including same
JP2011249173A (en) * 2010-05-28 2011-12-08 Hitachi Ltd Nonaqueous secondary battery negative electrode and nonaqueous secondary battery
CN102263231A (en) * 2010-05-28 2011-11-30 株式会社日立制作所 Anode for nonaqueous secondary battery and nonaqueous secondary battery
CN103098266A (en) * 2010-06-10 2013-05-08 株式会社Lg化学 Cathode active material for lithium secondary battery and lithium secondary battery provided with same
US20120264015A1 (en) * 2010-06-10 2012-10-18 Lg Chem, Ltd. Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Having The Same
US9502713B2 (en) * 2010-06-10 2016-11-22 Lg Chem, Ltd. Anode active material for lithium secondary battery and lithium secondary battery having the same
WO2013168786A1 (en) 2012-05-11 2013-11-14 国立大学法人鳥取大学 Negative electrode for lithium-ion secondary battery
US9947925B2 (en) 2012-05-11 2018-04-17 Santoku Corporation Negative electrode for lithium-ion secondary battery
WO2014034494A1 (en) * 2012-08-31 2014-03-06 中央電気工業株式会社 Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
JP2016508280A (en) * 2012-12-12 2016-03-17 イルジン エレクトリック カンパニー リミテッド Method for producing composite metal for cathode active material
WO2014185005A1 (en) 2013-05-15 2014-11-20 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery
KR20160010448A (en) 2013-05-15 2016-01-27 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery
US9865868B2 (en) 2013-05-15 2018-01-09 Shin-Etsu Chemical Co., Ltd. Negative electrode material for use in non-aqueous electrolyte secondary battery, method of producing the same, and lithium-ion secondary battery
KR20160012152A (en) 2013-05-23 2016-02-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
US9893353B2 (en) 2013-05-23 2018-02-13 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
KR20190047138A (en) 2013-05-23 2019-05-07 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
US10700348B2 (en) 2013-05-23 2020-06-30 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
KR20160011633A (en) 2013-05-27 2016-02-01 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material and method for manufacturing nonaqueous electrolyte secondary battery
WO2014199554A1 (en) 2013-06-14 2014-12-18 信越化学工業株式会社 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
KR20160020426A (en) 2013-06-14 2016-02-23 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
US10164244B2 (en) 2013-06-28 2018-12-25 National Institute Of Advanced Industrial Science And Technology Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
WO2014207967A1 (en) 2013-06-28 2014-12-31 住友精化株式会社 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
KR20160024921A (en) 2013-06-28 2016-03-07 스미토모 세이카 가부시키가이샤 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
WO2015049836A1 (en) 2013-10-03 2015-04-09 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
KR20160065107A (en) 2013-10-03 2016-06-08 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
WO2015064633A1 (en) * 2013-10-30 2015-05-07 古河電気工業株式会社 Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery
US10396348B2 (en) 2014-01-31 2019-08-27 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery, method of producing negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20160114076A (en) 2014-01-31 2016-10-04 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary cell, method for producing negative electrode material for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
WO2015115055A1 (en) 2014-01-31 2015-08-06 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary cell, method for producing negative electrode material for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
KR20160118274A (en) 2014-02-06 2016-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
US10170757B2 (en) 2014-02-06 2019-01-01 Shin-Etsu Chemical Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
US10566613B2 (en) 2014-04-14 2020-02-18 Shin-Etsu Chemical Co., Ltd. Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing negative electrode material for lithium-ion secondary battery
US9887418B2 (en) 2014-04-14 2018-02-06 Shin-Etsu Chemical Co., Ltd. Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing negative electrode material for lithium-ion secondary battery
US10069142B2 (en) 2014-11-18 2018-09-04 Shin-Etsu Chemical Co., Ltd. Rotary tubular furnace, method of producing negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20160059428A (en) 2014-11-18 2016-05-26 신에쓰 가가꾸 고교 가부시끼가이샤 Rotary cylindrical furnace, producing method of negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20180031761A (en) 2015-07-31 2018-03-28 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
US10873086B2 (en) 2016-03-30 2020-12-22 Sumitomo Seika Chemicals Co., Ltd. Binder for nonaqueous electrolyte secondary battery electrodes, electrode mixture for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electrical device
CN108365186A (en) * 2018-01-11 2018-08-03 湖南立方新能源科技有限责任公司 A kind of silicon substrate composite negative pole material and preparation method thereof
CN110828794A (en) * 2019-10-28 2020-02-21 珠海格力绿色再生资源有限公司 Preparation method of multiple modified silicon-manganese alloy composite negative electrode material
CN110828794B (en) * 2019-10-28 2021-01-15 珠海格力绿色再生资源有限公司 Preparation method of multiple modified silicon-manganese alloy composite negative electrode material
KR20220103940A (en) 2019-11-19 2022-07-25 스미토모 세이카 가부시키가이샤 Binding agent for secondary batteries
WO2021100521A1 (en) 2019-11-19 2021-05-27 住友精化株式会社 Binder for secondary batteries
WO2021100520A1 (en) 2019-11-19 2021-05-27 住友精化株式会社 Binder for secondary batteries
KR20220103941A (en) 2019-11-19 2022-07-25 스미토모 세이카 가부시키가이샤 Binding agent for secondary batteries
WO2021172385A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Production method for polymer compound used in binder for secondary batteries
WO2021172383A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Binding agent for secondary battery
WO2021172384A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Binder for secondary battery
KR20220146455A (en) 2020-02-26 2022-11-01 스미토모 세이카 가부시키가이샤 Binding agent for secondary batteries
KR20220146454A (en) 2020-02-26 2022-11-01 스미토모 세이카 가부시키가이샤 Binding agent for secondary batteries
KR20220147592A (en) 2020-02-26 2022-11-03 스미토모 세이카 가부시키가이샤 Manufacturing method of polymer compound used in binder for secondary battery
US11978906B2 (en) 2020-02-26 2024-05-07 Sumitomo Seika Chemicals Co., Ltd. Binder for secondary battery

Also Published As

Publication number Publication date
JP3846661B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP3846661B2 (en) Lithium secondary battery
KR100789070B1 (en) Non-aqueous electrolyte secondary battery
KR100435180B1 (en) Negative electrode material for non-aqueous electrolyte secondary cell, negative electrode, non-aqueous electrolyte secondary cell, and method of producing the material
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
US8758939B2 (en) Anode active material for secondary battery
KR101403498B1 (en) Anode active material for secondary battery and secondary battery including the same
EP1406325B1 (en) Non-aqueous electrolyte secondary cell
US9502713B2 (en) Anode active material for lithium secondary battery and lithium secondary battery having the same
JP3277845B2 (en) Method for producing negative electrode material for lithium ion secondary battery
KR101385602B1 (en) Anode active material for secondary battery and method of manufacturing the same
JP3262019B2 (en) Method for producing negative electrode material for lithium ion secondary battery
KR102120238B1 (en) Si-based alloy negative electrode material for storage device, and electrode obtained using same
JP4056183B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2001332255A (en) Negative electrode of lithium secondary battery
JP2001338646A (en) Lithium secondary battery negative electrode
JP2004006206A (en) Negative electrode material for nonaqueous electrolyte battery, negative electrode, nonaqueous electrolyte battery, and manufacturing method of negative electrode material
WO2003090296A1 (en) Cell
JP4997706B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
KR20120036945A (en) Thin film alloy electrodes
JP3659177B2 (en) Negative electrode material for non-aqueous secondary battery, method for producing the same, and negative electrode
JP4439660B2 (en) Nonaqueous electrolyte secondary battery
JP2003282053A (en) Negative electrode material for non-aqueous electrolyte cell, negative electrode, and non-aqueous electrolyte cell
JP4196894B2 (en) Anode material for non-aqueous secondary battery
KR101423652B1 (en) Anode active material for secondary battery and method of manufacturing the same
JP2007335361A (en) Anode electrode material for nonaqueous electrolyte battery, anode and nonaqueous electrolyte battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees