WO2015064633A1 - Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery - Google Patents

Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2015064633A1
WO2015064633A1 PCT/JP2014/078743 JP2014078743W WO2015064633A1 WO 2015064633 A1 WO2015064633 A1 WO 2015064633A1 JP 2014078743 W JP2014078743 W JP 2014078743W WO 2015064633 A1 WO2015064633 A1 WO 2015064633A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
silicon
negative electrode
active material
electrode active
Prior art date
Application number
PCT/JP2014/078743
Other languages
French (fr)
Japanese (ja)
Inventor
西村 健
雅 松下
英郎 西久保
俊哉 樋上
打越 昭成
祐 小見川
中村 健一
宏和 佐々木
山崎 悟志
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020167005676A priority Critical patent/KR20160063323A/en
Priority to JP2015545265A priority patent/JPWO2015064633A1/en
Priority to CN201480054169.3A priority patent/CN105594025A/en
Publication of WO2015064633A1 publication Critical patent/WO2015064633A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is used for a negative electrode for a non-aqueous electrolyte secondary battery, specifically, a negative electrode active material that provides a lithium ion secondary battery having a particularly high capacity, excellent cycle characteristics, and capacity retention rate, and its It relates to manufacturing methods.
  • non-aqueous electrolyte secondary batteries using various carbon-based materials such as natural graphite, artificial graphite, amorphous carbon, and mesophase carbon as a negative electrode active material have been put into practical use.
  • graphite has a low theoretical capacity of 372 mAh / g, and there is a limit to further increasing the capacity.
  • negative electrodes for non-aqueous electrolyte secondary batteries using metals and alloys having a large theoretical capacity as lithium compounds, particularly silicon and alloys thereof as negative electrode active materials have been developed with the aim of increasing the capacity.
  • Si has a theoretical capacity exceeding 4000 mAh / g.
  • the cycle characteristics are not sufficient due to a large volume change accompanying the insertion / desorption of Li, generation of cracks and progress of pulverization, or side reaction with the electrolytic solution. Therefore, there is a problem that the lifetime is extremely short as compared with a negative electrode made of a conventional carbon-based active material.
  • Silicon expands and contracts with the alloying / dealloying reaction with lithium.
  • the particle size of the particles containing silicon is reduced, the surface area per unit weight is increased, the amount of SEI generated on the surface is increased, and the Coulomb efficiency is lowered.
  • FIG. 22A shows the silicon particle 100 before charging and discharging.
  • FIG. 22B when the silicon particles 100 in the electrolytic solution are charged, the silicon particles 100 expand and the first SEI 101 is formed on the surface thereof. In addition, cracks 103 are generated in the silicon particles 100 during expansion.
  • FIG. 22C when discharging is performed, the silicon particles 100 contract, and a part of the first SEI 101 is separated from the surface of the silicon particles 100.
  • FIG. 22D when the second charge is performed, the silicon particles 100 expand again, and the second SEI 105 is formed on the surface thereof.
  • a crack 107 other than the crack 103 is generated in the silicon particle 100 during expansion.
  • the silicon particles 100 contract, and a part of the second SEI 105 is separated from the surface of the silicon particles 100.
  • the peeled first SEI 101 and second SEI 105 remain around the silicon particles 100, which increases the thickness of the electrode and increases the electrical resistance of the negative electrode.
  • the electrolyte solution is excessively consumed with charging / discharging, the electrolyte solution is consumed violently, leading to liquid drainage and reducing the battery life.
  • a negative electrode active material that does not use silicon particles as a negative electrode active material as it is, but includes an intermetallic compound of silicon and metal and a metal matrix containing Cu and Al (see Patent Document 1).
  • Patent Document 2 discloses an invention in which a composite alloy in which a Si phase precipitates in a network form at a grain boundary of a fine Si alloy phase is used as a negative electrode material for a lithium ion battery. As a result, even if the Si phase expands and contracts during charge and discharge, pulverization and disconnection of the conductive network are suppressed, and cycle characteristics are improved.
  • Patent Document 3 discloses an invention of a negative electrode active material for a lithium secondary battery including a Si phase and a phase containing Si, Al, and Fe at a ratio of 3: 3: 2 atomic%. As a result, the Si content reversibly reacting with lithium is increased, and the initial discharge capacity and cycle characteristics are improved.
  • Patent Document 1 has a problem that the silicon phase is not sufficiently fine and pulverization is likely to occur. According to the Hall Petch rule, the silicon phase and the size of the crystallite are smaller and are more difficult to be pulverized because the fracture resistance is improved. In addition, since a Cu alloy that is easily oxidized is used, there is a problem that CuO is generated and initial efficiency is poor.
  • Patent Document 2 as constituent elements, Si, Al, M1 (M1 is one or more metal elements selected from transition metals excluding Groups 4 and 5 of the periodic table), M2 (M2 is one or more metal elements selected from Group 4 and Group 5 of the Periodic Table), and a Si—Al—M1-M2 alloy phase constituting fine crystal grains; And an alloy material having a Si phase that precipitates at the grain boundaries of the crystal grains and exhibits a network structure.
  • the phase since the phase is two phases, the size of the phase is larger than when three or more phases are generated, and the cracks generated are caused by volume expansion and contraction due to charge and discharge. , And pulverization tends to progress. For this reason, the cycle characteristics are likely to deteriorate.
  • the invention according to Patent Document 3 includes a phase (Si 3 Al 3 Fe 2 phase) containing Si, Al, and Fe at a ratio of 3: 3: 2 atomic%, and the Si 3 Al 3 Fe 2 phase is Fe. Therefore, even if a step of quenching the mother alloy is included, the precipitation temperature is high and the size of the Si phase tends to be large. As a result, cracks tend to progress with charge / discharge, and the cycle characteristics are not sufficient.
  • Applicant has a negative electrode for non-aqueous electrolyte secondary batteries that is excellent in cycle characteristics by suppressing the pulverization of the active material by suppressing the progress of cracks due to the volume expansion and contraction of Si accompanying repeated charge and discharge.
  • An object is to provide an active material and a battery.
  • the present invention (1) includes silicon and an element M capable of forming a compound with silicon, When the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is precipitated first, and when further cooled, pure silicon or a silicon solid solution is deposited. Active material. (2) including silicon and an element M capable of forming a compound with silicon, When the composition of silicon and the element M is cooled from the molten state at a rate of 1000 K / s or more, the compound of silicon and the element M is deposited first, and when further cooled, pure silicon or a silicon solid solution is deposited.
  • a negative electrode active material characterized by being.
  • the element M is at least one element selected from the group consisting of V, Nb, Ta, Mo, W, Ti, Zr, and Cr. (1) or (2) The negative electrode active material as described. (4) The negative electrode active material according to any one of (1) to (3), wherein the composition of silicon and the element M is in a hypereutectic region. (5) The negative electrode active material has a silicon phase composed of pure silicon or a silicon solid solution, and a silicide phase composed of a compound of silicon and the element M, The negative electrode active material according to any one of (1) to (4), wherein the silicon phase is 20 wt% or more in the negative electrode active material.
  • a phase having an outer diameter or width of 10 to 300 nm occupies 50% by volume or more of the silicon phase among the silicon phases.
  • the negative electrode active material as described.
  • the negative electrode active material is an element D different from the element M (Al, Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, At least one element selected from the group consisting of Dy, Sm, Pr, Y, Zr, Nb, Mo, Hf, Ta, W, Re, Os, Ir, Ru, Rh, and Ba)
  • the negative electrode active material comprises a compound of silicon and the element D.
  • the first phase having Li storage properties is dispersed in the second phase having Li conductivity electrochemically,
  • the negative electrode active material wherein the first phase further includes a third phase that is less Li-occluding than the first phase.
  • the area ratio of the first phase to the second phase is 10 to 90%, and further, the third phase is contained in an amount of 1 to 40 atomic% with respect to the negative electrode active material material.
  • the negative electrode active material as described in 8).
  • the second phase contains Si and Al, and further contains at least one element selected from the element D according to claim 6.
  • the second phase contains Si and Al, and further contains at least one element selected from Fe, Co, Mn, La, Ce, Nd, Pr, Sm, and Dy.
  • the third phase, VSi 2, TaSi 2, MoSi 2, NbSi 2, WSi 2, TiSi 2, ZrSi 2, CrSi characterized in that it comprises at least one compound selected from 2 (8 ) To (16).
  • the third phase the negative active material according to any one of VSi 2, TaSi 2, characterized in that it comprises at least one compound selected from NbSi 2 (8) ⁇ (17 ).
  • the third phase or the fourth phase contains at least one compound selected from SiO 2 , TiO 2 , Al 2 O 3 , ZnO, CaO, and MgO.
  • a region in which the volume of particles constituting the third phase occupies 10% or more of the total volume of the first phase and the third phase is present (8) to The negative electrode active material according to any one of (19).
  • a negative electrode for a non-aqueous electrolyte secondary battery having an active material layer on a current collector, The active material layer includes silicon and an element M capable of forming a compound with silicon, and when the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is first precipitated.
  • a negative electrode for a non-aqueous electrolyte secondary battery comprising: a negative electrode active material characterized in that pure silicon or a silicon solid solution precipitates when further cooled; and a binder.
  • a positive electrode capable of inserting and extracting lithium ions
  • a negative electrode having an active material layer on a current collector; Having a separator disposed between the positive electrode and the negative electrode;
  • a non-aqueous electrolyte secondary battery in which the positive electrode, the negative electrode, and the separator are provided in an electrolyte having lithium ion conductivity,
  • the active material layer of the negative electrode includes silicon and an element M capable of forming a compound with silicon, and when the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is first
  • a non-aqueous electrolyte secondary battery comprising: a negative electrode active material characterized by having a composition in which pure silicon or a silicon solid solution is deposited when cooled and further cooled; and a binder .
  • the manufacturing method of the negative electrode active material including silicon and an element M capable of forming a compound with silicon, and when the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is first precipitated and further cooled. Then, the manufacturing method of the negative electrode active material characterized by cooling the molten metal which is a composition in which pure silicon or a silicon solid solution precipitates at a rate of 1000 K / s or more.
  • a negative electrode for a nonaqueous electrolyte secondary battery comprising the negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of (8) to (20).
  • a non-aqueous electrolyte secondary battery comprising the negative electrode for a non-aqueous electrolyte secondary battery according to (25).
  • Element group D excluding Si, Al, Al (Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Dy, Sm, Pr, Y, At least one element selected from Zr, Nb, Mo, Hf, Ta, W, Re, Os, Ir, Ru, Rh, and Ba), element group M (V, Ta, Mo, Nb, W, Ti, After melting an alloy containing at least one element selected from Zr and Cr), it is rapidly cooled (1000K /) by any of the single roll method, twin roll method, melt spinning method, gas atomizing method, and water atomizing method.
  • the negative electrode active for a nonaqueous electrolyte secondary battery according to any one of (8) to (19), characterized by solidifying and precipitating the second phase at a temperature of 1000 ° C. or lower Manufacturing method of material.
  • an element selected from the element group M and the element group D is not the same element.
  • the non-water according to (27), wherein the element of element group D excluding Al is at least one element selected from Fe, Co, Mn, La, Ce, Nd, Pr, Sm, and Dy A method for producing a negative electrode active material for an electrolyte secondary battery.
  • the first phase contributing to the discharge capacity is ensured, and the expansion of cracks caused by the volume expansion / contraction of the first phase due to repeated charging / discharging is suppressed, thereby achieving high capacity and cycle characteristics.
  • a negative electrode active material for a non-aqueous electrolyte secondary battery that is excellent in performance can be obtained.
  • the schematic diagram of the cross section of the negative electrode active material 1 which concerns on embodiment of this invention.
  • (A)-(d) The schematic diagram which shows the manufacturing process of the negative electrode active material 1 which concerns on embodiment of this invention.
  • (A)-(b) The schematic diagram which shows the modification of the manufacturing process of the negative electrode active material 1 which concerns on embodiment of this invention.
  • the schematic diagram of the gas atomizer 21 which concerns on embodiment of this invention.
  • the schematic diagram of the single roll quenching apparatus 41 which concerns on embodiment of this invention.
  • the schematic diagram of the twin roll quenching apparatus 51 which concerns on embodiment of this invention.
  • the schematic diagram of the melt spinning apparatus 61 which concerns on embodiment of this invention.
  • the schematic diagram of the cross section of the nonaqueous electrolyte secondary battery 71 which concerns on embodiment of this invention.
  • FIG. XRD analysis result of negative electrode active material according to Example 1 2 is a scanning electron micrograph of a cross section of a negative electrode active material according to Comparative Example 1.
  • XRD analysis result of negative electrode active material according to Comparative Example 1 The scanning electron micrograph of the cross section of the negative electrode active material after 1 cycle concerning the comparative example 1.
  • FIG. Schematic diagram of negative electrode active material according to the present invention BF-STEM (Bright-Field Scanning Transmission Electron Microscope, Bright Field Scanning Transmission Electron Microscope Image) of Si—Fe—Al—V Alloy According to Example 11 XRD (X-ray diffraction, X-ray diffraction) analysis result of Si—Fe—Al—V alloy according to Example 11 EDS (Energy Dispersive X-ray Spectrometer, Energy Dispersive X-ray Spectroscopy) mapping according to Example 11
  • FIG. 1 is a schematic cross-sectional view of the negative electrode active material 1.
  • the negative electrode active material 1 contains silicon and an element M capable of forming a compound with silicon.
  • the composition of silicon and element M is a composition in which a compound of silicon and element M first precipitates when cooled from a molten state, and pure silicon or a solid solution thereof (hereinafter referred to as a silicon phase) precipitates when further cooled. .
  • a silicon phase pure silicon or a solid solution thereof
  • the element M is preferably at least one element selected from the group consisting of V, Nb, Ta, Mo, W, Ti, Zr, and Cr. This is because these elements have a composition containing a large amount of silicon and are in a hypereutectic region where silicide having an MSi 2 composition is first deposited.
  • the composition of silicon and the element M is preferably in the hypereutectic region.
  • the silicide of the MSi 2 composition composed of silicon and the element M is formed during cooling from the molten state. This is because it precipitates before the silicon phase.
  • the negative electrode active material 1 has a silicon phase 3 made of pure silicon or a solid solution thereof, and a first silicide phase 5 made of a compound of silicon and element M, and the silicon phase 3 is 20 wt% in the negative electrode active material 1.
  • the above is preferable.
  • the condition that the negative electrode active material 1 expresses a capacity of about 670 mAh / g, which is judged to have a larger discharge capacity than the graphite electrode or the SiO electrode, is when the silicon phase is 20 wt% or more.
  • silicon phase 3 participates in the charge / discharge reaction with lithium ions, if the amount of silicon phase 3 is too small, there is no significant difference from the charge / discharge capacity of the conventional graphite-based negative electrode active material, and the advantage of using silicon Because it will be lost. Moreover, as long as the silicon phase 3 is included in a large amount as long as charge / discharge characteristics such as cycle characteristics are maintained, there is no problem.
  • the silicon phase 3 is embedded in the first silicide phase 5. Therefore, the conductivity of the negative electrode active material 1 is increased by the highly conductive silicide compared to silicon, and further, the expansion / contraction of the silicon phase 3 can be suppressed. In addition, since a small amount of silicide can occlude / release lithium, the silicon phase 3 embedded in the first silicide phase 5 occludes / Can be released.
  • the volume of the silicon phase 3 having an outer diameter or width of 10 to 300 nm when the volume of the silicon phase 3 having an outer diameter or width of 10 to 300 nm is combined, it is preferable to occupy 50% by volume or more of the silicon phase 3. If the silicon phase 3 is too large, the probability of cracks occurring in the silicon phase 3 due to stress during charging / discharging increases due to Hall Petch's law. Therefore, it is preferable that the ratio of the small silicon phase in which cracks hardly occur to the entire silicon phase 3 is half or more.
  • the outer diameter or width of the silicon phase 3 means the outer diameter when the silicon phase 3 has a particle shape, and the thickness when the silicon phase 3 has a two-dimensional lamellar structure.
  • the silicon phase 3 has a one-dimensional rod-like structure, it means the diameter of the cross section. That is, it is preferable that at least one-dimensional length of the silicon phase 3 is in the range of 10 to 300 nm.
  • the outer shape and width of the silicon phase 3 in the negative electrode active material 1 can be obtained by observing the cross section of the negative electrode active material 1 with an electron microscope. Further, the volume ratio of the silicon phase 3 of a predetermined size in the negative electrode active material 1 is obtained by comparing the area of the silicon phase 3 of the predetermined size exposed on the cross section with the area of the cross section of the entire negative electrode active material 1. Can do.
  • the negative electrode active material is an element D different from the element M (Cu, Al, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, Y, Zr, Nb, Mo, Ru, Rh, Ba, lanthanoid element, at least one element selected from the group consisting of Hf, Ta, W, Re, Os and Ir), and the negative electrode active material has a compound of silicon and element D Is preferred.
  • the melting point is lowered and a molten metal can be produced at a low temperature, so that the silicon phase tends to be fine.
  • the compound of silicon and element D or the compound of ternary silicide of silicon, element M and element D is formed in the negative electrode active material 1, so that silicon Phase 3 is more easily covered by the first silicide phase 5. Since the silicon phase 3 is covered by the first silicide phase 5 made of the element M or the compound of the element D and silicon, the negative electrode active material 1 becomes more conductive and can relax the volume expansion of the silicon phase 3. As will be described later, the silicide phase covering the silicon phase 3 may include a plurality of phases including the second silicide phase 7 in addition to the first silicide phase 5.
  • the molten metal 11 is formed by mixing silicon and the element M and heating to high temperature.
  • the kind of the element M and the composition of the silicon and the element M such that the silicide phase is precipitated before the silicon phase are employed.
  • FIG. 2B when the molten metal 11 is cooled, the silicide primary crystal 13 is formed from the molten metal 11 because the types and concentrations of silicon and element M in the molten metal 11 are within a predetermined range.
  • the cooling is further advanced, as shown in FIG.
  • silicon 15 which is a crystal of silicon starts to be deposited.
  • the excessive growth of the silicon 15 is inhibited by the surrounding first silicide 17 formed by the growth of the silicide primary crystal 13, so that a fine silicon phase 3 is obtained as shown in FIG. .
  • the silicon phase 3 is buried in the first silicide phase 5 on which the first silicide 17 is grown.
  • FIG. 3A shows a case where the element D is further added to the molten metal 11.
  • the second silicide 19 made of ternary silicide composed of M and the element D starts to precipitate.
  • excessive growth of the silicon 15 is inhibited by the surrounding first silicide 17 or the second silicide 19, so that a fine silicon phase 3 is obtained as shown in FIG.
  • the second silicide phase 7 in FIG. 3B includes a binary silicide of silicon and element D, or a ternary silicide composed of silicon, element M, and element D, and a plurality of different composition ratios. It may be a seed silicide.
  • Silicon may be a solid solution containing B (boron) or Ru (ruthenium).
  • a molten metal containing silicon and an element M capable of forming silicon and a compound is prepared.
  • the composition of silicon and element M in the molten metal is such that when cooling from the molten state, the compound of silicon and element M is precipitated first, and when further cooled, the silicon phase is precipitated.
  • Element D may be further added to the molten metal. When this molten metal is cooled at a rate of 1000 K / s or higher, silicide precipitation and subsequent silicon phase precipitation occur, and the negative electrode active material 1 is formed.
  • the negative electrode active material 1 is preferably formed by a gas atomization method or a water atomization method. Alternatively, after the molten metal is cooled by any one of a single roll method, a twin roll method, and a melt spinning method, the obtained flake-shaped, ribbon-shaped, plate-shaped or thread-shaped alloy is pulverized and classified to obtain the negative electrode active material 1. It may be formed.
  • a gas atomizing apparatus 21 shown in FIG. 4 is an apparatus that forms the negative electrode active material 1 by a gas atomizing method.
  • the molten metal 11 formed by melting silicon and the element M in the crucible 23 is dropped from the nozzle 25, and at the same time, the gas jet flow 31 from the gas injector 29 to which the ejection gas 27 such as inert gas or air is supplied.
  • the molten metal 11 is pulverized and solidified as droplets to form the powdered negative electrode active material 1.
  • Element D may be further added to the molten metal 11.
  • the negative electrode active material 1 can be continuously classified into a desired particle size through a cyclone or a filter connected to the gas atomizer 21. When water is supplied instead of the jet gas 27 and high-pressure water is sprayed instead of the gas jet stream 31, the water atomization method is performed.
  • a single roll quenching apparatus 41 shown in FIG. 5 is an apparatus used for manufacturing a ribbon-like or flake-like alloy 47 by a single roll method.
  • the single roll quenching device 41 injects the molten metal 11 containing silicon and the element M in the crucible 43 toward the single roll 45 that rotates at high speed, and rapidly cools the molten metal 11, so that Thus, a ribbon-like or flake-like alloy 47 including the silicide phase 5 can be obtained.
  • Element D may be further added to the molten metal 11.
  • the single roll quenching device 41 can control the quenching speed by setting the injection amount of the molten metal 11 and the rotation speed of the single roll 45, and can control the silicon phase 3, the first silicide phase 5, and the second silicide phase.
  • the size of 7 can be controlled.
  • the negative electrode active material 1 having a desired primary particle diameter can be obtained by pulverizing and classifying the obtained ribbon-like or flake-like alloy 47 as necessary.
  • the single roll method when the molten metal 11 is injected from the crucible 43, the single roll 45 instantaneously cools, so that the rapid cooling rate is faster than the gas atomization method, and the finer silicon phase 3 and the first silicide phase 5 And the 2nd silicide phase 7 can be obtained.
  • a twin roll quenching apparatus 51 shown in FIG. 6 is an apparatus used for manufacturing a ribbon-like or plate-like alloy 59 by a twin roll method.
  • the twin roll quenching device 51 can obtain a ribbon-like or plate-like alloy 59 by sandwiching the molten metal 11 containing silicon and the element M in the crucible 53 with a pair of casting rolls 55.
  • Element D may be further added to the molten metal 11.
  • a quenching device 57 that blows water, air, or the like to the ribbon-like or plate-like alloy 59 may be provided at the outlet of the casting roll 55.
  • the twin roll method when the molten metal 11 is injected from the crucible 53, it is cooled instantaneously by the pair of casting rolls 55, so that the fine silicon phase 3, the first silicide phase 5 and the second silicide phase 7 are obtained. Can do.
  • a melt spinning apparatus 61 shown in FIG. 7 is an apparatus used for manufacturing a yarn-like or ribbon-like alloy 70 by a melt spinning method.
  • the melt spinning apparatus 61 can rapidly cool the molten metal 11 in the crucible 63 with a large amount of cooling liquid 67 in the container 65 and obtain the yarn-like or ribbon-like alloy 70 while being guided by the guide roll 69. . Also in the melt spinning method, since the molten metal 11 can be rapidly cooled, the fine silicon phase 3, the first silicide phase 5, and the second silicide phase 7 can be obtained.
  • the element M is preferably at least one element selected from the group consisting of V, Nb, Ta, Mo, W, Ti, Zr, and Cr.
  • FIG. 9 is a binary phase diagram of vanadium and silicon.
  • Si / (Si + V) is 52 wt% to 95 wt% (67 atomic% to 97 atomic%). If the composition is in the hypereutectic region of vanadium and silicon, when the molten metal in the high temperature state is cooled, first, silicide such as VSi 2 is deposited, and then when pure metal is deposited at 1400 ° C. Therefore, the crystal growth of pure silicon can be prevented.
  • the hypereutectic region is ⁇ and the eutectic point is ⁇ . The same applies to the following figures.
  • FIG. 10 is a binary system phase diagram of niobium and silicon.
  • Si / (Si + Nb) is 38 wt% to 93.7 wt% (67 atomic% to 98 atomic%).
  • FIG. 11 is a binary phase diagram of tantalum and silicon.
  • Si / (Si + Ta) is 24 wt% to 94 wt% (67 atomic% to 99 atomic%).
  • FIG. 12 is a binary phase diagram of molybdenum and silicon.
  • Si / (Si + Mo) is 37 wt% to 94.4 wt% (67 atomic% to 98 atomic%).
  • FIG. 13 is a binary phase diagram of tungsten and silicon.
  • Si / (Si + W) is 23 wt% to 94 wt% (67 atomic% to 99 atomic%).
  • FIG. 14 is a binary phase diagram of titanium and silicon.
  • Si / (Si + Ti) is 52 wt% to 73 wt% (65 atomic% to 82 atomic%).
  • FIG. 15 is a binary phase diagram of zirconium and silicon.
  • Si / (Si + Zr) is 38 wt% to 80 wt% (67 atomic% to 93 atomic%).
  • FIG. 16 is a binary phase diagram of chromium and silicon.
  • Si / (Si + Cr) is 52 wt% to 81 wt% (67 atomic% to 86 atomic%).
  • the first phase is preferably a material that is electrochemically Li-occlusion and has a large discharge capacity. Specifically, Si or a solid solution of Si can be used.
  • the main feature of the present invention is that the first phase is dispersed in the second phase, and further, the first phase further includes a third phase that is less Li occluding than the first phase. It is a technical feature.
  • the silicon phase 3 in FIG. 1 corresponds to the first phase of the present invention.
  • the cross-sectional layer thickness of the first phase is preferably 20 to 2000 nm.
  • each phase can take various forms such as dots, spots, meshes and stripes. Therefore, the thickness of the phase section was measured, and the range of values corresponding to 50% by volume or more of each phase was defined as the thickness of the section layer.
  • the second phase requires Li conductivity electrochemically. Having Li conductivity means that it has electrochemically a small amount of Li storage and Li can reversibly pass through the second phase.
  • the movement of Li may be Li ion conductivity or Li alloying reaction. Therefore, it is possible to make Li reach the first phase scattered in the island shape of the sea-island structure inside the second phase.
  • the second phase is an electrochemically Li-inactive metal such as Cu or Ni, Li cannot reach the first phase such as Si scattered in islands, so charging / discharging And no discharge capacity is generated.
  • the first silicide phase 5 in FIG. 1 corresponds to the second phase of the present invention. Specific examples of the second phase include silicide.
  • the thickness of the cross-sectional layer of the second phase is preferably 20 to 2000 nm. If it is 20 nm or more, it is easy to produce stably as in the first phase, and if it is 2000 nm or less, it is easy to secure a predetermined amount of the first phase, and this is preferable in that it is easy to secure a high discharge capacity. As described above, the first phase is dispersed in the second phase.
  • a preferable content ratio of the first phase in the second phase is 10 to 90%, further 20 to 80%, and further 30 to 30% as an area ratio by analysis of an SEM (Scanning Electron Microscope) image. 70% is preferred.
  • the second phase includes Si and Al, and further includes Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Dy, Sm, Pr, It is preferable to contain at least one element selected from Y, Zr, Nb, Mo, Hf, Ta, W, Re, Os, Ir, Ru, Rh, and Ba.
  • Ni is preferable from the viewpoint of improving conductivity, although the composition of crystallites to be generated varies and coarse crystallites are likely to be mixed.
  • Fe, Co, and Mn are easy to refine the silicon phase and the silicide phase
  • La, Ce, Nd, Pr, Sm, and Dy are easy to produce a low melting point silicide and the silicon phase and the silicide phase are easily refined. And more preferable.
  • the first phase includes a third phase that is less Li-occluding than the first phase.
  • FIG. 23 is a schematic diagram of a negative electrode active material in the present invention.
  • the upper part of FIG. 23 shows that the first phase is dispersed in the second phase.
  • the second phase is the sea
  • the first phase forms an island structure and exists.
  • the middle part of FIG. 23 is an enlarged view of a part of the upper part, a boundary part between the first phase and the second phase.
  • the lower part of FIG. 23 is an observation obtained by enlarging the magnification of the first phase in the middle part.
  • the extension of cracks caused by the volume expansion / contraction of the first phase during charge / discharge can be caused by dislocation of the first phase. This can be suppressed by the third phase that makes the sliding surface intermittent.
  • the average value of the cross-sectional layers of the third phase is preferably 1 to 100 nm, and more preferably 2 to 40 nm or less. If the thickness is 1 nm or more, the crack extension deterrence is large, and if it is 100 nm or less, a stable first phase can be secured, so that a high discharge capacity is easily secured.
  • the third phase VSi 2, TaSi 2, MoSi 2, NbSi 2, WSi 2, TiSi 2, ZrSi 2, CrSi 2 or, SiO 2, TiO 2, Al 2 O 3, ZnO, CaO, from MgO
  • At least one selected compound may be included as the third phase.
  • the third phase is preferably contained in an amount of 1 to 40 atomic%. More preferably, the content is 3 to 30 atomic%. If it is 3 atomic% or more, the effect of suppressing the progress of cracks in the first phase is high, and if it is 30 atomic% or less, a sufficient amount of the first phase is secured and a high discharge capacity is secured. .
  • the second phase may include a fourth phase that is less Li-occluding than the first phase.
  • the phase precipitated at the boundary between the second phase and the first phase is also determined as the fourth phase included in the second phase.
  • the fourth phase may be a dot-like, spot-like or streaky shape of about 5 to 150 nm, or a substantially spherical shape of about 30 to 150 nm.
  • the fourth component of the phase Al and the same VSi 2 and the third phase, TaSi 2, MoSi 2, NbSi 2, WSi 2, TiSi 2, ZrSi 2 and, SiO 2, TiO 2, Al 2 O 3, It may contain at least one compound selected from ZnO, CaO, and MgO.
  • the second phase includes the fourth phase having different mechanical characteristics, thereby mitigating the influence of the stress generated due to the volume expansion / contraction of the first phase accompanying charge / discharge, and contributing to the cycle characteristics. Is estimated.
  • the fourth phase is preferably contained in an amount of 1 to 50 atomic%. More preferably, the content is 2 to 30 atomic%. If the fourth phase is 2 atomic% or more, cracks due to volume expansion / contraction associated with charge / discharge of the first phase hardly propagate to the second phase, and the effect of suppressing crack extension of the second phase is high. . Moreover, when the fourth phase is 30 atomic% or less, a sufficient amount of the first phase is secured, and a high discharge capacity is secured.
  • the second phase is sufficiently generated, and excess Al is precipitated as a metallic Al phase.
  • Al the amount of Al input is less than 26 atomic%, the Fe element becomes excessive, which is 300% higher than FeAl 3 Si 2.
  • FeSi 2 is likely to be precipitated at a high temperature of not lower than ° C. As a result, the phase including the first phase made of Si phase is coarsened, and it is difficult to ensure a high capacity retention rate. That is, it becomes easy to ensure a high capacity maintenance rate by having a predetermined amount of elements.
  • a molten metal containing Si, Al, and an element group M capable of forming a compound with Si is prepared.
  • An element group D is further added to the molten metal.
  • this molten metal is cooled at a rate of 1000 K / s or more, precipitation of the third phase (DSi 2 ) and subsequent precipitation of the first phase (Si phase) occur depending on the composition, and further the low melting point first Two phases (for example, FeAl 3 Si 2 when M is Fe) are precipitated.
  • the negative electrode active material is obtained by cooling the molten metal by any one of a single roll method, a twin roll method, a melt spinning method, a gas atomizing method, and a water atomizing method.
  • the negative electrode active material may be formed by pulverizing and classifying a flaky alloy.
  • Si may be a Si solid solution containing B, P, or the like.
  • the element group D used for the molten metal is Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Dy, Sm, Pr, Y, Zr, Nb, Mo, At least one element selected from Hf, Ta, W, Re, Os, Ir, Ru, Rh, and Ba, and the element group M is V, Ta, Mo, Nb, W, Ti, Zr, Cr (however, The element selected from the element group M and the element group D is preferably not the same element).
  • the compounds of SiO 2 , TiO 2 , Al 2 O 3 , ZnO, CaO, and MgO have high melting points of 1650 ° C., 1640 ° C., 2054 ° C., 1975 ° C., 2613 ° C., and 2852 ° C., respectively. It is not necessary to dissolve at the same time in the stage of dissolving the raw materials constituting the phase and the second phase.
  • the SiO 2 , TiO 2 , Al 2 O 3 , ZnO, CaO, and MgO compounds use primary particles of 2 to 200 nm and are handled as a granulated material of 10 to 200 ⁇ m in order to improve handling properties.
  • the compound of SiO 2 , TiO 2 , Al 2 O 3 , ZnO, CaO, and MgO may be added to the molten metal in a granulated state, and the primary particles may be uniformly dispersed in the molten metal and mixed with the elements in the molten metal. .
  • the composition ratio of each element is preferably 44 to 71 atomic% for Si, 26 to 45 atomic% for Al, 2 to 12 atomic% for Element Group D, and 1 to 10 atomic% for Element Group M. .
  • Si 44 atomic% or more
  • the discharge capacity can be sufficiently secured, and when it is 71 atomic% or less, the crystal is prevented from becoming coarse and the capacity maintenance ratio can be maintained.
  • Al 26 atomic% or more
  • the crystal phase size can be adjusted appropriately, and the capacity retention rate can be maintained.
  • it is 45 atomic% or less the amount of Si added can be secured, and the discharge can be ensured. This is preferable in that capacity can be secured.
  • the addition amount of Si which is usually the maximum amount, can be adjusted, and the balance between the capacity retention rate and the discharge capacity can be maintained.
  • a hypereutectic region defined from a binary phase diagram of Si and the individual elements D can be secured.
  • the deposition of silicide starts at a temperature higher than that of Si.
  • silicide (DSi 2 ) serving as a main component of the phase can be suitably formed.
  • the negative electrode for nonaqueous electrolyte secondary batteries has an active material layer on one or both sides of the current collector.
  • the active material layer is formed by applying a slurry containing the negative electrode active material 1 and a binder.
  • the current collector is a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel. Each may be used alone or may be an alloy of each.
  • the thickness is preferably 4 ⁇ m to 35 ⁇ m, more preferably 6 ⁇ m to 18 ⁇ m.
  • the binder is made of polyimide (PI), polybenzimidazole (PBI), polyamideimide, polyamide, styrene-butadiene rubber (SBR), polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), polyacrylic acid One or more selected.
  • PI polyimide
  • PBI polybenzimidazole
  • SBR styrene-butadiene rubber
  • PVdF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • polyacrylic acid One or more selected.
  • the binder is added to the slurry in a state dissolved in a solvent or dispersed as an emulsion. After the slurry application, the binder binds the negative electrode active material 1 onto the current collector.
  • a conductive aid may be added to the active material layer.
  • the conductive assistant is a powder made of at least one conductive material selected from the group consisting of carbon, copper, tin, zinc, nickel, silver and the like.
  • a single powder of carbon, copper, tin, zinc, nickel, or silver may be used, or a powder of each alloy may be used.
  • Various shapes such as a spherical shape, a dendritic shape, a bead shape, an indeterminate shape, a scale shape, and a linear shape can be used for the conductive auxiliary agent.
  • general carbon black such as furnace black, acetylene black, scaly graphite, carbon nanotube, carbon nanohorn, fullerene, or graphene sheet can be used.
  • a slurry raw material is put into a mixer and kneaded to form a slurry.
  • the slurry raw material is the negative electrode active material 1, the conductive auxiliary agent, the binder, the thickener, the solvent, and the like according to the embodiment of the present invention.
  • the solid content in the slurry contains 25 to 95% by weight of the negative electrode active material, 0 to 70% by weight of the conductive aid, 1 to 30% by weight of the binder, and 0 to 25% by weight of the thickener.
  • the negative electrode active material is 50 to 90% by mass in solid content.
  • the ratio is 5 to 30% by mass of the conductive additive and 5 to 25% by mass of the binder.
  • a general kneader used for slurry preparation can be used, and a device called a kneader, a stirrer, a disperser, a mixer, or the like that can prepare a slurry may be used.
  • N-methyl-2-pyrrolidone can be used as a solvent.
  • slurry is applied to one side of the current collector.
  • a coater a general coating apparatus capable of applying the slurry to the current collector can be used.
  • the coater include a roll coater, a doctor blade coater, a comma coater, and a die coater.
  • the prepared slurry uniformly to the current collector then dry at about 50 to 150 ° C and pass through a roll press to adjust the thickness. Then, when using polyimide as the binder 67, the negative electrode 61 for a nonaqueous electrolyte secondary battery is obtained by firing at 150 ° C. to 350 ° C. as necessary.
  • the active material layer 65 may be formed on both surfaces of the current collector 63 as necessary.
  • the negative electrode used for the nonaqueous electrolyte secondary battery As the negative electrode used for the nonaqueous electrolyte secondary battery, the negative electrode for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention is used.
  • a composition of a positive electrode active material obtained by mixing a positive electrode active material, a conductive additive, a binder and a solvent is directly applied on a metal current collector such as an aluminum foil. Apply and dry to produce the positive electrode.
  • Any positive electrode active material can be used as long as it is generally used.
  • Compounds such as O 2 and LiFePO 4 .
  • carbon black is used as the conductive assistant
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the contents of the positive electrode active material, the conductive additive, the binder, and the solvent are the levels that are normally used in the non-aqueous electrolyte secondary battery.
  • any separator can be used as long as it has a function of insulating electronic conduction between the positive electrode and the negative electrode and is normally used in a nonaqueous electrolyte secondary battery.
  • a microporous polyolefin film, a porous aramid resin film, a porous ceramic, a nonwoven fabric, etc. can be used.
  • Organic electrolyte non-aqueous electrolyte
  • inorganic solid electrolyte inorganic solid electrolyte
  • polymer solid electrolyte etc.
  • electrolyte and electrolyte in non-aqueous electrolyte secondary batteries, Li polymer batteries, and the like.
  • organic electrolyte solvent examples include carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate; diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di Ethers such as butyl ether and diethylene glycol dimethyl ether; aprotic such as benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, ⁇ -butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethylchlorobenzene, nitrobenzene Solvent, or two or more of these solvents Mixed solvent of thereof.
  • carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate,
  • the electrolyte of the organic electrolyte includes LiPF 6 , LiClO 4 , LiBF 4 , LiAlO 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 )
  • a mixture of one or more electrolytes made of a lithium salt such as 2 can be used.
  • a solid lithium ion conductor can be used in place of the organic electrolyte.
  • a solid polymer electrolyte in which the lithium salt is mixed with a polymer made of polyethylene oxide, polypropylene oxide, polyethyleneimine, or the like, or a polymer gel electrolyte in which a polymer material is impregnated with an electrolytic solution and processed into a gel shape can be used.
  • An inorganic material such as 2 S—SiS 2 or a phosphorus sulfide compound may be used as the inorganic solid electrolyte.
  • a battery element is formed by disposing a separator between the positive electrode and the negative electrode as described above. After winding or stacking such battery elements into a cylindrical battery case or a rectangular battery case, an electrolytic solution is injected to obtain a nonaqueous electrolyte secondary battery.
  • FIG. 8 shows an example (cross-sectional view) of the nonaqueous electrolyte secondary battery of the present invention.
  • the non-aqueous electrolyte secondary battery 71 includes a positive electrode 73 and a negative electrode 75 that are stacked in the order of separator-positive electrode-separator-negative electrode via a separator 77, and wound so that the positive electrode 73 is on the inner side. Configure and insert it into the battery can 79.
  • the positive electrode 73 is connected to the positive electrode terminal 83 via the positive electrode lead 81
  • the negative electrode 75 is connected to the battery can 79 via the negative electrode lead 85
  • the chemical energy generated inside the nonaqueous electrolyte secondary battery 71 is externally used as electric energy. To be able to take out.
  • the upper end (opening portion) of the battery can 79 is composed of a circular lid plate and a positive electrode terminal 83 on the upper portion thereof, and a safety valve mechanism is provided therein.
  • the non-aqueous electrolyte secondary battery 71 of the present invention can be manufactured by attaching the sealing body 89 containing the internal structure via an annular insulating gasket.
  • the silicon phase 3 contained in the negative electrode active material 1 is made of silicon having a higher unit volume and unit capacity than carbon. Therefore, the capacity is larger than that of the conventional nonaqueous electrolyte secondary battery.
  • the negative electrode active material 1 since the fine silicon phase 3 is embedded in the first silicide phase 5 or the second silicide phase 7, silicon fine powder generation due to charge / discharge is prevented. It is suppressed and the cycle characteristics are improved. Further, silicon and the electrolytic solution are not in direct contact, and it is possible to prevent SEI from being excessively formed on the surface of the silicon phase 3 due to a side reaction between the electrolytic solution and lithium. Therefore, since the negative electrode using the negative electrode active material 1 has high Coulomb efficiency, the nonaqueous electrolyte secondary battery according to the embodiment of the present invention has a long life.
  • Example 1 Preparation of negative electrode active material
  • a master alloy was prepared by AD03). Thereafter, the alloy pulverized to a size of about 5 mm is put into a crucible in a liquid rapid solidification apparatus (NEV-A1 manufactured by Nisshin Giken Co., Ltd.), heated to 1650 ° C. with a high-frequency coil, and then melted.
  • a flaky negative electrode active material was obtained by quenching using a copper single roll of the single roll quenching apparatus shown in FIG.
  • Vanadium corresponds to the element M.
  • Vanadium and silicon form VSi 2 to form a first silicide
  • iron, silicon, and aluminum form FeAl 3 Si 2 to form a second silicide.
  • a metallic aluminum phase that does not form silicide is generated.
  • the flaky negative electrode active material obtained by rapid solidification with a single roll was pulverized by a planetary ball mill, and a powdered negative electrode active material was obtained through a sieve having an opening of 20 ⁇ m.
  • a heat treatment step at 330 ° C. for 2 hours was performed to produce a negative electrode for a non-aqueous electrolyte secondary battery.
  • a negative electrode for a non-aqueous electrolyte secondary battery an electrolytic solution obtained by adding vinylene carbonate to a mixed solution of ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate containing 1.3 mol / L LiPF 6 , and lithium using a metal Li foil counter electrode
  • An ion secondary battery was constructed and the charge / discharge characteristics were examined. First, in a 25 ° C. environment, charging was performed under constant current and constant voltage conditions until the current value was 0.1 C and the voltage value was 0.02 V (vs. Li / Li + ), and the current value was reduced to 0.05 C. Stopped charging.
  • a silicon phase, a first silicide phase of vanadium silicide VSi 2, a second silicide phase made of ternary silicide (FeAl 3 Si 2 ), and an aluminum phase were confirmed.
  • the Si phase of this active material was about 43 wt%.
  • an initial discharge capacity of 1480 mAh / g was shown.
  • the capacity retention after 50 cycles was 86%, indicating excellent cycle characteristics.
  • the discharge capacity was almost proportional to the weight ratio of the Si phase, and the capacity of aluminum or silicide was negligibly small.
  • a silicon phase 91 that looks black and has an outer diameter or a width of 400 nm or more is continuously formed. It was found that the silicon phase was large. The ratio of the silicon phase having an outer diameter or width of about 10 to 300 nm to the entire silicon phase was less than 50% by volume. Further, XRD analysis was performed as shown in FIG. 20 to identify the crystal phase. As a result, a silicon phase, a silicide phase composed of ternary silicide (FeAl 3 Si 2 ), and an aluminum phase were confirmed.
  • FIG. 21 is a scanning electron micrograph of the cross section of the negative electrode active material after the first charge / discharge (one cycle) of the electrode using the active material of Comparative Example 1.
  • the dark portion 91 in FIG. 21 is the silicon phase, and the relatively bright portion 93 is the silicide (FeAl 3 Si 2 ) phase. Cracks are observed starting from a silicon phase having a size of about 400 nm or more.
  • a second phase having Li conductivity was electrochemically deposited using a copper single roll of a single roll quenching apparatus to obtain a flaky negative electrode active material.
  • vanadium corresponds to the element D.
  • Vanadium and silicon make VSi 2 corresponding to the third phase
  • iron, silicon and aluminum make FeAl 3 Si 2 corresponding to the second phase.
  • a metallic aluminum phase is generated as the fourth phase.
  • the flaky negative electrode active material obtained by rapid solidification with a single roll was pulverized by a planetary ball mill, and a powdered negative electrode active material was obtained through a sieve having an opening of 20 ⁇ m.
  • the composition ratio of the negative electrode active material was confirmed by emission spectroscopic analysis such as ICP (Inductively Coupled Plasma).
  • a heat treatment step at 330 ° C. for 2 hours was performed to produce a negative electrode for a non-aqueous electrolyte secondary battery.
  • a negative electrode for a non-aqueous electrolyte secondary battery an electrolytic solution obtained by adding vinylene carbonate to a mixed solution of ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate containing 1.3 mol / L LiPF 6 , and lithium using a metal Li foil counter electrode
  • An ion secondary battery was constructed and the charge / discharge characteristics were examined. First, in a 25 ° C. environment, charging was performed under constant current and constant voltage conditions until the current value was 0.1 C and the voltage value was 0.02 V (vs. Li / Li + ), and the current value was reduced to 0.05 C. Stopped charging.
  • Example 12 to 19 As shown in Table 1, the same production method and evaluation method as in Example 1 were adopted except that the composition / composition ratio was changed.
  • Comparative Example 12 As shown in Table 1, the same production method and evaluation method as those in Comparative Example 1 were used except that the composition / composition ratio was changed. The mixed powder was dissolved in the range of 1500 to 2000 ° C.
  • Table 1 shows the particle diameter or thickness of the third phase, and the area ratio / volume ratio of the third phase in the first phase and the third phase.
  • the thickness of the third phase was calculated from the analysis of the SEM or TEM image, and the range of values corresponding to 50% by volume or more of each phase was defined as the thickness of the cross-sectional layer.
  • the area ratio was calculated with image analysis software ("A Image-kun” manufactured by Asahi Kasei Engineering).
  • the volume ratio can be calculated using image analysis processing software by performing a three-dimensional construction using Cut and See from the image information.
  • the method according to Cut and See is a method of repeatedly observing a cross-sectional SEM image or a TEM image after cutting a sample with an ion beam or the like every predetermined thickness of about 10 nm.
  • the third phase may be observed almost uniformly in the form of dots in the first phase, or may be observed as uneven spots, meshes or streaks, and within a certain three-dimensional volume.
  • the volume ratio was calculated by calculating using image analysis software.
  • the area ratio evaluation criteria of the 3rd phase in Table 1 are as follows. ⁇ : Area ratio 20% or more ⁇ : Area ratio 10% or more, less than 20% ⁇ : Although the presence of the third phase can be confirmed, the area ratio is less than 10%-: The third phase cannot be confirmed.
  • the volume ratio evaluation criteria are as follows. ⁇ : Volume ratio of 10% or more ⁇ : The presence of the third phase can be confirmed, but the volume ratio is less than 10%-: The third phase cannot be confirmed
  • Table 1 shows the results of evaluation performed by the method described in the preparation of the negative electrode for secondary battery and the evaluation of the cycle characteristics.
  • the evaluation criteria for the capacity retention rate after 100 cycles in Table 1 are as follows. ⁇ : Capacity maintenance rate 72% or more ⁇ : Capacity maintenance rate 68% or more and less than 72% ⁇ : Capacity maintenance rate 64% or more and less than 68% ⁇ : Capacity maintenance rate Less than 64% Evaluation of cycle characteristics takes practicality into consideration Thus, the capacity maintenance rate in 100 cycles was determined to be 64% or more. In addition, the capacity maintenance rate in 50 cycles satisfied 72% or more ( ⁇ ) in all Examples.
  • VSi 2, TaSi 2, NbSi 2 is a third phase to the first phase is generated.
  • Phases were identified by XRD analysis, cross-sectional SEM observation, EPMA, and STEM-EDS in combination.
  • ICP analysis for quantification of raw material composition XRD analysis for product composition
  • SEM and SEM-EDX for product shape and size of first phase and second phase
  • product shape for third phase and fourth phase The size was measured by TEM and STEM-EDX, and the whole product was mapped by EPMA.
  • the size of the third phase (thickness of the cross-sectional layer) in Examples 11 to 19 was 1 to 100 nm from the observation result of the BF-STEM image. It is considered that the presence of the third phase can suppress the extension of cracks generated by the volume expansion of Si accompanying charge / discharge, and as a result, the capacity retention rate at a high capacity can be secured.
  • a portion of VSi 2, TaSi 2, NbSi 2 may be distributed in the fourth phase.
  • Comparative Example 11 and Comparative Example 12 the amount of the Si phase as the first phase is ensured to be equal to or slightly higher than that of Example 16, and the initial discharge capacity several times higher than that of graphite is ensured. Further, in Comparative Example 11 and Comparative Example 12, the second phase is secured in an amount substantially equal to that in Example 16, and the capacity retention rate after 50 cycles is ensured to be 64% or more. Since generation cannot be confirmed, it can be seen that the capacity retention rate after 100 cycles cannot secure 64%, which is a criterion for practicality.
  • Example 11 and 12 the input amount of the M group element was large as 3 at% to 10 at%, and the third phase was precipitated at 9 at% to 30 at%. Moreover, precipitation of metal Al contained in the fourth phase was also confirmed. In Examples 13 to 15, the input amount of the M group element is smaller than those in Examples 11 and 12, and the precipitation amount of the third phase is also smaller than those in Examples 11 and 12. Moreover, precipitation of metal Al contained in the fourth phase was also confirmed. In Examples 11 to 15, the presence of the first to fourth phases was confirmed, and in particular, Example 11 in which the third phase was present as much as 9 at% had a high discharge capacity and good capacity retention rate.
  • the first phase having a large volume expansion / contraction due to charge / discharge is suppressed to 22 at%, and a sufficiently high discharge capacity is ensured as compared with graphite, and the capacity maintenance ratio is high. It is good. Since the discharge capacity of the thirteenth embodiment is nearly three times that of the twelfth, fourteenth, and fifteenth embodiments, the capacity maintenance ratio is slightly low, but the capacity maintenance ratio itself is maintained at 68% or more.
  • Example 16 the third phase was confirmed by the addition of the M group element, but the amount of Al element input was 20 at%, and no precipitation of the metallic Al phase was confirmed. Therefore, the proportion of coarse phases was higher than in Examples 1 to 5, and the capacity retention ratio was in the range of 64% to 68%.
  • Example 17 the input amount of the M group element is about the same as in Examples 3 to 5, but Ta and Nb have a hypereutectic region on the small amount side from V. A predetermined amount of phase is secured. As the M group element decreased, the discharge capacity of the first phase was increased, and the capacity retention rate could be secured at a capacity higher than V.
  • Examples 18 to 19 show the lower limit values of the Si element and the M group element, and by selecting the composition range of the hypereutectic region, a high capacity retention ratio and discharge capacity could be secured.

Abstract

Provided is a negative electrode active material characterized by a composition that includes silicon and an element (M) that can form a compound with silicon, and that first precipitates out a compound of silicon and the element (M) when the composition of silicon and the element (M) is cooled from a molten state, and then precipitates out pure silicon or solid-solution silicon when cooled further. The negative electrode active material is characterized, electrochemically, by a first phase having Li occlusion properties being dispersed in a second phase having Li conductivity properties, and the first phase further including a third phase with weaker Li occlusion properties than the first phase.

Description

負極活物質及びその製造方法並びにそれを用いた負極及び非水電解質二次電池NEGATIVE ELECTRODE ACTIVE MATERIAL, PROCESS FOR PRODUCING THE SAME, NEGATIVE ELECTRODE AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY USING THE SAME
 本発明は、非水電解質二次電池用の負極などに用いられる、具体的には、特に高容量で、サイクル特性、容量維持率に優れたリチウムイオン二次電池を提供する負極活物質及びその製造方法などに関する。 The present invention is used for a negative electrode for a non-aqueous electrolyte secondary battery, specifically, a negative electrode active material that provides a lithium ion secondary battery having a particularly high capacity, excellent cycle characteristics, and capacity retention rate, and its It relates to manufacturing methods.
 これまで、天然黒鉛、人造黒鉛、無定形炭素、メソフェーズ炭素等の各種炭素系材料を負極活物質として用いた非水電解質二次電池が実用化されている。しかしながら、黒鉛は理論容量が372mAh/gと低く、更なる高容量化には限界がある。 So far, non-aqueous electrolyte secondary batteries using various carbon-based materials such as natural graphite, artificial graphite, amorphous carbon, and mesophase carbon as a negative electrode active material have been put into practical use. However, graphite has a low theoretical capacity of 372 mAh / g, and there is a limit to further increasing the capacity.
 一方、高容量化を目指し、リチウム化合物として理論容量の大きな金属や合金、特にシリコンおよびその合金を負極活物質として用いる非水電解質二次電池用の負極が開発されている。たとえばSiは4000mAh/gを超える理論容量がある。
Siを負極材料として適用する場合、高容量は得られる。しかし、Liの吸蔵・脱離に伴う体積変化が大きく、クラックが発生して微粉化が進行したり、電解液との副反応が生じたりすることなどにより、サイクル特性が十分でない。そのため、従来の炭素系活物質からなる負極と比較して、寿命が極めて短いという問題があった。
On the other hand, negative electrodes for non-aqueous electrolyte secondary batteries using metals and alloys having a large theoretical capacity as lithium compounds, particularly silicon and alloys thereof as negative electrode active materials, have been developed with the aim of increasing the capacity. For example, Si has a theoretical capacity exceeding 4000 mAh / g.
When Si is applied as the negative electrode material, a high capacity can be obtained. However, the cycle characteristics are not sufficient due to a large volume change accompanying the insertion / desorption of Li, generation of cracks and progress of pulverization, or side reaction with the electrolytic solution. Therefore, there is a problem that the lifetime is extremely short as compared with a negative electrode made of a conventional carbon-based active material.
 シリコンはリチウムとの合金化・脱合金化反応に伴う膨張収縮が大きいため、クラックが生じることを防止するためにシリコンを含む粒子を小粒径にする必要がある。シリコンの溶湯を急速に冷却することで、微細なシリコン相を得ることが可能である。しかしながら、通常の急速冷却法でシリコンの溶湯を冷却してシリコンの結晶を析出させると、シリコンの結晶が数百μm程度の大きさとなり、十分な小粒径のシリコン粒子を得ることができなかった。シリコンの溶湯の冷却速度を高めることには限界があり、冷却速度を高めることでシリコン相の微細化を図ることには限界があった。従って、従来の急速冷却法で微細なシリコン相を形成する方法が求められている。 Since silicon has a large expansion and contraction associated with the alloying / dealloying reaction with lithium, it is necessary to make silicon-containing particles small in order to prevent cracks. By rapidly cooling the molten silicon, a fine silicon phase can be obtained. However, when silicon melt is cooled by the usual rapid cooling method to precipitate silicon crystals, the silicon crystals become several hundred μm in size, and silicon particles with a sufficiently small particle size cannot be obtained. It was. There is a limit to increasing the cooling rate of the molten silicon, and there is a limit to miniaturizing the silicon phase by increasing the cooling rate. Therefore, a method for forming a fine silicon phase by a conventional rapid cooling method is required.
 また、シリコンと電解液が接触した状態でシリコンにリチウムイオンの充放電を行うと、リチウムイオンと電解液との副反応により、シリコンの表面にSEI
(Solid Electrolyte lnterface、固体電解質界面)と呼ばれる被膜が生成する。SEIの発生は不可逆反応であり、充電時にSEIを生成したリチウムイオンは放電に寄与できなくなってしまう。
In addition, when lithium ions are charged and discharged in a state where the silicon and the electrolytic solution are in contact with each other, a side reaction between the lithium ions and the electrolytic solution causes a SEI on the surface of the silicon.
A film called (Solid Electrolyte interface, solid electrolyte interface) is formed. Generation of SEI is an irreversible reaction, and lithium ions that have generated SEI during charging cannot contribute to discharging.
 シリコンはリチウムとの合金化・脱合金化反応に伴う膨張収縮が大きい。クラックや微粉化が生じることを防止するために、シリコンを含む粒子を小粒径にする必要がある。しかし、シリコンを含む粒子の粒径を小さくすると、単位重量あたりの表面積が大きくなり、表面に生じるSEIの量が増加し、クーロン効率が低下する。 Silicon expands and contracts with the alloying / dealloying reaction with lithium. In order to prevent the occurrence of cracks and pulverization, it is necessary to make the silicon-containing particles small. However, when the particle size of the particles containing silicon is reduced, the surface area per unit weight is increased, the amount of SEI generated on the surface is increased, and the Coulomb efficiency is lowered.
 また、シリコンは膨張収縮が大きいため、充電時に発生したSEIは、放電時に収縮したシリコンより剥離してしまう。従って、充電を行うたびにシリコンの表面にSEIが発生し、負極表面に大量のSEIが残留し、電極の厚みが増加したり、内部抵抗が増加したりする原因となるなどの問題があった。 In addition, since silicon is greatly expanded and contracted, SEI generated during charging is separated from the silicon contracted during discharging. Therefore, every time the battery is charged, SEI is generated on the surface of the silicon, and a large amount of SEI remains on the surface of the negative electrode, resulting in an increase in the thickness of the electrode and an increase in internal resistance. .
 充放電の繰り返しによるSEIの発生について、図22を用いて説明する。図22(a)は、充放電前のシリコン粒子100である。図22(b)に示すように、電解液中にあるシリコン粒子100に充電を行うと、シリコン粒子100が膨張し、その表面には第1のSEI101が形成される。また、膨張時にシリコン粒子100にクラック103が発生する。図22(c)に示すように、放電を行うと、シリコン粒子100は収縮し、第1のSEI101の一部はシリコン粒子100の表面から剥離する。図22(d)に示すように、2回目の充電を行うと、シリコン粒子100は、再度膨張し、その表面には、第2のSEI105が形成される。また、膨張時にシリコン粒子100にクラック103とは別のクラック107が発生する。図22(e)に示すように、放電を行うと、シリコン粒子100は収縮し、第2のSEI105の一部はシリコン粒子100の表面から剥離する。その結果、シリコン粒子100の周辺には、剥離した第1のSEI101や第2のSEI105が残留し、電極の厚みが増加したり、負極の電気抵抗が上昇したりする原因となる。また、充放電に伴い電解液を過剰に消費するため、電解液の消耗が激しくなり、液枯れを招いて電池寿命が低下する。 Generation of SEI due to repeated charge / discharge will be described with reference to FIG. FIG. 22A shows the silicon particle 100 before charging and discharging. As shown in FIG. 22B, when the silicon particles 100 in the electrolytic solution are charged, the silicon particles 100 expand and the first SEI 101 is formed on the surface thereof. In addition, cracks 103 are generated in the silicon particles 100 during expansion. As shown in FIG. 22C, when discharging is performed, the silicon particles 100 contract, and a part of the first SEI 101 is separated from the surface of the silicon particles 100. As shown in FIG. 22D, when the second charge is performed, the silicon particles 100 expand again, and the second SEI 105 is formed on the surface thereof. In addition, a crack 107 other than the crack 103 is generated in the silicon particle 100 during expansion. As shown in FIG. 22E, when discharging is performed, the silicon particles 100 contract, and a part of the second SEI 105 is separated from the surface of the silicon particles 100. As a result, the peeled first SEI 101 and second SEI 105 remain around the silicon particles 100, which increases the thickness of the electrode and increases the electrical resistance of the negative electrode. Further, since the electrolyte solution is excessively consumed with charging / discharging, the electrolyte solution is consumed violently, leading to liquid drainage and reducing the battery life.
 そこで、シリコン粒子をそのまま負極活物質として使用せず、シリコンと金属との金属間化合物と、CuとAlを含む金属マトリクスとを含む負極活物質が開示されている(特許文献1を参照)。 Therefore, a negative electrode active material is disclosed that does not use silicon particles as a negative electrode active material as it is, but includes an intermetallic compound of silicon and metal and a metal matrix containing Cu and Al (see Patent Document 1).
 また、特許文献2には、微細なSi合金相の結晶粒の粒界にSi相が網目状に析出した複合合金をリチウムイオン電池用の負極材料として用いる発明が開示されている。これにより、充放電時にSi相が膨張・収縮しても微粉化や導電性ネットワークの断絶が抑制され、サイクル特性を向上させている。
 特許文献3には、Si相及びSi、Al及びFeを3:3:2の原子%の割合で含む相を含むリチウム二次電池用の負極活物質の発明が開示されている。これにより、リチウムと可逆反応するSi含有量を増大させ、初期放電容量及びサイクル特性を向上させている。
Patent Document 2 discloses an invention in which a composite alloy in which a Si phase precipitates in a network form at a grain boundary of a fine Si alloy phase is used as a negative electrode material for a lithium ion battery. As a result, even if the Si phase expands and contracts during charge and discharge, pulverization and disconnection of the conductive network are suppressed, and cycle characteristics are improved.
Patent Document 3 discloses an invention of a negative electrode active material for a lithium secondary battery including a Si phase and a phase containing Si, Al, and Fe at a ratio of 3: 3: 2 atomic%. As a result, the Si content reversibly reacting with lithium is increased, and the initial discharge capacity and cycle characteristics are improved.
特開2008-235276号公報JP 2008-235276 A 特開2013-105655号公報JP 2013-105655 A 特開2013-161786号公報JP 2013-161786 A
 しかしながら、特許文献1に記載の発明では、シリコン相が十分に微細ではなく、微粉化が発生しやすいという問題点があった。シリコン相および結晶子のサイズは、ホールペッチ則により、微細なほど破壊耐力が向上して微粉化されにくい。また、酸化されやすいCu合金を使用するため、CuOが発生し、初回効率が悪いという問題点があった。
 特許文献2にかかる発明は、構成元素として、Si,Al,M1(M1は周期律表第4族、第5族を除く遷移金属の中から選ばれる1種以上の金属元素である。),M2(M2は周期律表第4族、第5族の中から選ばれる1種以上の金属元素である。)を含有し、微細な結晶粒を構成するSi-Al-M1-M2合金相と、前記結晶粒の粒界に析出して網目状構造を呈するSi相とを有する合金材料より構成されることを特徴としている。特許文献2では相が2相であるため、3相以上が生成する場合に比べて相のサイズが大きくなり、充放電に伴う体積膨張と収縮により、微細なクラックが発生すると共に、発生したクラックが伸展し、微粉化が進行しやすい。そのため、サイクル特性が低下しやすい。
 特許文献3にかかる発明は、Si、Al及びFeを3:3:2の原子%の割合で含む相(SiAlFe相)を含んでおり、SiAlFe相はFeの比率が25原子%と高いため、母合金を急冷させる工程を含んでいても、析出温度が高くSi相のサイズは大きくなりやすい。その結果、充放電に伴いクラックが進展しやすく、サイクル特性は十分ではない。
However, the invention described in Patent Document 1 has a problem that the silicon phase is not sufficiently fine and pulverization is likely to occur. According to the Hall Petch rule, the silicon phase and the size of the crystallite are smaller and are more difficult to be pulverized because the fracture resistance is improved. In addition, since a Cu alloy that is easily oxidized is used, there is a problem that CuO is generated and initial efficiency is poor.
In the invention according to Patent Document 2, as constituent elements, Si, Al, M1 (M1 is one or more metal elements selected from transition metals excluding Groups 4 and 5 of the periodic table), M2 (M2 is one or more metal elements selected from Group 4 and Group 5 of the Periodic Table), and a Si—Al—M1-M2 alloy phase constituting fine crystal grains; And an alloy material having a Si phase that precipitates at the grain boundaries of the crystal grains and exhibits a network structure. In Patent Document 2, since the phase is two phases, the size of the phase is larger than when three or more phases are generated, and the cracks generated are caused by volume expansion and contraction due to charge and discharge. , And pulverization tends to progress. For this reason, the cycle characteristics are likely to deteriorate.
The invention according to Patent Document 3 includes a phase (Si 3 Al 3 Fe 2 phase) containing Si, Al, and Fe at a ratio of 3: 3: 2 atomic%, and the Si 3 Al 3 Fe 2 phase is Fe. Therefore, even if a step of quenching the mother alloy is included, the precipitation temperature is high and the size of the Si phase tends to be large. As a result, cracks tend to progress with charge / discharge, and the cycle characteristics are not sufficient.
 出願人は、繰り返しの充放電に伴うSiの体積膨張・収縮に起因したクラックの進展を抑制することで活物質の微粉化を抑制して、サイクル特性に優れる非水電解質二次電池用の負極活物質材料および電池を提供することを目的とする。 Applicant has a negative electrode for non-aqueous electrolyte secondary batteries that is excellent in cycle characteristics by suppressing the pulverization of the active material by suppressing the progress of cracks due to the volume expansion and contraction of Si accompanying repeated charge and discharge. An object is to provide an active material and a battery.
 すなわち本願発明は、
(1)シリコンと、シリコンと化合物を形成可能な元素Mを含み、
 シリコンと前記元素Mの組成が、溶融状態から冷却する際に、シリコンと前記元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはシリコン固溶体が析出する組成であることを特徴とする負極活物質。
(2)シリコンと、シリコンと化合物を形成可能な元素Mを含み、
 シリコンと前記元素Mの組成が、溶融状態から1000K/s以上の速度で冷却する際に、シリコンと前記元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはシリコン固溶体が析出する組成であることを特徴とする負極活物質。
(3)前記元素Mが、V、Nb、Ta、Mo、W、Ti、Zr、Crからなる群より選ばれた少なくとも1種の元素であることを特徴とする(1)または(2)に記載の負極活物質。
(4)シリコンと前記元素Mの組成が、過共晶領域にあることを特徴とする(1)~(3)のいずれかに記載の負極活物質。
(5)前記負極活物質は、純シリコンまたはシリコン固溶体からなるシリコン相と、シリコンと前記元素Mの化合物からなるシリサイド相とを有し、
 前記シリコン相が、前記負極活物質中の20wt%以上であることを特徴とする(1)~(4)のいずれかに記載の負極活物質。
(6)前記シリコン相のうち、外径または幅が10~300nmのサイズを有する相が、前記シリコン相の50体積%以上を占めることを特徴とする(1)~(5)のいずれかに記載の負極活物質。
(7)さらに、前記負極活物質が、前記元素Mとは異なる元素D(Al、Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Dy、Sm、Pr、Y、Zr、Nb、Mo、Hf、Ta、W、Re、Os、Ir、Ru、Rh、およびBaからなる群より選ばれた少なくとも1種の元素)を含み、
 前記負極活物質が、シリコンと前記元素Dとの化合物を有する
 ことを特徴とする(1)~(6)のいずれかに記載の負極活物質。
(8)電気化学的にLi伝導性を有する第2の相に、Li吸蔵性を有する第1の相が分散しており、
 前記第1の相は、第1の相よりLi吸蔵性に乏しい第3の相をさらに含むことを特徴とする負極活物質。
(9)第2相に対する第1相の面積比率は、10~90%であり、さらに、第3の相を、負極活物質材料に対して1~40原子%含むことを特徴とする、(8)に記載の負極活物質。
(10)前記第1の相は純シリコンまたはシリコン固溶体であり、断面層の厚みの平均値が20~2000nmであることを特徴とする(8)または(9)記載の負極活物質。
(11)前記第2の相はシリサイドであり、断面層の厚みの平均値が20~2000nmであることを特徴とする(8)~(10)のいずれかに記載の負極活物質。
(12)前記第2の相はSiとAlとを含み、さらに、請求項6記載の元素Dより選ばれる少なくとも1種の元素を含むことを特徴とする(8)~(11)のいずれかに記載の負極活物質。
(13)前記第2の相はSiとAlとを含み、さらに、Fe、Co、Mn、La、Ce、Nd、Pr、Sm、およびDyより選ばれる少なくとも1種の元素を含むことを特徴とする(8)~(12)のいずれかに記載の負極活物質。
(14)前記第2の相は、第1の相よりLi吸蔵性に乏しい第4の相を含むことを特徴とする(8)~(13)のいずれかに記載の負極活物質。
(15)第4の相を負極活物質材料に対して1~50原子%含むことを特徴とする、(14)記載の非水電解質二次電池用の負極活物質。
(16)前記第3の相の断面層の厚みの平均値が1~100nmであることを特徴とする(8)~(15)のいずれかに記載の負極活物質。
(17)前記第3の相は、VSi、TaSi、MoSi、NbSi、WSi、TiSi、ZrSi、CrSiより選ばれる少なくとも1種の化合物を含むことを特徴とする(8)~(16)のいずれかに記載の負極活物質。
(18)前記第3の相は、VSi、TaSi、NbSiより選ばれる少なくとも1種の化合物を含むことを特徴とする(8)~(17)のいずれかに記載の負極活物質。
(19)前記第3の相または第4の相は、SiO、TiO、Al、ZnO、CaO、MgOより選ばれる少なくとも1種の化合物を含むことを特徴とする(8)~(18)のいずれかに記載の負極活物質。
(20)第3の相を構成する粒子の体積が、第1の相と第3の相との合計の体積のうち、10%以上を占める領域が存在することを特徴とする(8)~(19)のいずれかに記載の負極活物質。
(21)集電体上に活物質層を有する非水電解質二次電池用負極であって、
 前記活物質層は、シリコンと、シリコンと化合物を形成可能な元素Mを含み、シリコンと前記元素Mの組成が、溶融状態から冷却する際に、シリコンと前記元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはシリコン固溶体が析出する組成であることを特徴とする負極活物質と、結着剤とを含むことを特徴とする非水電解質二次電池用負極。
(22)リチウムイオンを吸蔵および放出可能な正極と、
 集電体上に活物質層を有する負極と、
 前記正極と前記負極との間に配置されたセパレータとを有し、
 リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けた非水電解質二次電池であって、
 前記負極の前記活物質層は、シリコンと、シリコンと化合物を形成可能な元素Mを含み、シリコンと前記元素Mの組成が、溶融状態から冷却する際に、シリコンと前記元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはシリコン固溶体が析出する組成であることを特徴とする負極活物質と、結着剤とを含むことを特徴とすることを特徴とする非水電解質二次電池。
(23)シリコンと、シリコンと化合物を形成可能な元素Mとを含み、シリコンと前記元素Mの組成が、溶融状態から冷却する際にシリコンと前記元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはシリコン固溶体が析出する組成である溶湯を、1000K/s以上の速度で冷却することを特徴とする負極活物質の製造方法。
(24)前記溶湯が、単ロール法、双ロール法、溶融紡糸法、ガスアトマイズ法、または水アトマイズ法により冷却されることを特徴とする(23)に記載の負極活物質の製造方法。
(25)(8)~(20)のいずれかに記載の非水電解質二次電池用の負極活物質材料を用いてなる、非水電解質二次電池用負極。
(26)(25)記載の非水電解質二次電池用負極を用いてなる、非水電解質二次電池。
(27)Si、Al、Alを除く元素群D(Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Dy、Sm、Pr、Y、Zr、Nb、Mo、Hf、Ta、W、Re、Os、Ir、Ru、Rh、およびBaより選ばれる少なくとも1種の元素)、元素群M(V、Ta、Mo、Nb、W、Ti、Zr、Crより選ばれる少なくとも1種の元素)を含有する合金を溶解後、単ロール法、双ロール法、溶融紡糸法、ガスアトマイズ法、および、水アトマイズ法のいずれかの方法で急冷(1000K/秒 以上)凝固させ、かつ、1000℃以下の温度で第2の相を析出させることを特徴とする、(8)~(19)のいずれかに記載の非水電解質二次電池用の負極活物質材料の製造方法。
ただし、元素群Mと元素群Dから選ばれる元素は同一ではない元素とする。
(28)
 Alを除く元素群Dの元素が、Fe、Co、Mn、La、Ce、Nd、Pr、Sm、およびDyより選ばれる少なくとも一種の元素であることを特徴とする、(27)記載の非水電解質二次電池用の負極活物質材料の製造方法。
That is, the present invention
(1) includes silicon and an element M capable of forming a compound with silicon,
When the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is precipitated first, and when further cooled, pure silicon or a silicon solid solution is deposited. Active material.
(2) including silicon and an element M capable of forming a compound with silicon,
When the composition of silicon and the element M is cooled from the molten state at a rate of 1000 K / s or more, the compound of silicon and the element M is deposited first, and when further cooled, pure silicon or a silicon solid solution is deposited. A negative electrode active material characterized by being.
(3) The element M is at least one element selected from the group consisting of V, Nb, Ta, Mo, W, Ti, Zr, and Cr. (1) or (2) The negative electrode active material as described.
(4) The negative electrode active material according to any one of (1) to (3), wherein the composition of silicon and the element M is in a hypereutectic region.
(5) The negative electrode active material has a silicon phase composed of pure silicon or a silicon solid solution, and a silicide phase composed of a compound of silicon and the element M,
The negative electrode active material according to any one of (1) to (4), wherein the silicon phase is 20 wt% or more in the negative electrode active material.
(6) In any one of (1) to (5), a phase having an outer diameter or width of 10 to 300 nm occupies 50% by volume or more of the silicon phase among the silicon phases. The negative electrode active material as described.
(7) Further, the negative electrode active material is an element D different from the element M (Al, Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, At least one element selected from the group consisting of Dy, Sm, Pr, Y, Zr, Nb, Mo, Hf, Ta, W, Re, Os, Ir, Ru, Rh, and Ba)
The negative electrode active material according to any one of (1) to (6), wherein the negative electrode active material comprises a compound of silicon and the element D.
(8) The first phase having Li storage properties is dispersed in the second phase having Li conductivity electrochemically,
The negative electrode active material, wherein the first phase further includes a third phase that is less Li-occluding than the first phase.
(9) The area ratio of the first phase to the second phase is 10 to 90%, and further, the third phase is contained in an amount of 1 to 40 atomic% with respect to the negative electrode active material material. The negative electrode active material as described in 8).
(10) The negative electrode active material according to (8) or (9), wherein the first phase is pure silicon or a silicon solid solution, and the average thickness of the cross-sectional layers is 20 to 2000 nm.
(11) The negative electrode active material according to any one of (8) to (10), wherein the second phase is silicide and the average thickness of the cross-sectional layers is 20 to 2000 nm.
(12) Any one of (8) to (11), wherein the second phase contains Si and Al, and further contains at least one element selected from the element D according to claim 6. The negative electrode active material according to 1.
(13) The second phase contains Si and Al, and further contains at least one element selected from Fe, Co, Mn, La, Ce, Nd, Pr, Sm, and Dy. The negative electrode active material according to any one of (8) to (12).
(14) The negative electrode active material according to any one of (8) to (13), wherein the second phase includes a fourth phase that is less Li-occluding than the first phase.
(15) The negative electrode active material for a nonaqueous electrolyte secondary battery according to (14), wherein the fourth phase is contained in an amount of 1 to 50 atomic% with respect to the negative electrode active material.
(16) The negative electrode active material according to any one of (8) to (15), wherein the average value of the thickness of the cross-sectional layer of the third phase is 1 to 100 nm.
(17) the third phase, VSi 2, TaSi 2, MoSi 2, NbSi 2, WSi 2, TiSi 2, ZrSi 2, CrSi , characterized in that it comprises at least one compound selected from 2 (8 ) To (16).
(18) the third phase, the negative active material according to any one of VSi 2, TaSi 2, characterized in that it comprises at least one compound selected from NbSi 2 (8) ~ (17 ).
(19) The third phase or the fourth phase contains at least one compound selected from SiO 2 , TiO 2 , Al 2 O 3 , ZnO, CaO, and MgO. The negative electrode active material according to any one of (18).
(20) A region in which the volume of particles constituting the third phase occupies 10% or more of the total volume of the first phase and the third phase is present (8) to The negative electrode active material according to any one of (19).
(21) A negative electrode for a non-aqueous electrolyte secondary battery having an active material layer on a current collector,
The active material layer includes silicon and an element M capable of forming a compound with silicon, and when the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is first precipitated. A negative electrode for a non-aqueous electrolyte secondary battery, comprising: a negative electrode active material characterized in that pure silicon or a silicon solid solution precipitates when further cooled; and a binder.
(22) a positive electrode capable of inserting and extracting lithium ions;
A negative electrode having an active material layer on a current collector;
Having a separator disposed between the positive electrode and the negative electrode;
A non-aqueous electrolyte secondary battery in which the positive electrode, the negative electrode, and the separator are provided in an electrolyte having lithium ion conductivity,
The active material layer of the negative electrode includes silicon and an element M capable of forming a compound with silicon, and when the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is first A non-aqueous electrolyte secondary battery comprising: a negative electrode active material characterized by having a composition in which pure silicon or a silicon solid solution is deposited when cooled and further cooled; and a binder .
(23) including silicon and an element M capable of forming a compound with silicon, and when the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is first precipitated and further cooled. Then, the manufacturing method of the negative electrode active material characterized by cooling the molten metal which is a composition in which pure silicon or a silicon solid solution precipitates at a rate of 1000 K / s or more.
(24) The method for producing a negative electrode active material according to (23), wherein the molten metal is cooled by a single roll method, a twin roll method, a melt spinning method, a gas atomizing method, or a water atomizing method.
(25) A negative electrode for a nonaqueous electrolyte secondary battery comprising the negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of (8) to (20).
(26) A non-aqueous electrolyte secondary battery comprising the negative electrode for a non-aqueous electrolyte secondary battery according to (25).
(27) Element group D excluding Si, Al, Al (Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Dy, Sm, Pr, Y, At least one element selected from Zr, Nb, Mo, Hf, Ta, W, Re, Os, Ir, Ru, Rh, and Ba), element group M (V, Ta, Mo, Nb, W, Ti, After melting an alloy containing at least one element selected from Zr and Cr), it is rapidly cooled (1000K /) by any of the single roll method, twin roll method, melt spinning method, gas atomizing method, and water atomizing method. The negative electrode active for a nonaqueous electrolyte secondary battery according to any one of (8) to (19), characterized by solidifying and precipitating the second phase at a temperature of 1000 ° C. or lower Manufacturing method of material.
However, an element selected from the element group M and the element group D is not the same element.
(28)
The non-water according to (27), wherein the element of element group D excluding Al is at least one element selected from Fe, Co, Mn, La, Ce, Nd, Pr, Sm, and Dy A method for producing a negative electrode active material for an electrolyte secondary battery.
 本発明により、放電容量に寄与する第1の相を確保するとともに、繰り返しの充放電に伴う第1の相の体積膨張・収縮により発生するクラックの伸展を抑制することにより、高容量でサイクル特性に優れる非水電解質二次電池用負極活物質を得ることができる。 According to the present invention, the first phase contributing to the discharge capacity is ensured, and the expansion of cracks caused by the volume expansion / contraction of the first phase due to repeated charging / discharging is suppressed, thereby achieving high capacity and cycle characteristics. In this way, a negative electrode active material for a non-aqueous electrolyte secondary battery that is excellent in performance can be obtained.
本発明の実施形態に係る負極活物質1の断面の模式図。The schematic diagram of the cross section of the negative electrode active material 1 which concerns on embodiment of this invention. (a)~(d)本発明の実施形態に係る負極活物質1の製造過程を示す模式図。(A)-(d) The schematic diagram which shows the manufacturing process of the negative electrode active material 1 which concerns on embodiment of this invention. (a)~(b)本発明の実施形態に係る負極活物質1の製造過程の変形例を示す模式図。(A)-(b) The schematic diagram which shows the modification of the manufacturing process of the negative electrode active material 1 which concerns on embodiment of this invention. 本発明の実施形態に係るガスアトマイズ装置21の模式図。The schematic diagram of the gas atomizer 21 which concerns on embodiment of this invention. 本発明の実施形態に係る単ロール急冷装置41の模式図。The schematic diagram of the single roll quenching apparatus 41 which concerns on embodiment of this invention. 本発明の実施形態に係る双ロール急冷装置51の模式図。The schematic diagram of the twin roll quenching apparatus 51 which concerns on embodiment of this invention. 本発明の実施形態に係る溶融紡糸装置61の模式図。The schematic diagram of the melt spinning apparatus 61 which concerns on embodiment of this invention. 本発明の実施形態に係る非水電解質二次電池71の断面の模式図。The schematic diagram of the cross section of the nonaqueous electrolyte secondary battery 71 which concerns on embodiment of this invention. バナジウムとシリコンの二元系状態図。Binary phase diagram of vanadium and silicon. ニオブとシリコンの二元系状態図。Niobium and silicon binary phase diagram. タンタルとシリコンの二元系状態図。Binary phase diagram of tantalum and silicon. モリブデンとシリコンの二元系状態図。Binary phase diagram of molybdenum and silicon. タングステンとシリコンの二元系状態図。Binary system phase diagram of tungsten and silicon. チタンとシリコンの二元系状態図。Binary system phase diagram of titanium and silicon. ジルコニウムとシリコンの二元系状態図。Binary phase diagram of zirconium and silicon. クロムとシリコンの二元系状態図。Binary phase diagram of chromium and silicon. 実施例1に係る負極活物質の断面の走査型電子顕微鏡写真。2 is a scanning electron micrograph of a cross section of the negative electrode active material according to Example 1. FIG. 実施例1に係る負極活物質のXRD解析結果XRD analysis result of negative electrode active material according to Example 1 比較例1に係る負極活物質の断面の走査型電子顕微鏡写真。2 is a scanning electron micrograph of a cross section of a negative electrode active material according to Comparative Example 1. 比較例1に係る負極活物質のXRD解析結果XRD analysis result of negative electrode active material according to Comparative Example 1 比較例1に係る1サイクル後の負極活物質の断面の走査型電子顕微鏡写真。The scanning electron micrograph of the cross section of the negative electrode active material after 1 cycle concerning the comparative example 1. (a)~(e)従来のシリコン粒子100の周囲に形成されるSEIを説明する図。(A)-(e) The figure explaining SEI formed in the circumference | surroundings of the conventional silicon particle 100. FIG. 本願発明に係る負極活物質材料の模式図Schematic diagram of negative electrode active material according to the present invention 実施例11に係るSi-Fe-Al-V合金のBF-STEM(Bright-Field Scanning Transmission Electron Microscopy、明視野走査透過電子顕微鏡像)BF-STEM (Bright-Field Scanning Transmission Electron Microscope, Bright Field Scanning Transmission Electron Microscope Image) of Si—Fe—Al—V Alloy According to Example 11 実施例11に係るSi-Fe-Al-V合金のXRD(X-ray diffraction、X線回折)解析結果XRD (X-ray diffraction, X-ray diffraction) analysis result of Si—Fe—Al—V alloy according to Example 11 実施例11に係るEDS(Energy Dispersive X-ray Spectrometer、エネルギー分散型X線分光分析)マッピングEDS (Energy Dispersive X-ray Spectrometer, Energy Dispersive X-ray Spectroscopy) mapping according to Example 11
(負極活物質1)
 以下図面に基づいて、本発明の実施形態を詳細に説明する。本発明の実施形態に係る負極活物質1について説明する。図1は、負極活物質1の断面模式図である。負極活物質1は、シリコンと、シリコンと化合物を形成可能な元素Mを含んでいる。シリコンと元素Mの組成は、溶融状態から冷却する際に、シリコンと元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはその固溶体(以下、シリコン相と記す)が析出する組成である。このような組成であることにより、後述するように、シリコン相の析出時に、既にシリコンと元素Mとの化合物が析出しているため、シリコン相の結晶が大きく成長することがなく、微細なまま保たれる。
(Negative electrode active material 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The negative electrode active material 1 which concerns on embodiment of this invention is demonstrated. FIG. 1 is a schematic cross-sectional view of the negative electrode active material 1. The negative electrode active material 1 contains silicon and an element M capable of forming a compound with silicon. The composition of silicon and element M is a composition in which a compound of silicon and element M first precipitates when cooled from a molten state, and pure silicon or a solid solution thereof (hereinafter referred to as a silicon phase) precipitates when further cooled. . With such a composition, as will be described later, since the compound of silicon and element M is already deposited at the time of deposition of the silicon phase, the silicon phase crystal does not grow greatly and remains fine. Kept.
 特に、元素Mが、V、Nb、Ta、Mo、W、Ti、Zr、Crからなる群より選ばれた少なくとも1種の元素であることが好ましい。これらの元素は、シリコンを多く含む組成で、MSi組成のシリサイドが最初に析出する過共晶領域にあるからである。 In particular, the element M is preferably at least one element selected from the group consisting of V, Nb, Ta, Mo, W, Ti, Zr, and Cr. This is because these elements have a composition containing a large amount of silicon and are in a hypereutectic region where silicide having an MSi 2 composition is first deposited.
 また、シリコンと前記元素Mの組成が、過共晶領域にあることが好ましい。過共晶領域であれば、シリコンと元素Mの共晶点での組成よりも元素Mの割合が多いため、溶湯状態からの冷却時に、シリコンと元素Mより構成されるMSi組成のシリサイドがシリコン相よりも先に析出するからである。 The composition of silicon and the element M is preferably in the hypereutectic region. In the hypereutectic region, since the ratio of the element M is larger than the composition at the eutectic point of silicon and the element M, the silicide of the MSi 2 composition composed of silicon and the element M is formed during cooling from the molten state. This is because it precipitates before the silicon phase.
 負極活物質1は、純シリコンまたはその固溶体からなるシリコン相3と、シリコンと元素Mの化合物からなる第1のシリサイド相5とを有し、シリコン相3が、負極活物質1中の20wt%以上であることが好ましい。負極活物質1が、黒鉛電極やSiO電極に比べて放電容量が大きいと判断される約670mAh/gの容量を発現する条件は、シリコン相が20wt%以上の場合である。シリコン相3がリチウムイオンとの充放電反応に参加するため、シリコン相3の量があまりにも少なすぎると、従来の黒鉛系の負極活物質の充放電容量と大差がなくなり、シリコンを使用する利点が失われてしまうからである。また、シリコン相3は、サイクル特性などの充放電特性が維持される限り、多量に含まれていても問題はない。 The negative electrode active material 1 has a silicon phase 3 made of pure silicon or a solid solution thereof, and a first silicide phase 5 made of a compound of silicon and element M, and the silicon phase 3 is 20 wt% in the negative electrode active material 1. The above is preferable. The condition that the negative electrode active material 1 expresses a capacity of about 670 mAh / g, which is judged to have a larger discharge capacity than the graphite electrode or the SiO electrode, is when the silicon phase is 20 wt% or more. Since silicon phase 3 participates in the charge / discharge reaction with lithium ions, if the amount of silicon phase 3 is too small, there is no significant difference from the charge / discharge capacity of the conventional graphite-based negative electrode active material, and the advantage of using silicon Because it will be lost. Moreover, as long as the silicon phase 3 is included in a large amount as long as charge / discharge characteristics such as cycle characteristics are maintained, there is no problem.
 また、シリコン相3は、第1のシリサイド相5中に埋設されている。そのため、シリコンに比べて高導電性のシリサイドにより負極活物質1の導電性は上昇し、さらにシリコン相3の膨張・収縮を抑制することができる。また、シリサイドは少量ではあるがリチウムを吸蔵・放出することが可能であることから、リチウムの透過性を持つため、第1のシリサイド相5中に埋設されているシリコン相3がリチウムを吸蔵・放出することができる。 Further, the silicon phase 3 is embedded in the first silicide phase 5. Therefore, the conductivity of the negative electrode active material 1 is increased by the highly conductive silicide compared to silicon, and further, the expansion / contraction of the silicon phase 3 can be suppressed. In addition, since a small amount of silicide can occlude / release lithium, the silicon phase 3 embedded in the first silicide phase 5 occludes / Can be released.
 負極活物質1に含まれる複数のシリコン相3のうち、外径または幅が10~300nmのサイズを有するシリコン相3の体積を合わせると、シリコン相3の50体積%以上を占めることが好ましい。シリコン相3が大きすぎると、ホールペッチの法則により、充放電時の応力により、シリコン相3にクラックが発生する確率が高くなる。そのため、シリコン相3の全体に占める、クラックが発生しにくい小さいシリコン相の割合が半分以上であることが好ましい。 Among the plurality of silicon phases 3 included in the negative electrode active material 1, when the volume of the silicon phase 3 having an outer diameter or width of 10 to 300 nm is combined, it is preferable to occupy 50% by volume or more of the silicon phase 3. If the silicon phase 3 is too large, the probability of cracks occurring in the silicon phase 3 due to stress during charging / discharging increases due to Hall Petch's law. Therefore, it is preferable that the ratio of the small silicon phase in which cracks hardly occur to the entire silicon phase 3 is half or more.
 ここで、シリコン相3の外径または幅とは、シリコン相3が粒子形状である場合はその外径を意味し、シリコン相3が2次元的なラメラ構造を有する場合はその厚さを、シリコン相3が1次元的な棒状構造を有する場合はその断面の直径を意味する。すなわち、シリコン相3のうち、少なくとも1次元の長さが、10~300nmの範囲にあることが好ましい。
 負極活物質1中のシリコン相3の外形や幅は、負極活物質1の断面を電子顕微鏡で観察することにより求めることができる。また、負極活物質1中の、所定サイズのシリコン相3の体積割合は、断面に露出した所定サイズのシリコン相3の面積と、負極活物質1全体の断面の面積を比較することで求めることができる。
Here, the outer diameter or width of the silicon phase 3 means the outer diameter when the silicon phase 3 has a particle shape, and the thickness when the silicon phase 3 has a two-dimensional lamellar structure. When the silicon phase 3 has a one-dimensional rod-like structure, it means the diameter of the cross section. That is, it is preferable that at least one-dimensional length of the silicon phase 3 is in the range of 10 to 300 nm.
The outer shape and width of the silicon phase 3 in the negative electrode active material 1 can be obtained by observing the cross section of the negative electrode active material 1 with an electron microscope. Further, the volume ratio of the silicon phase 3 of a predetermined size in the negative electrode active material 1 is obtained by comparing the area of the silicon phase 3 of the predetermined size exposed on the cross section with the area of the cross section of the entire negative electrode active material 1. Can do.
 (元素Dの添加)
 さらに、前記負極活物質が、元素Mとは異なる元素D(Cu、Al、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、Y、Zr、Nb、Mo、Ru、Rh、Ba、ランタノイド元素、Hf、Ta、W、Re、OsおよびIrからなる群より選ばれた少なくとも1種の元素)を含み、前記負極活物質が、シリコンと元素Dとの化合物を有することが好ましい。まず、シリコンと元素Mと元素Dの3元系である場合、融点が降下し、低温で溶湯を作製することができるため、シリコン相が微細となり易い。また、負極活物質1中に、シリコンと元素Mの化合物以外に、シリコンと元素Dの化合物、または、シリコンと元素Mと元素Dの三元系シリサイドよりなる化合物が形成されることで、シリコン相3は、より容易に第1のシリサイド相5に覆われる。シリコン相3は、元素Mまたは元素Dとシリコンの化合物からなる第1のシリサイド相5に覆われるため、負極活物質1は、より高導電性になり、シリコン相3の体積膨張を緩和できる。シリコン相3を覆うシリサイド相は後述するように、第1のシリサイド相5の他に、第2のシリサイド相7を含むなどして複数の相が存在してもよい。
(Addition of element D)
Further, the negative electrode active material is an element D different from the element M (Cu, Al, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, Y, Zr, Nb, Mo, Ru, Rh, Ba, lanthanoid element, at least one element selected from the group consisting of Hf, Ta, W, Re, Os and Ir), and the negative electrode active material has a compound of silicon and element D Is preferred. First, in the case of a ternary system of silicon, element M, and element D, the melting point is lowered and a molten metal can be produced at a low temperature, so that the silicon phase tends to be fine. Further, in addition to the compound of silicon and element M, the compound of silicon and element D or the compound of ternary silicide of silicon, element M and element D is formed in the negative electrode active material 1, so that silicon Phase 3 is more easily covered by the first silicide phase 5. Since the silicon phase 3 is covered by the first silicide phase 5 made of the element M or the compound of the element D and silicon, the negative electrode active material 1 becomes more conductive and can relax the volume expansion of the silicon phase 3. As will be described later, the silicide phase covering the silicon phase 3 may include a plurality of phases including the second silicide phase 7 in addition to the first silicide phase 5.
 (負極活物質の作製方法)
 本発明の実施形態に係る負極活物質1の製造過程を、図2を用いて説明する。図2(a)に示す通り、シリコンと元素Mとを混合し、高温に加熱することで、溶湯11を形成する。実施形態では、シリコン相よりもシリサイド相が先に析出するような、元素Mの種類や、シリコンと元素Mの組成を採用した。図2(b)に示す通り、溶湯11を冷却していくと、溶湯11内のシリコンや元素Mの種類や濃度が所定の範囲であるため、溶湯11からシリサイド初晶13が形成される。さらに冷却を進めると、図2(c)に示す通り、シリコンの結晶であるシリコン15が析出し始める。しかしながら、シリコン15の過度の成長は、シリサイド初晶13が成長して形成される周囲の第1のシリサイド17が阻害するため、図2(d)に示すように微細なシリコン相3が得られる。また、シリコン相3は、第1のシリサイド17が成長した第1のシリサイド相5に埋設されている。
(Method for producing negative electrode active material)
A manufacturing process of the negative electrode active material 1 according to the embodiment of the present invention will be described with reference to FIG. As shown in FIG. 2A, the molten metal 11 is formed by mixing silicon and the element M and heating to high temperature. In the embodiment, the kind of the element M and the composition of the silicon and the element M such that the silicide phase is precipitated before the silicon phase are employed. As shown in FIG. 2B, when the molten metal 11 is cooled, the silicide primary crystal 13 is formed from the molten metal 11 because the types and concentrations of silicon and element M in the molten metal 11 are within a predetermined range. When the cooling is further advanced, as shown in FIG. 2C, silicon 15 which is a crystal of silicon starts to be deposited. However, the excessive growth of the silicon 15 is inhibited by the surrounding first silicide 17 formed by the growth of the silicide primary crystal 13, so that a fine silicon phase 3 is obtained as shown in FIG. . The silicon phase 3 is buried in the first silicide phase 5 on which the first silicide 17 is grown.
 さらに、元素Mとは異なる元素Dを追加することで、シリコンと元素Dとの二元系シリサイドの他に、シリコンと元素Mおよび元素Dより構成される三元系シリサイドを形成してもよい。図3(a)は、溶湯11内に元素Dをさらに追加した場合であり、図2(c)の状態から冷却が進むに従って、シリコンと元素Dとの二元系シリサイド、あるいは、シリコンと元素Mおよび元素Dより構成される三元系シリサイドよりなる第2のシリサイド19が析出し始める。しかしながら、シリコン15の過度の成長は、周囲の第1のシリサイド17あるいは第2のシリサイド19が阻害するため、図3(b)に示すように微細なシリコン相3が得られる。図3(b)の第2のシリサイド相7は、シリコンと元素Dとの二元系シリサイド、あるいは、シリコンと元素Mおよび元素Dより構成される三元系シリサイドのほか、組成比率の異なる複数種のシリサイドであってもよい。 Further, by adding an element D different from the element M, a ternary silicide composed of silicon, the element M, and the element D may be formed in addition to the binary silicide of the silicon and the element D. . FIG. 3A shows a case where the element D is further added to the molten metal 11. As the cooling proceeds from the state of FIG. 2C, binary silicide of silicon and element D or silicon and element. The second silicide 19 made of ternary silicide composed of M and the element D starts to precipitate. However, excessive growth of the silicon 15 is inhibited by the surrounding first silicide 17 or the second silicide 19, so that a fine silicon phase 3 is obtained as shown in FIG. The second silicide phase 7 in FIG. 3B includes a binary silicide of silicon and element D, or a ternary silicide composed of silicon, element M, and element D, and a plurality of different composition ratios. It may be a seed silicide.
 具体的な負極活物質1の製造方法を説明する。シリコンは、B(ホウ素)やRu(ルテニウム)など含む固溶体であっても良い。まず、シリコンと、シリコンと化合物を形成可能な元素Mとを含む溶湯を作成する。溶湯内のシリコンと元素Mの組成が、溶融状態から冷却する際にシリコンと元素Mの化合物が最初に析出し、さらに冷却するとシリコン相が析出する組成である。この溶湯にさらに元素Dを追加してもよい。この溶湯を、1000K/s以上の速度で冷却すると、シリサイドの析出と、それに続くシリコン相の析出が起き、負極活物質1が形成される。1000K/s以上の比較的急速な冷却を行うため、微細なシリコン相3や第1のシリサイド相5および第2のシリサイド相7を得ることができる。負極活物質1は、ガスアトマイズ法または水アトマイズ法により形成されることが好ましい。あるいは、単ロール法、双ロール法、溶融紡糸法のいずれかにより溶湯を冷却した後、得られたフレーク状、リボン状、板状または糸状の合金を粉砕・分級することで負極活物質1を形成してもよい。 A specific method for producing the negative electrode active material 1 will be described. Silicon may be a solid solution containing B (boron) or Ru (ruthenium). First, a molten metal containing silicon and an element M capable of forming silicon and a compound is prepared. The composition of silicon and element M in the molten metal is such that when cooling from the molten state, the compound of silicon and element M is precipitated first, and when further cooled, the silicon phase is precipitated. Element D may be further added to the molten metal. When this molten metal is cooled at a rate of 1000 K / s or higher, silicide precipitation and subsequent silicon phase precipitation occur, and the negative electrode active material 1 is formed. Since relatively rapid cooling of 1000 K / s or more is performed, the fine silicon phase 3, the first silicide phase 5, and the second silicide phase 7 can be obtained. The negative electrode active material 1 is preferably formed by a gas atomization method or a water atomization method. Alternatively, after the molten metal is cooled by any one of a single roll method, a twin roll method, and a melt spinning method, the obtained flake-shaped, ribbon-shaped, plate-shaped or thread-shaped alloy is pulverized and classified to obtain the negative electrode active material 1. It may be formed.
 (ガスアトマイズ法・水アトマイズ法)
 図4に示すガスアトマイズ装置21は、ガスアトマイズ法により負極活物質1を形成する装置である。るつぼ23内でシリコンと元素Mとが溶解して形成された溶湯11をノズル25から滴下すると同時に、不活性ガスや空気などの噴出ガス27が供給されたガス噴射機29からのガスジェット流31を吹き付けて、溶湯11を粉砕して、液滴として凝固させて粉末状の負極活物質1を形成する。溶湯11にさらに元素Dを追加してもよい。負極活物質1は、ガスアトマイズ装置21に接続したサイクロンやフィルターを通して、連続して所望の粒子サイズに分級することが可能である。噴出ガス27の代わりに水を供給し、ガスジェット流31の代わりに高圧の水を吹き付けると水アトマイズ法となる。
(Gas atomization method and water atomization method)
A gas atomizing apparatus 21 shown in FIG. 4 is an apparatus that forms the negative electrode active material 1 by a gas atomizing method. The molten metal 11 formed by melting silicon and the element M in the crucible 23 is dropped from the nozzle 25, and at the same time, the gas jet flow 31 from the gas injector 29 to which the ejection gas 27 such as inert gas or air is supplied. The molten metal 11 is pulverized and solidified as droplets to form the powdered negative electrode active material 1. Element D may be further added to the molten metal 11. The negative electrode active material 1 can be continuously classified into a desired particle size through a cyclone or a filter connected to the gas atomizer 21. When water is supplied instead of the jet gas 27 and high-pressure water is sprayed instead of the gas jet stream 31, the water atomization method is performed.
 (単ロール法)
 図5に示す単ロール急冷装置41は、単ロール法によるリボン状又はフレーク状の合金47の製造に用いられる装置である。単ロール急冷装置41は、るつぼ43内のシリコンと元素Mとを含む溶湯11を、高速回転する単ロール45に向かって射出し、溶湯11を急速に冷却することで、シリコン相3と第1のシリサイド相5を含むリボン状またはフレーク状の合金47を得ることができる。溶湯11にさらに元素Dを追加してもよい。単ロール急冷装置41は、溶湯11の射出量や単ロール45の回転数を設定することで、急冷速度を制御することができ、シリコン相3や第1のシリサイド相5および第2のシリサイド相7のサイズを制御することができる。また、得られたリボン状又はフレーク状の合金47を必要に応じて粉砕・分級することで、所望の一次粒子の粒径の負極活物質1を得ることができる。単ロール法は、溶湯11がるつぼ43から射出されると単ロール45で瞬時に冷却されるため、ガスアトマイズ法に比べて急冷速度が早くなり、より微細なシリコン相3や第1のシリサイド相5および第2のシリサイド相7を得ることができる。
(Single roll method)
A single roll quenching apparatus 41 shown in FIG. 5 is an apparatus used for manufacturing a ribbon-like or flake-like alloy 47 by a single roll method. The single roll quenching device 41 injects the molten metal 11 containing silicon and the element M in the crucible 43 toward the single roll 45 that rotates at high speed, and rapidly cools the molten metal 11, so that Thus, a ribbon-like or flake-like alloy 47 including the silicide phase 5 can be obtained. Element D may be further added to the molten metal 11. The single roll quenching device 41 can control the quenching speed by setting the injection amount of the molten metal 11 and the rotation speed of the single roll 45, and can control the silicon phase 3, the first silicide phase 5, and the second silicide phase. The size of 7 can be controlled. Moreover, the negative electrode active material 1 having a desired primary particle diameter can be obtained by pulverizing and classifying the obtained ribbon-like or flake-like alloy 47 as necessary. In the single roll method, when the molten metal 11 is injected from the crucible 43, the single roll 45 instantaneously cools, so that the rapid cooling rate is faster than the gas atomization method, and the finer silicon phase 3 and the first silicide phase 5 And the 2nd silicide phase 7 can be obtained.
 (双ロール法)
 図6に示す双ロール急冷装置51は、双ロール法によるリボン状又は板状の合金59の製造に用いられる装置である。双ロール急冷装置51は、るつぼ53内のシリコンと元素Mを含む溶湯11を一対の鋳造ロール55で挟んで、リボン状又は板状の合金59を得ることができる。溶湯11にさらに元素Dを追加してもよい。さらに、鋳造ロール55の出口に、リボン状又は板状の合金59に水や空気などを吹き付ける急冷装置57を有してもよい。双ロール法も、溶湯11がるつぼ53から射出されると一対の鋳造ロール55で瞬時に冷却されるため、微細なシリコン相3や第1のシリサイド相5および第2のシリサイド相7を得ることができる。
(Two-roll method)
A twin roll quenching apparatus 51 shown in FIG. 6 is an apparatus used for manufacturing a ribbon-like or plate-like alloy 59 by a twin roll method. The twin roll quenching device 51 can obtain a ribbon-like or plate-like alloy 59 by sandwiching the molten metal 11 containing silicon and the element M in the crucible 53 with a pair of casting rolls 55. Element D may be further added to the molten metal 11. Furthermore, a quenching device 57 that blows water, air, or the like to the ribbon-like or plate-like alloy 59 may be provided at the outlet of the casting roll 55. Also in the twin roll method, when the molten metal 11 is injected from the crucible 53, it is cooled instantaneously by the pair of casting rolls 55, so that the fine silicon phase 3, the first silicide phase 5 and the second silicide phase 7 are obtained. Can do.
 (溶融紡糸法)
 図7に示す溶融紡糸装置61は、溶融紡糸法による糸状又はリボン状の合金70の製造に用いられる装置である。溶融紡糸装置61は、るつぼ63内の溶湯11を、容器65内の大量の冷却液67で急速に冷却して、ガイドロール69で誘導しながら、糸状又はリボン状の合金70を得ることができる。溶融紡糸法においても溶湯11を急速に冷却できるため、微細なシリコン相3や第1のシリサイド相5および第2のシリサイド相7を得ることができる。
(Melt spinning method)
A melt spinning apparatus 61 shown in FIG. 7 is an apparatus used for manufacturing a yarn-like or ribbon-like alloy 70 by a melt spinning method. The melt spinning apparatus 61 can rapidly cool the molten metal 11 in the crucible 63 with a large amount of cooling liquid 67 in the container 65 and obtain the yarn-like or ribbon-like alloy 70 while being guided by the guide roll 69. . Also in the melt spinning method, since the molten metal 11 can be rapidly cooled, the fine silicon phase 3, the first silicide phase 5, and the second silicide phase 7 can be obtained.
 (元素M)
 前述のように、元素Mが、V、Nb、Ta、Mo、W、Ti、Zr、Crからなる群より選ばれた少なくとも1種の元素であることが好ましい。
(Element M)
As described above, the element M is preferably at least one element selected from the group consisting of V, Nb, Ta, Mo, W, Ti, Zr, and Cr.
 図9は、バナジウムとシリコンの二元系状態図である。バナジウムとシリコンの過共晶領域は、Si/(Si+V)が52重量%~95重量%(67原子%~97原子%)である。バナジウムとシリコンの過共晶領域に有る組成であれば、高温状態の溶湯が冷却する際に、初めにVSiなどのシリサイドが析出し、その後、1400℃になった時点で、純シリコンの析出が開始されるため、純シリコンの結晶成長を妨げることができる。
(なお、図中、過共晶領域をα、共晶点をβとする。以下の図についても同様)
FIG. 9 is a binary phase diagram of vanadium and silicon. In the hypereutectic region of vanadium and silicon, Si / (Si + V) is 52 wt% to 95 wt% (67 atomic% to 97 atomic%). If the composition is in the hypereutectic region of vanadium and silicon, when the molten metal in the high temperature state is cooled, first, silicide such as VSi 2 is deposited, and then when pure metal is deposited at 1400 ° C. Therefore, the crystal growth of pure silicon can be prevented.
(In the figure, the hypereutectic region is α and the eutectic point is β. The same applies to the following figures.)
 図10は、ニオブとシリコンの二元系状態図である。ニオブとシリコンの過共晶領域は、Si/(Si+Nb)が38重量%~93.7重量%(67原子%~98原子%)である。 FIG. 10 is a binary system phase diagram of niobium and silicon. In the hypereutectic region of niobium and silicon, Si / (Si + Nb) is 38 wt% to 93.7 wt% (67 atomic% to 98 atomic%).
 図11は、タンタルとシリコンの二元系状態図である。タンタルとシリコンの過共晶領域は、Si/(Si+Ta)が24重量%~94重量%(67原子%~99原子%)である。 FIG. 11 is a binary phase diagram of tantalum and silicon. In the hypereutectic region of tantalum and silicon, Si / (Si + Ta) is 24 wt% to 94 wt% (67 atomic% to 99 atomic%).
 図12は、モリブデンとシリコンの二元系状態図である。モリブデンとシリコンの過共晶領域は、Si/(Si+Mo)が37重量%~94.4重量%(67原子%~98原子%)である。 FIG. 12 is a binary phase diagram of molybdenum and silicon. In the hypereutectic region of molybdenum and silicon, Si / (Si + Mo) is 37 wt% to 94.4 wt% (67 atomic% to 98 atomic%).
 図13は、タングステンとシリコンの二元系状態図である。タングステンとシリコンの過共晶領域は、Si/(Si+W)が23重量%~94重量%(67原子%~99原子%)である。 FIG. 13 is a binary phase diagram of tungsten and silicon. In the hypereutectic region of tungsten and silicon, Si / (Si + W) is 23 wt% to 94 wt% (67 atomic% to 99 atomic%).
 図14は、チタンとシリコンの二元系状態図である。チタンとシリコンの過共晶領域は、Si/(Si+Ti)が52重量%~73重量%(65原子%~82原子%)である。 FIG. 14 is a binary phase diagram of titanium and silicon. In the hypereutectic region of titanium and silicon, Si / (Si + Ti) is 52 wt% to 73 wt% (65 atomic% to 82 atomic%).
 図15は、ジルコニウムとシリコンの二元系状態図である。ジルコニウムとシリコンの過共晶領域は、Si/(Si+Zr)が38重量%~80重量%(67原子%~93原子%)である。 FIG. 15 is a binary phase diagram of zirconium and silicon. In the hypereutectic region of zirconium and silicon, Si / (Si + Zr) is 38 wt% to 80 wt% (67 atomic% to 93 atomic%).
 図16は、クロムとシリコンの二元系状態図である。クロムとシリコンの過共晶領域は、Si/(Si+Cr)が52重量%~81重量%(67原子%~86原子%)である。 FIG. 16 is a binary phase diagram of chromium and silicon. In the hypereutectic region of chromium and silicon, Si / (Si + Cr) is 52 wt% to 81 wt% (67 atomic% to 86 atomic%).
(第1の相について)
 第1の相は、電気化学的にLi吸蔵性があり、大きな放電容量を有する材料が好ましい。具体的には、SiやSiの固溶体などが挙げられる。
 後述するように、第2の相に、当該第1の相が分散し、さらに、第1の相が第1の相よりLi吸蔵性に乏しい第3相をさらに含むことが、本願発明の主たる技術的特徴である。
 なお、図1中のシリコン相3が、本願発明の第1の相に相当する。
 第1の相の断面層の厚みは、20~2000nmであることが好ましい。20nm以上だと安定的に製造しやすく、2000nm以下だと充放電に伴う体積膨張・収縮の程度が小さくクラックが発生しにくいので好ましい。
 各相の形状は点状、斑状、網目形状や縞状など各種の形態をとり得る。そのため、相断面の厚みを測定し、各相の50体積%以上が該当する値の範囲を断面層の厚みとして規定した。
(About the first phase)
The first phase is preferably a material that is electrochemically Li-occlusion and has a large discharge capacity. Specifically, Si or a solid solution of Si can be used.
As will be described later, the main feature of the present invention is that the first phase is dispersed in the second phase, and further, the first phase further includes a third phase that is less Li occluding than the first phase. It is a technical feature.
Note that the silicon phase 3 in FIG. 1 corresponds to the first phase of the present invention.
The cross-sectional layer thickness of the first phase is preferably 20 to 2000 nm. If it is 20 nm or more, it is easy to produce stably, and if it is 2000 nm or less, the degree of volume expansion / contraction associated with charge / discharge is small, and cracks are unlikely to occur.
The shape of each phase can take various forms such as dots, spots, meshes and stripes. Therefore, the thickness of the phase section was measured, and the range of values corresponding to 50% by volume or more of each phase was defined as the thickness of the section layer.
(第2の相について)
 第2の相は、電気化学的にLi伝導性が必要である。Li伝導性が有るとは、電気化学的に少量のLi吸蔵性を有しており、第2の相をLiが可逆的に通過可能であることである。Liの移動はLiイオン伝導性であっても、Li合金化反応であっても構わない。そのため、第2の相の内部に海島構造の島状に点在する第1の相にLiを到達させることが可能である。換言すると、第2の相が、CuやNiのように電気化学的にLi不活性な金属であれば、島状に点在するSiのような第1の相にLiが到達できないので充放電に寄与しなくなり、放電容量は生じない。
 なお、図1中の第1のシリサイド相5が、本願発明の第2の相に相当する。
 第2の相は、具体的に、シリサイドなどが挙げられる。
 第2の相の断面層の厚みは、20~2000nmであることが好ましい。20nm以上だと第1の相と同様に安定的に製造しやすくなり、2000nm以下だと第1の相を所定量確保することが容易になり、高い放電容量を確保しやすくなる点で好ましい。前述した通り、第2の相に第1の相が分散している。
(About the second phase)
The second phase requires Li conductivity electrochemically. Having Li conductivity means that it has electrochemically a small amount of Li storage and Li can reversibly pass through the second phase. The movement of Li may be Li ion conductivity or Li alloying reaction. Therefore, it is possible to make Li reach the first phase scattered in the island shape of the sea-island structure inside the second phase. In other words, if the second phase is an electrochemically Li-inactive metal such as Cu or Ni, Li cannot reach the first phase such as Si scattered in islands, so charging / discharging And no discharge capacity is generated.
Note that the first silicide phase 5 in FIG. 1 corresponds to the second phase of the present invention.
Specific examples of the second phase include silicide.
The thickness of the cross-sectional layer of the second phase is preferably 20 to 2000 nm. If it is 20 nm or more, it is easy to produce stably as in the first phase, and if it is 2000 nm or less, it is easy to secure a predetermined amount of the first phase, and this is preferable in that it is easy to secure a high discharge capacity. As described above, the first phase is dispersed in the second phase.
 第2相中の第1相の好ましい含有比率については、SEM(Scanning Electron Microscopy、走査型電子顕微鏡)画像の解析による面積比率として、10~90%、さらには20~80%、さらには30~70%が好ましい。
 さらに、第2の相はSiとAlとを含み、さらに、Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Dy、Sm、Pr、Y、Zr、Nb、Mo、Hf、Ta、W、Re、Os、Ir、Ru、Rh、およびBaより選ばれる少なくとも1種の元素を含むことが好ましい。ここで、Niは生成する結晶子の組成がバラつき、粗大な結晶子が混入しやすくなる点があるものの、導電性向上の点から好ましい。
 さらには、Fe、Co、Mnはシリコン相とシリサイド相が微細化しやすい点、La、Ce、Nd、Pr、Sm、およびDyは低融点シリサイドが生成しやすくシリコン相とシリサイド相が微細化しやすい点でより好ましい。
A preferable content ratio of the first phase in the second phase is 10 to 90%, further 20 to 80%, and further 30 to 30% as an area ratio by analysis of an SEM (Scanning Electron Microscope) image. 70% is preferred.
Further, the second phase includes Si and Al, and further includes Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Dy, Sm, Pr, It is preferable to contain at least one element selected from Y, Zr, Nb, Mo, Hf, Ta, W, Re, Os, Ir, Ru, Rh, and Ba. Here, Ni is preferable from the viewpoint of improving conductivity, although the composition of crystallites to be generated varies and coarse crystallites are likely to be mixed.
Furthermore, Fe, Co, and Mn are easy to refine the silicon phase and the silicide phase, and La, Ce, Nd, Pr, Sm, and Dy are easy to produce a low melting point silicide and the silicon phase and the silicide phase are easily refined. And more preferable.
(第3の相について)
 本願発明の技術的特徴のひとつは、第1の相に、第1の相よりLi吸蔵性に乏しい第3の相を含んでいることである。
(About the third phase)
One of the technical features of the present invention is that the first phase includes a third phase that is less Li-occluding than the first phase.
 図23は、本願発明における負極活物質の模式図である。図23の上段は、第2の相に第1の相が分散していることを表している。第1の相は、第2の相を海とすると、島構造を形成し存在している。図23の中段は、上段の一部分、第1の相と第2の相との境界部分の拡大図である。図23の下段は、中段の第1の相の倍率を拡大して観察したものである。 FIG. 23 is a schematic diagram of a negative electrode active material in the present invention. The upper part of FIG. 23 shows that the first phase is dispersed in the second phase. When the second phase is the sea, the first phase forms an island structure and exists. The middle part of FIG. 23 is an enlarged view of a part of the upper part, a boundary part between the first phase and the second phase. The lower part of FIG. 23 is an observation obtained by enlarging the magnification of the first phase in the middle part.
第1の相内部に第3の相のような微細構造が形成されることによって、充放電時に第1の相の体積膨張・収縮により発生していたクラックの伸展を、第1の相の転位のすべり面を断続的にする第3の相により抑制することができる。
 第3の相の断面層の厚みの平均値は、1~100nmであることが好ましく、2~40nm以下だとさらに好ましい。1nm以上だとクラック伸展の抑止力が大きく、100nm以下だと安定的な第1の相を確保できるので高い放電容量を確保しやすくなる。
 さらに、第3の相は、VSi、TaSi、MoSi、NbSi、WSi、TiSi、ZrSi、CrSiや、SiO、TiO、Al、ZnO、CaO、MgOより選ばれる少なくとも1種の化合物を第3の相として含んでもよい。
 また、第3の相は1~40原子%含有されていることが好ましい。さらには、3~30原子%含有されていることがより好ましい。3原子%以上だと、第1の相のクラックの進展を抑制する効果が高く、30原子%以下だと十分な量の第1の相が確保され、高い放電容量が確保されるためである。
By forming a fine structure like the third phase inside the first phase, the extension of cracks caused by the volume expansion / contraction of the first phase during charge / discharge can be caused by dislocation of the first phase. This can be suppressed by the third phase that makes the sliding surface intermittent.
The average value of the cross-sectional layers of the third phase is preferably 1 to 100 nm, and more preferably 2 to 40 nm or less. If the thickness is 1 nm or more, the crack extension deterrence is large, and if it is 100 nm or less, a stable first phase can be secured, so that a high discharge capacity is easily secured.
The third phase, VSi 2, TaSi 2, MoSi 2, NbSi 2, WSi 2, TiSi 2, ZrSi 2, CrSi 2 or, SiO 2, TiO 2, Al 2 O 3, ZnO, CaO, from MgO At least one selected compound may be included as the third phase.
The third phase is preferably contained in an amount of 1 to 40 atomic%. More preferably, the content is 3 to 30 atomic%. If it is 3 atomic% or more, the effect of suppressing the progress of cracks in the first phase is high, and if it is 30 atomic% or less, a sufficient amount of the first phase is secured and a high discharge capacity is secured. .
(第4の相について)
 第2の相は、第1の相よりLi吸蔵性に乏しい第4の相を含んでもよい。ここで、第2の相と第1の相の境界に析出した相も、第2の相に含まれる第4の相として判断している。
 また、第4の相としては、5~150nm程度の点状、斑状、筋状の形状や、30~150nm程度の略球状の形状であってもよい。第4の相の成分は、Alや、第3の相と同じVSi、TaSi、MoSi、NbSi、WSi、TiSi、ZrSiや、SiO、TiO、Al、ZnO、CaO、MgOより選ばれる少なくとも1種の化合物を含んでもよい。特に、Alは相の粗大化を抑制できるので、好ましい。第2の相は、機械特性の異なる第4の相を含むことで、充放電に伴う第1の相の体積膨張・収縮に伴って発生する応力の影響を緩和して、サイクル特性に寄与することが推定される。
(About the fourth phase)
The second phase may include a fourth phase that is less Li-occluding than the first phase. Here, the phase precipitated at the boundary between the second phase and the first phase is also determined as the fourth phase included in the second phase.
Further, the fourth phase may be a dot-like, spot-like or streaky shape of about 5 to 150 nm, or a substantially spherical shape of about 30 to 150 nm. The fourth component of the phase, Al and the same VSi 2 and the third phase, TaSi 2, MoSi 2, NbSi 2, WSi 2, TiSi 2, ZrSi 2 and, SiO 2, TiO 2, Al 2 O 3, It may contain at least one compound selected from ZnO, CaO, and MgO. In particular, Al is preferable because it can suppress the coarsening of the phase. The second phase includes the fourth phase having different mechanical characteristics, thereby mitigating the influence of the stress generated due to the volume expansion / contraction of the first phase accompanying charge / discharge, and contributing to the cycle characteristics. Is estimated.
 また、第4の相は1~50原子%含有されていることが好ましい。2~30原子%含有されていることがより好ましい。第4の相が2原子%以上だと、第1の相の充放電に伴う体積膨張・収縮によるクラックが第2の相に進展しにくく、第2の相のクラック伸展を抑止する効果が高い。また、第4の相が30原子%以下だと第1の相が十分量確保され、高い放電容量が確保される。 The fourth phase is preferably contained in an amount of 1 to 50 atomic%. More preferably, the content is 2 to 30 atomic%. If the fourth phase is 2 atomic% or more, cracks due to volume expansion / contraction associated with charge / discharge of the first phase hardly propagate to the second phase, and the effect of suppressing crack extension of the second phase is high. . Moreover, when the fourth phase is 30 atomic% or less, a sufficient amount of the first phase is secured, and a high discharge capacity is secured.
Alを投入元素とした場合、Alの投入量が26原子%以上であると、第2の相の生成が十分となり、過剰のAlが金属Al相として析出する。例えば、Si-Fe-Al-V系の場合、第2の相としてFeAlSiが生成するが、Alの投入量が26原子%未満だとFe元素が過剰となり、FeAlSiより300℃以上の高い温度でFeSiが析出しやすくなる。その結果、Si相よりなる第1の相を含む相の粗大化を招いて高い容量維持率を確保しにくい。つまり、所定量の元素を有することで高い容量維持率を確保しやすくなる。 When Al is used as an input element, if the input amount of Al is 26 atomic% or more, the second phase is sufficiently generated, and excess Al is precipitated as a metallic Al phase. For example, in the case of the Si—Fe—Al—V system, FeAl 3 Si 2 is generated as the second phase. However, if the amount of Al input is less than 26 atomic%, the Fe element becomes excessive, which is 300% higher than FeAl 3 Si 2. FeSi 2 is likely to be precipitated at a high temperature of not lower than ° C. As a result, the phase including the first phase made of Si phase is coarsened, and it is difficult to ensure a high capacity retention rate. That is, it becomes easy to ensure a high capacity maintenance rate by having a predetermined amount of elements.
 (本願発明の別の形態にかかる負極活物質材料の主な製法)
まず、Siと、Alと、Siと化合物を形成可能な元素群Mとを含む溶湯を作成する。この溶湯にさらに元素群Dを追加する。この溶湯を、1000K/s以上の速度で冷却すると、組成に応じて第3の相(DSi)の析出と、それに続く第1の相(Si相)の析出が起き、さらに低融点の第2の相(例えばMがFeの場合はFeAlSi)が析出する。
(Main production method of negative electrode active material according to another embodiment of the present invention)
First, a molten metal containing Si, Al, and an element group M capable of forming a compound with Si is prepared. An element group D is further added to the molten metal. When this molten metal is cooled at a rate of 1000 K / s or more, precipitation of the third phase (DSi 2 ) and subsequent precipitation of the first phase (Si phase) occur depending on the composition, and further the low melting point first Two phases (for example, FeAl 3 Si 2 when M is Fe) are precipitated.
 負極活物質は、単ロール法、双ロール法、溶融紡糸法、ガスアトマイズ法、および、水アトマイズ法のいずれかの方法で溶湯を冷却した後、得られたリボン状、板状、糸状、球状またはフレーク状の合金を粉砕・分級することで負極活物質を形成してもよい。Siは、BやPなど含むSi固溶体であっても良い。 The negative electrode active material is obtained by cooling the molten metal by any one of a single roll method, a twin roll method, a melt spinning method, a gas atomizing method, and a water atomizing method. The negative electrode active material may be formed by pulverizing and classifying a flaky alloy. Si may be a Si solid solution containing B, P, or the like.
 溶湯に用いる元素群Dは、Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Dy、Sm、Pr、Y、Zr、Nb、Mo、Hf、Ta、W、Re、Os、Ir、Ru、Rh、およびBaより選ばれる少なくとも1種の元素で、元素群MはV、Ta、Mo、Nb、W、Ti、Zr、Cr(ただし、元素群Mと元素群Dから選ばれる元素は同一ではない元素とする)が好ましい。
 さらに、SiO、TiO、Al、ZnO、CaO、MgOの化合物は、それぞれ融点が、1650℃、1640℃、2054℃、1975℃、2613℃、2852℃と高いため、第1の相や第2の相を構成する原料を溶解する段階で、同時に溶解しなくてもよい。SiO、TiO、Al、ZnO、CaO、MgOの化合物は、2~200nmの一次粒子を用い、ハンドリング性向上のために10~200μmの造粒体として取扱う。SiO、TiO、Al、ZnO、CaO、MgOの化合物は造粒体の状態で溶湯に投入し、溶湯中で一次粒子が均一に分散して溶湯中の元素群と混合できればよい。
The element group D used for the molten metal is Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Dy, Sm, Pr, Y, Zr, Nb, Mo, At least one element selected from Hf, Ta, W, Re, Os, Ir, Ru, Rh, and Ba, and the element group M is V, Ta, Mo, Nb, W, Ti, Zr, Cr (however, The element selected from the element group M and the element group D is preferably not the same element).
Furthermore, since the compounds of SiO 2 , TiO 2 , Al 2 O 3 , ZnO, CaO, and MgO have high melting points of 1650 ° C., 1640 ° C., 2054 ° C., 1975 ° C., 2613 ° C., and 2852 ° C., respectively, It is not necessary to dissolve at the same time in the stage of dissolving the raw materials constituting the phase and the second phase. The SiO 2 , TiO 2 , Al 2 O 3 , ZnO, CaO, and MgO compounds use primary particles of 2 to 200 nm and are handled as a granulated material of 10 to 200 μm in order to improve handling properties. The compound of SiO 2 , TiO 2 , Al 2 O 3 , ZnO, CaO, and MgO may be added to the molten metal in a granulated state, and the primary particles may be uniformly dispersed in the molten metal and mixed with the elements in the molten metal. .
 それぞれの元素(元素群)の組成比としては、Siは44~71原子%、Alは26~45原子%、元素群Dは2~12原子%、元素群Mは1~10原子%が好ましい。
 Siが44原子%以上であると、放電容量が十分に確保できる点で、71原子%以下であると、結晶が粗大になることを防ぎ、容量維持率を保つことができる点で好ましい。
 Alが26原子%以上であると、結晶相サイズを適切に調整することができ、容量維持率を保つことができる点で、45原子%以下であると、Siの添加量を担保でき、放電容量が確保できる点で好ましい。
 元素群Dが2原子%以上、12原子%以下であると、通常最大量となるSiの添加量を調整することができ、容量維持率、放電容量のバランスを保つことができる点で好ましい。
 元素群Mが一定量存在すると、Siと個々の元素Dとの二元状態図から定義される過共晶領域を確保することができる結果、Siより高い温度でシリサイドの析出が始まり、第3の相の主成分となるシリサイド(DSi)を好適に形成できる点で好ましい。
The composition ratio of each element (element group) is preferably 44 to 71 atomic% for Si, 26 to 45 atomic% for Al, 2 to 12 atomic% for Element Group D, and 1 to 10 atomic% for Element Group M. .
When Si is 44 atomic% or more, the discharge capacity can be sufficiently secured, and when it is 71 atomic% or less, the crystal is prevented from becoming coarse and the capacity maintenance ratio can be maintained.
When Al is 26 atomic% or more, the crystal phase size can be adjusted appropriately, and the capacity retention rate can be maintained. When it is 45 atomic% or less, the amount of Si added can be secured, and the discharge can be ensured. This is preferable in that capacity can be secured.
When the element group D is 2 atom% or more and 12 atom% or less, it is preferable in that the addition amount of Si, which is usually the maximum amount, can be adjusted, and the balance between the capacity retention rate and the discharge capacity can be maintained.
When a certain amount of the element group M exists, a hypereutectic region defined from a binary phase diagram of Si and the individual elements D can be secured. As a result, the deposition of silicide starts at a temperature higher than that of Si. This is preferable in that silicide (DSi 2 ) serving as a main component of the phase can be suitably formed.
 (非水電解質二次電池用負極の構成)
 非水電解質二次電池用負極は、集電体の片面または両面に活物質層を有する。活物質層は、負極活物質1と、結着剤などを含むスラリーを塗布して形成される。
(Configuration of negative electrode for non-aqueous electrolyte secondary battery)
The negative electrode for nonaqueous electrolyte secondary batteries has an active material layer on one or both sides of the current collector. The active material layer is formed by applying a slurry containing the negative electrode active material 1 and a binder.
 集電体は、銅、ニッケル、ステンレスからなる群より選ばれた少なくとも1種の金属からなる箔である。それぞれを単独で用いてもよいし、それぞれの合金でもよい。厚さは4μm~35μmが好ましく、さらに6μm~18μmがより好ましい。 The current collector is a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel. Each may be used alone or may be an alloy of each. The thickness is preferably 4 μm to 35 μm, more preferably 6 μm to 18 μm.
 結着剤は、ポリイミド(PI)、ポリベンゾイミダゾール(PBI)、ポリアミドイミド、ポリアミド、スチレン・ブタジエン・ゴム(SBR)、ポリフッ化ビニリデン(PVdF)、カルボキシルメチルセルロース(CMC)、ポリアクリル酸からなる群より選ばれた1種以上である。 The binder is made of polyimide (PI), polybenzimidazole (PBI), polyamideimide, polyamide, styrene-butadiene rubber (SBR), polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), polyacrylic acid One or more selected.
 結着剤は、溶媒に溶解した状態や、エマルションとして分散した状態でスラリーに添加される。スラリー塗布後に、結着剤が負極活物質1を集電体の上に結着する。 The binder is added to the slurry in a state dissolved in a solvent or dispersed as an emulsion. After the slurry application, the binder binds the negative electrode active material 1 onto the current collector.
 また、導電助剤を活物質層中に加えてもよい。導電助剤を添加することで、負極の活物質層の導電性が良くなり、充放電が行いやすくなる。導電助剤は、炭素、銅、スズ、亜鉛、ニッケル、銀などからなる群より選ばれた少なくとも1種の導電性物質からなる粉末である。炭素、銅、スズ、亜鉛、ニッケル、銀の単体の粉末でもよいし、それぞれの合金の粉末でもよい。導電助剤の形状は球形、樹枝状、数珠状、不定形、鱗片状、線状など各種の形状を用いることができる。例えば、炭素の場合、ファーネスブラックやアセチレンブラック、鱗片状黒鉛、カーボンナノチューブ、カーボンナノホーン、フラーレン、グラフェンシートなどの一般的なカーボンブラックを使用できる。 Also, a conductive aid may be added to the active material layer. By adding a conductive additive, the conductivity of the active material layer of the negative electrode is improved and charging / discharging is facilitated. The conductive assistant is a powder made of at least one conductive material selected from the group consisting of carbon, copper, tin, zinc, nickel, silver and the like. A single powder of carbon, copper, tin, zinc, nickel, or silver may be used, or a powder of each alloy may be used. Various shapes such as a spherical shape, a dendritic shape, a bead shape, an indeterminate shape, a scale shape, and a linear shape can be used for the conductive auxiliary agent. For example, in the case of carbon, general carbon black such as furnace black, acetylene black, scaly graphite, carbon nanotube, carbon nanohorn, fullerene, or graphene sheet can be used.
 (非水電解質二次電池用負極の製造方法)
 まず、ミキサーに、スラリー原料を投入し、混練してスラリーを形成する。スラリー原料は、本発明の実施形態に係る負極活物質1、導電助剤、結着剤、増粘剤、溶媒などである。
(Method for producing negative electrode for nonaqueous electrolyte secondary battery)
First, a slurry raw material is put into a mixer and kneaded to form a slurry. The slurry raw material is the negative electrode active material 1, the conductive auxiliary agent, the binder, the thickener, the solvent, and the like according to the embodiment of the present invention.
 スラリー中の固形分において、負極活物質25~95重量%、導電助剤0~70重量%、結着剤1~30重量%、増粘剤0~25重量%を含む。好ましくは、固形分で、負極活物質50~90質量%。導電助剤5~30質量%、結着剤5~25質量%の割合である。結着剤が少なすぎると接着性が低下して、造粒体および電極の形状を維持するのが困難である。また、結着剤が多すぎると導電性が下がってしまい充放電が難しくなる。 The solid content in the slurry contains 25 to 95% by weight of the negative electrode active material, 0 to 70% by weight of the conductive aid, 1 to 30% by weight of the binder, and 0 to 25% by weight of the thickener. Preferably, the negative electrode active material is 50 to 90% by mass in solid content. The ratio is 5 to 30% by mass of the conductive additive and 5 to 25% by mass of the binder. When there are too few binders, adhesiveness will fall and it will be difficult to maintain the shape of a granulated body and an electrode. Moreover, when there are too many binders, electroconductivity will fall and charging / discharging will become difficult.
 ミキサーは、スラリーの調製に用いられる一般的な混練機を用いることができ、ニーダー、撹拌機、分散機、混合機などと呼ばれるスラリーを調製可能な装置を用いてもよい。溶媒としてN-メチル-2-ピロリドンを用いることができる。 As the mixer, a general kneader used for slurry preparation can be used, and a device called a kneader, a stirrer, a disperser, a mixer, or the like that can prepare a slurry may be used. N-methyl-2-pyrrolidone can be used as a solvent.
 次に、例えば、コーターを用いて、集電体の片面に、スラリーを塗布する。コーターは、スラリーを集電体に塗布可能な一般的な塗工装置を用いることができ、例えばロールコーターやドクターブレードによるコーター、コンマコーター、ダイコーターなどである。 Next, for example, using a coater, slurry is applied to one side of the current collector. As the coater, a general coating apparatus capable of applying the slurry to the current collector can be used. Examples of the coater include a roll coater, a doctor blade coater, a comma coater, and a die coater.
 調製したスラリーを集電体に均一に塗布し、その後、50~150℃程度で乾燥し、厚みを調整するため、ロールプレスを通す。そして、ポリイミドを結着剤67に使用する場合など、必要に応じて150℃~350℃で焼成して、非水電解質二次電池用負極61を得る。必要に応じて、活物質層65を集電体63の両面に形成しても良い。 調製 Apply the prepared slurry uniformly to the current collector, then dry at about 50 to 150 ° C and pass through a roll press to adjust the thickness. Then, when using polyimide as the binder 67, the negative electrode 61 for a nonaqueous electrolyte secondary battery is obtained by firing at 150 ° C. to 350 ° C. as necessary. The active material layer 65 may be formed on both surfaces of the current collector 63 as necessary.
 (非水電解質二次電池の作製)
 非水電解質二次電池に用いる負極としては、本発明の実施形態に係る非水電解質二次電池用負極を用いる。
(Preparation of non-aqueous electrolyte secondary battery)
As the negative electrode used for the nonaqueous electrolyte secondary battery, the negative electrode for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention is used.
 (非水電解質二次電池用正極の作製)
 非水電解質二次電池用の正極として、正極活物質、導電助剤、結着剤および溶媒を混合して得られた正極活物質の組成物を、アルミ箔などの金属集電体上に直接塗布・乾燥し、正極を作製する。
(Preparation of positive electrode for nonaqueous electrolyte secondary battery)
As a positive electrode for a non-aqueous electrolyte secondary battery, a composition of a positive electrode active material obtained by mixing a positive electrode active material, a conductive additive, a binder and a solvent is directly applied on a metal current collector such as an aluminum foil. Apply and dry to produce the positive electrode.
 前記正極活物質としては、一般的に使われるものであればいずれも使用可能であり、例えばLiCoO、LiMn、LiMnO、LiNiO、LiCo1/3Ni1/3Mn1/3、LiFePOなどの化合物である。 Any positive electrode active material can be used as long as it is generally used. For example, LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3. Compounds such as O 2 and LiFePO 4 .
 導電助剤としては、例えばカーボンブラックを使用し、結着剤としては、例えばポリフッ化ビニリデン(PVdF)、水溶性アクリル系バインダーを使用し、溶媒としては、N-メチル-2-ピロリドン(NMP)、水などを使用する。このとき、正極活物質、導電助剤、結着剤および溶媒の含量は、非水電解質二次電池で通常に使用するレベルである。 For example, carbon black is used as the conductive assistant, polyvinylidene fluoride (PVdF), a water-soluble acrylic binder is used as the binder, and N-methyl-2-pyrrolidone (NMP) is used as the solvent. Use water, etc. At this time, the contents of the positive electrode active material, the conductive additive, the binder, and the solvent are the levels that are normally used in the non-aqueous electrolyte secondary battery.
 セパレータとしては、正極と負極の電子伝導を絶縁する機能を有し、非水電解質二次電池で通常的に使われるものであればいずれも使用可能である。例えば、微多孔性のポリオレフィンフィルム、多孔質のアラミド樹脂フィルム、多孔質のセラミックス、不織布などを使用できる。 As the separator, any separator can be used as long as it has a function of insulating electronic conduction between the positive electrode and the negative electrode and is normally used in a nonaqueous electrolyte secondary battery. For example, a microporous polyolefin film, a porous aramid resin film, a porous ceramic, a nonwoven fabric, etc. can be used.
 非水電解質二次電池、Liポリマー電池などにおける電解液および電解質には、有機電解液(非水系電解液)、無機固体電解質、高分子固体電解質等が使用できる。
 有機電解液の溶媒の具体例として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等のカーボネート;ジエチルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル;ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ―ブチロラクトン、ジオキソラン、4-メチルジオキソラン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、ジメチルクロロベンゼン、ニトロベンゼン等の非プロトン性溶媒、あるいはこれらの溶媒のうちの2種以上を混合した混合溶媒が挙げられる。
Organic electrolyte (non-aqueous electrolyte), inorganic solid electrolyte, polymer solid electrolyte, etc. can be used for the electrolyte and electrolyte in non-aqueous electrolyte secondary batteries, Li polymer batteries, and the like.
Specific examples of the organic electrolyte solvent include carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate; diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di Ethers such as butyl ether and diethylene glycol dimethyl ether; aprotic such as benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethylchlorobenzene, nitrobenzene Solvent, or two or more of these solvents Mixed solvent of thereof.
 有機電解液の電解質には、LiPF、LiClO、LiBF、LiAlO、LiAlCl、LiSbF、LiSCN、LiCl、LiCFSO、LiCFCO、LiCSO、LiN(CFSO等のリチウム塩からなる電解質の1種または2種以上を混合させたものを用いることができる。 The electrolyte of the organic electrolyte includes LiPF 6 , LiClO 4 , LiBF 4 , LiAlO 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) A mixture of one or more electrolytes made of a lithium salt such as 2 can be used.
 また、上記の有機電解液に代えて固体状のリチウムイオン伝導体を用いることができる。たとえばポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエチレンイミン等からなるポリマーに前記リチウム塩を混合した固体高分子電解質や、高分子材料に電解液を含浸させゲル状に加工した高分子ゲル電解質を用いることができる。 Also, a solid lithium ion conductor can be used in place of the organic electrolyte. For example, a solid polymer electrolyte in which the lithium salt is mixed with a polymer made of polyethylene oxide, polypropylene oxide, polyethyleneimine, or the like, or a polymer gel electrolyte in which a polymer material is impregnated with an electrolytic solution and processed into a gel shape can be used.
 さらに、リチウム窒化物、リチウムハロゲン化物、リチウム酸素酸塩、LiSiO、LiSiO-LiI-LiOH、LiPO-LiSiO、LiSiS、LiPO-LiS-SiS、硫化リン化合物などの無機材料を無機固体電解質として用いてもよい。 Further, lithium nitride, lithium halide, lithium oxyacid salt, Li 4 SiO 4 , Li 4 SiO 4 —LiI—LiOH, Li 3 PO 4 —Li 4 SiO 4 , Li 2 SiS 3 , Li 3 PO 4 —Li An inorganic material such as 2 S—SiS 2 or a phosphorus sulfide compound may be used as the inorganic solid electrolyte.
 (非水電解質二次電池の組立て)
 前述したような正極と負極との間にセパレータを配置して、電池素子を形成する。このような電池素子を巻回、または積層して円筒形の電池ケースや角形の電池ケースに入れた後、電解液を注入して、非水電解質二次電池とする。
(Assembling of non-aqueous electrolyte secondary battery)
A battery element is formed by disposing a separator between the positive electrode and the negative electrode as described above. After winding or stacking such battery elements into a cylindrical battery case or a rectangular battery case, an electrolytic solution is injected to obtain a nonaqueous electrolyte secondary battery.
 本発明の非水電解質二次電池の一例(断面図)を図8に示す。非水電解質二次電池71は、正極73、負極75を、セパレータ77を介して、セパレータ―正極―セパレータ―負極の順に積層配置し、正極73が内側になるように巻回して極板群を構成し、これを電池缶79内に挿入する。そして正極73は正極リード81を介して正極端子83に、負極75は負極リード85を介して電池缶79にそれぞれ接続し、非水電解質二次電池71内部で生じた化学エネルギーを電気エネルギーとして外部に取り出し得るようにする。次いで、電池缶79内に電解質87を極板群を覆うように充填した後、電池缶79の上端(開口部)に、円形蓋板とその上部の正極端子83からなり、その内部に安全弁機構を内蔵した封口体89を、環状の絶縁ガスケットを介して取り付けて、本発明の非水電解質二次電池71を製造することができる。 FIG. 8 shows an example (cross-sectional view) of the nonaqueous electrolyte secondary battery of the present invention. The non-aqueous electrolyte secondary battery 71 includes a positive electrode 73 and a negative electrode 75 that are stacked in the order of separator-positive electrode-separator-negative electrode via a separator 77, and wound so that the positive electrode 73 is on the inner side. Configure and insert it into the battery can 79. The positive electrode 73 is connected to the positive electrode terminal 83 via the positive electrode lead 81, and the negative electrode 75 is connected to the battery can 79 via the negative electrode lead 85, and the chemical energy generated inside the nonaqueous electrolyte secondary battery 71 is externally used as electric energy. To be able to take out. Next, after filling the battery can 79 with the electrolyte 87 so as to cover the electrode plate group, the upper end (opening portion) of the battery can 79 is composed of a circular lid plate and a positive electrode terminal 83 on the upper portion thereof, and a safety valve mechanism is provided therein. The non-aqueous electrolyte secondary battery 71 of the present invention can be manufactured by attaching the sealing body 89 containing the internal structure via an annular insulating gasket.
 (本発明の実施形態に係る非水電解質二次電池の効果)
 本発明の実施形態に係る負極活物質1を用いる非水電解質二次電池は、負極活物質1中に含まれるシリコン相3が、炭素よりも単位体積、および単位重量あたりの容量の高いシリコンを含むため、従来の非水電解質二次電池よりも容量が大きい。
(Effect of the nonaqueous electrolyte secondary battery according to the embodiment of the present invention)
In the nonaqueous electrolyte secondary battery using the negative electrode active material 1 according to the embodiment of the present invention, the silicon phase 3 contained in the negative electrode active material 1 is made of silicon having a higher unit volume and unit capacity than carbon. Therefore, the capacity is larger than that of the conventional nonaqueous electrolyte secondary battery.
 また、本発明の実施形態に係る負極活物質1は、微細なシリコン相3が第1のシリサイド相5または第2のシリサイド相7に埋設されているため、充放電に伴うシリコンの微粉化が抑制され、サイクル特性が向上する。また、シリコンと電解液とが直接接触せず、電解液とリチウムの副反応により、シリコン相3の表面にSEIが過剰に形成されることを防ぐことができる。そのため、負極活物質1を用いた負極はクーロン効率が高いため、本発明の実施形態に係る非水電解質二次電池は、長寿命である。 Further, in the negative electrode active material 1 according to the embodiment of the present invention, since the fine silicon phase 3 is embedded in the first silicide phase 5 or the second silicide phase 7, silicon fine powder generation due to charge / discharge is prevented. It is suppressed and the cycle characteristics are improved. Further, silicon and the electrolytic solution are not in direct contact, and it is possible to prevent SEI from being excessively formed on the surface of the silicon phase 3 due to a side reaction between the electrolytic solution and lithium. Therefore, since the negative electrode using the negative electrode active material 1 has high Coulomb efficiency, the nonaqueous electrolyte secondary battery according to the embodiment of the present invention has a long life.
 以下、本発明について実施例および比較例を用いて具体的に説明する。
[実施例1]
 (負極活物質の作製)
 シリコンとバナジウムと鉄とアルミニウムの粒状の原料を重量比でSi:V:Fe:Al=62:7:12:19になるように混合し、真空アーク溶解装置(日新技研株式会社製NEV-AD03)で母合金を作製した。その後、5mm程度のサイズに粉砕した合金を液体急冷凝固装置(日新技研株式会社製NEV-A1)内のるつぼに投入し、高周波コイルで1650℃まで加熱して溶解させた後、その溶湯を図5に示す単ロール急冷装置の銅製単ロールを用いて急冷することで薄片状の負極活物質を得た。バナジウムが元素Mに対応する。バナジウムとシリコンがVSiを作り第1のシリサイドを形成し、鉄とシリコンとアルミニウムがFeAlSiを作り第2のシリサイドを形成する。実施例1の組成では、アルミニウムを過剰に添加しているので、シリサイドを形成しない金属状のアルミニウムの相が生成する。
 単ロールで急冷凝固して得られた薄片状の負極活物質を、遊星ボールミルで粉砕し、目開き20μmのふるいを通して粉末状の負極活物質材料を得た。
Hereinafter, the present invention will be specifically described using examples and comparative examples.
[Example 1]
(Preparation of negative electrode active material)
A granular raw material of silicon, vanadium, iron, and aluminum is mixed so that the weight ratio is Si: V: Fe: Al = 62: 7: 12: 19, and a vacuum arc melting apparatus (NEV- manufactured by Nisshin Giken Co., Ltd.) A master alloy was prepared by AD03). Thereafter, the alloy pulverized to a size of about 5 mm is put into a crucible in a liquid rapid solidification apparatus (NEV-A1 manufactured by Nisshin Giken Co., Ltd.), heated to 1650 ° C. with a high-frequency coil, and then melted. A flaky negative electrode active material was obtained by quenching using a copper single roll of the single roll quenching apparatus shown in FIG. Vanadium corresponds to the element M. Vanadium and silicon form VSi 2 to form a first silicide, and iron, silicon, and aluminum form FeAl 3 Si 2 to form a second silicide. In the composition of Example 1, since aluminum is excessively added, a metallic aluminum phase that does not form silicide is generated.
The flaky negative electrode active material obtained by rapid solidification with a single roll was pulverized by a planetary ball mill, and a powdered negative electrode active material was obtained through a sieve having an opening of 20 μm.
(非水電解質二次電池用負極の作製)
(i)負極スラリーの調製
 負極活物質材料70質量部とカーボンナノチューブ分散液のカーボンナノチューブ量が18質量部となる比率でミキサーに投入した。さらに結着剤としてNメチルピロリドンを溶剤としたポリベンゾイミダゾールを固形分換算で12質量部の割合で混合してスラリーを作製した。
(ii)負極の作製
 調製したスラリーを自動塗工装置のドクターブレードを用いて、厚さ10μmの集電体用電解銅箔(古河電気工業(株)製、NC-WS)上に15μmの厚みで塗布し、100℃で乾燥させた後、プレスによる調厚工程を経た後、330℃で2時間の熱処理工程を経て、非水電解質二次電池用負極を製造した。
(Preparation of negative electrode for non-aqueous electrolyte secondary battery)
(I) Preparation of Negative Electrode Slurry 70 parts by mass of the negative electrode active material and the amount of carbon nanotubes in the carbon nanotube dispersion were charged into a mixer at a ratio of 18 parts by mass. Furthermore, polybenzimidazole using N-methylpyrrolidone as a solvent as a binder was mixed at a ratio of 12 parts by mass in terms of solid content to prepare a slurry.
(Ii) Production of negative electrode Using the doctor blade of the automatic coating apparatus, the prepared slurry was 15 μm thick on a 10 μm thick electrolytic copper foil for current collector (Furukawa Electric Co., Ltd., NC-WS). After coating at 100 ° C. and drying at 100 ° C., after passing through a thickness adjustment step by press, a heat treatment step at 330 ° C. for 2 hours was performed to produce a negative electrode for a non-aqueous electrolyte secondary battery.
 (サイクル特性の評価)
 非水電解質二次電池用負極と、1.3mol/LのLiPFを含むエチレンカーボネート、ジエチルカーボネート、エチルメチルカーボネートの混合溶液にビニレンカーボネートを添加した電解液と、金属Li箔対極を用いてリチウムイオン二次電池を構成し、充放電特性を調べた。
 まず、25℃環境下において、電流値を0.1C、電圧値を0.02V(vs.Li/Li)まで定電流定電圧条件で充電を行い、電流値が0.05Cに低下した時点で充電を停止した。次いで、電流値0.1Cの条件で、電圧が1.5V(vs.Li/Li)となるまで放電を行った。なお、1Cとは、1時間で満充電できる電流値である。また、充電と放電はともに25℃環境下において行った。次いで、0.2Cでの充放電速度で上記充放電を50サイクルまで繰り返した。特性の評価は、初回の放電容量と、初回放電容量に対する50サイクル後の放電容量を百分率で示す容量維持率によって行った。
(Evaluation of cycle characteristics)
A negative electrode for a non-aqueous electrolyte secondary battery, an electrolytic solution obtained by adding vinylene carbonate to a mixed solution of ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate containing 1.3 mol / L LiPF 6 , and lithium using a metal Li foil counter electrode An ion secondary battery was constructed and the charge / discharge characteristics were examined.
First, in a 25 ° C. environment, charging was performed under constant current and constant voltage conditions until the current value was 0.1 C and the voltage value was 0.02 V (vs. Li / Li + ), and the current value was reduced to 0.05 C. Stopped charging. Next, discharging was performed under the condition of a current value of 0.1 C until the voltage became 1.5 V (vs. Li / Li + ). 1C is a current value that can be fully charged in one hour. Both charging and discharging were performed in a 25 ° C. environment. Next, the above charge / discharge was repeated up to 50 cycles at a charge / discharge rate of 0.2C. The evaluation of the characteristics was performed based on the initial discharge capacity and the capacity maintenance ratio indicating the discharge capacity after 50 cycles with respect to the initial discharge capacity as a percentage.
 [比較例1]
 (負極活物質の作製)
 シリコン粉末と鉄粉末とアルミニウム粉末を重量比でSi:Fe:Al=68:12:20になるように混合し、乾燥させた混合粉末をるつぼ内で1500℃まで加熱して溶解させた後、その溶湯を図5の単ロール急冷装置を用いて急冷することで負極活物質を得た。
これ以外の工程は、実施例1と同様にした。
[Comparative Example 1]
(Preparation of negative electrode active material)
After mixing silicon powder, iron powder and aluminum powder in a weight ratio such that Si: Fe: Al = 68: 12: 20, the dried mixed powder was heated to 1500 ° C. in a crucible and dissolved. The molten metal was quenched using the single roll quenching device of FIG. 5 to obtain a negative electrode active material.
The other steps were the same as in Example 1.
 (負極活物質の構成の評価)
 図17と図19に示すように、実施例1と比較例1に係る負極活物質の断面を、走査型電子顕微鏡で二次電子像を観察した。図17に示すように、実施例1に係る負極活物質の断面においては、黒く見える、外径または幅10~300nm程度のシリコン相91が、白く見えるシリサイド相93に埋設されている事がわかる。また、外径または幅10~300nm程度のシリコン相91の合金全体に占める割合は、断面を観察したところ50体積%以上であった。さらに、図18に示すようにXRD解析を行い、結晶相の同定を行った。その結果、シリコン相、バナジウムシリサイドVSiの第1のシリサイド相、3元系シリサイド(FeAlSi)よりなる第2のシリサイド相、アルミニウム相が確認された。この活物質のSi相は約43wt%であった。また、電極評価の結果、初回放電容量1480mAh/gを示した。50サイクル後の容量維持率は86%と、優れたサイクル特性を示した。
(Evaluation of composition of negative electrode active material)
As shown in FIGS. 17 and 19, secondary electron images of the cross sections of the negative electrode active materials according to Example 1 and Comparative Example 1 were observed with a scanning electron microscope. As shown in FIG. 17, in the cross section of the negative electrode active material according to Example 1, it can be seen that the silicon phase 91 that looks black and has an outer diameter or width of about 10 to 300 nm is embedded in the silicide phase 93 that looks white. . The proportion of the silicon phase 91 having an outer diameter or width of about 10 to 300 nm in the entire alloy was 50% by volume or more when the cross section was observed. Further, XRD analysis was performed as shown in FIG. 18 to identify the crystal phase. As a result, a silicon phase, a first silicide phase of vanadium silicide VSi 2, a second silicide phase made of ternary silicide (FeAl 3 Si 2 ), and an aluminum phase were confirmed. The Si phase of this active material was about 43 wt%. As a result of the electrode evaluation, an initial discharge capacity of 1480 mAh / g was shown. The capacity retention after 50 cycles was 86%, indicating excellent cycle characteristics.
 さらに、XRD解析によるシリコン相の定量によると、放電容量はほぼSi相の重量比率に比例しており、アルミニウムやシリサイドの容量は無視できるほどに小さかった。 Furthermore, according to the quantification of the silicon phase by XRD analysis, the discharge capacity was almost proportional to the weight ratio of the Si phase, and the capacity of aluminum or silicide was negligibly small.
 一方で、図19に示すように、比較例1に係る負極活物質の断面では、黒く見える、外径または幅400nm以上のシリコン相91が連続して形成されており、実施例1に比べてシリコン相の大きさが大きいことがわかった。外径または幅10~300nm程度のシリコン相のシリコン相の全体に占める割合は、50体積%未満であった。また、図20に示すようにXRD解析を行い、結晶相の同定を行った。その結果、シリコン相、3元系シリサイド(FeAlSi)よりなるシリサイド相、アルミニウム相が確認された。比較例1の活物質のSi相は約60wt%であり、電極評価の結果、初回放電容量1530mAh/gの十分な容量を示したが、比較例1の50サイクル後の容量維持率は78%となり、実施例1よりサイクル特性が劣ることが分かった。図21は、比較例1の活物質を用いた電極の初回充放電(1サイクル)後の負極活物質の断面の走査型電子顕微鏡写真である。図21の暗い部分91がシリコン相、比較的明るい部分93がシリサイド(FeAlSi)相である。約400nm以上のサイズのシリコン相を起点にクラックが観察される。これは、外径または幅が400nm以上の連続したシリコン相が充放電に伴い、微粉化が生じて電極から活物質の一部が脱落したり、クラックにより生じたシリコンの新生面に電解液との副反応により生じるSEIが生成して、容量維持率が低下したものと考えられる。 On the other hand, as shown in FIG. 19, in the cross section of the negative electrode active material according to Comparative Example 1, a silicon phase 91 that looks black and has an outer diameter or a width of 400 nm or more is continuously formed. It was found that the silicon phase was large. The ratio of the silicon phase having an outer diameter or width of about 10 to 300 nm to the entire silicon phase was less than 50% by volume. Further, XRD analysis was performed as shown in FIG. 20 to identify the crystal phase. As a result, a silicon phase, a silicide phase composed of ternary silicide (FeAl 3 Si 2 ), and an aluminum phase were confirmed. The Si phase of the active material of Comparative Example 1 was about 60 wt%, and the electrode evaluation showed a sufficient capacity of an initial discharge capacity of 1530 mAh / g. However, the capacity maintenance rate after 50 cycles of Comparative Example 1 was 78%. Thus, it was found that the cycle characteristics were inferior to those of Example 1. FIG. 21 is a scanning electron micrograph of the cross section of the negative electrode active material after the first charge / discharge (one cycle) of the electrode using the active material of Comparative Example 1. The dark portion 91 in FIG. 21 is the silicon phase, and the relatively bright portion 93 is the silicide (FeAl 3 Si 2 ) phase. Cracks are observed starting from a silicon phase having a size of about 400 nm or more. This is because the continuous silicon phase having an outer diameter or width of 400 nm or more is charged and discharged, so that fine powder is generated and a part of the active material is dropped from the electrode, or the new surface of silicon generated by the crack is subjected to an electrolyte solution. It is considered that SEI generated by the side reaction was generated and the capacity retention rate was lowered.
 次に、本発明の別の実施形態について、実施例を用いて具体的に説明する。 Next, another embodiment of the present invention will be specifically described using examples.
 [実施例11]
 (負極活物質の作製)
 シリコンとバナジウムと鉄とアルミニウムのインゴットを原子比でSi:V:Fe:Al=66:3:4:27になるように混合し、真空アーク溶解装置(日新技研株式会社製NEV-AD03)で母合金を作製した。その後、5mm程度の粒径に粉砕した合金を液体急冷凝固装置(日新技研株式会社製NEV-A1)内のるつぼに投入し、高周波コイルで1650℃まで加熱して溶解させた後、その溶湯を単ロール急冷装置の銅製単ロールを用いて電気化学的にLi伝導性を有する第2の相が析出する温度(1000℃以下)に急冷することで薄片状の負極活物質を得た。本実施例ではバナジウムが元素Dに対応する。バナジウムとシリコンが第3の相に該当するVSiを作り、鉄とシリコンとアルミニウムが第2の相に該当するFeAlSiを作る。実施例1の組成では、アルミニウムを多く添加しているので、第4の相として金属アルミニウムの相が生成する。単ロールで急冷凝固して得られた薄片状の負極活物質を、遊星ボールミルで粉砕し、目開き20μmのふるいを通して粉末状の負極活物質材料を得た。負極活物質材料の組成比率は、ICP(Inductively Coupled Plasma)等の発光分光分析により確認した。
[Example 11]
(Preparation of negative electrode active material)
Silicon, vanadium, iron, and aluminum ingots are mixed at an atomic ratio of Si: V: Fe: Al = 66: 3: 4: 27, and a vacuum arc melting apparatus (NEV-AD03 manufactured by Nisshin Giken Co., Ltd.) A mother alloy was prepared. Thereafter, the alloy pulverized to a particle size of about 5 mm is put into a crucible in a liquid rapid solidification apparatus (NEV-A1 manufactured by Nisshin Giken Co., Ltd.), heated to 1650 ° C. with a high-frequency coil, and then melted. Was cooled rapidly to a temperature (1000 ° C. or lower) at which a second phase having Li conductivity was electrochemically deposited using a copper single roll of a single roll quenching apparatus to obtain a flaky negative electrode active material. In this embodiment, vanadium corresponds to the element D. Vanadium and silicon make VSi 2 corresponding to the third phase, and iron, silicon and aluminum make FeAl 3 Si 2 corresponding to the second phase. In the composition of Example 1, since a large amount of aluminum is added, a metallic aluminum phase is generated as the fourth phase. The flaky negative electrode active material obtained by rapid solidification with a single roll was pulverized by a planetary ball mill, and a powdered negative electrode active material was obtained through a sieve having an opening of 20 μm. The composition ratio of the negative electrode active material was confirmed by emission spectroscopic analysis such as ICP (Inductively Coupled Plasma).
(非水電解質二次電池用負極の作製)
(i)負極スラリーの調製
 負極活物質材料70質量部とカーボンナノチューブ分散液のカーボンナノチューブ量が18質量部となる比率でミキサーに投入した。さらに結着剤としてN-メチルピロリドンを溶剤としたポリベンゾイミダゾールを固形分換算で12質量部の割合で混合してスラリーを作製した。
(ii)負極の作製
 調製したスラリーを自動塗工装置のドクターブレードを用いて、厚さ10μmの集電体用電解銅箔(古河電気工業(株)製、NC-WS)上に15μmの厚みで塗布し、100℃で乾燥させた後、プレスによる調厚工程を経た後、330℃で2時間の熱処理工程を経て、非水電解質二次電池用負極を製造した。
(Preparation of negative electrode for non-aqueous electrolyte secondary battery)
(I) Preparation of Negative Electrode Slurry 70 parts by mass of the negative electrode active material and the amount of carbon nanotubes in the carbon nanotube dispersion were charged into a mixer at a ratio of 18 parts by mass. Further, a polybenzimidazole containing N-methylpyrrolidone as a solvent as a binder was mixed at a ratio of 12 parts by mass in terms of solid content to prepare a slurry.
(Ii) Production of negative electrode Using the doctor blade of the automatic coating apparatus, the prepared slurry was 15 μm thick on a 10 μm thick electrolytic copper foil for current collector (Furukawa Electric Co., Ltd., NC-WS). After coating at 100 ° C. and drying at 100 ° C., after passing through a thickness adjustment step by press, a heat treatment step at 330 ° C. for 2 hours was performed to produce a negative electrode for a non-aqueous electrolyte secondary battery.
 (サイクル特性の評価)
 非水電解質二次電池用負極と、1.3mol/LのLiPFを含むエチレンカーボネート、ジエチルカーボネート、エチルメチルカーボネートの混合溶液にビニレンカーボネートを添加した電解液と、金属Li箔対極を用いてリチウムイオン二次電池を構成し、充放電特性を調べた。
 まず、25℃環境下において、電流値を0.1C、電圧値を0.02V(vs.Li/Li)まで定電流定電圧条件で充電を行い、電流値が0.05Cに低下した時点で充電を停止した。次いで、電流値0.1Cの条件で、電圧が1.5V(vs.Li/Li)となるまで放電を行った。なお、1Cとは、1時間で満充電できる電流値である。また、充電と放電はともに25℃環境下で行った。次いで、0.2Cでの充放電速度で上記充放電を100サイクルまで繰り返した。特性の評価は、初回放電容量(mAh/g)と、初回放電容量に対する100サイクル後の放電容量の百分率を容量維持率として行った。
(Evaluation of cycle characteristics)
A negative electrode for a non-aqueous electrolyte secondary battery, an electrolytic solution obtained by adding vinylene carbonate to a mixed solution of ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate containing 1.3 mol / L LiPF 6 , and lithium using a metal Li foil counter electrode An ion secondary battery was constructed and the charge / discharge characteristics were examined.
First, in a 25 ° C. environment, charging was performed under constant current and constant voltage conditions until the current value was 0.1 C and the voltage value was 0.02 V (vs. Li / Li + ), and the current value was reduced to 0.05 C. Stopped charging. Next, discharging was performed under the condition of a current value of 0.1 C until the voltage became 1.5 V (vs. Li / Li + ). 1C is a current value that can be fully charged in one hour. Both charging and discharging were performed in a 25 ° C. environment. Next, the above charge / discharge was repeated up to 100 cycles at a charge / discharge rate of 0.2C. The evaluation of the characteristics was performed using the initial discharge capacity (mAh / g) and the percentage of the discharge capacity after 100 cycles with respect to the initial discharge capacity as the capacity maintenance rate.
 [実施例12~19]
表1に示す通り、組成・組成比を変更した以外は実施例1と同様の製法、評価方法を採用した。
[Examples 12 to 19]
As shown in Table 1, the same production method and evaluation method as in Example 1 were adopted except that the composition / composition ratio was changed.
 [比較例11]
 (負極活物質の作製)
 シリコン粉末と鉄粉末とアルミニウム粉末を原子比でSi:Fe:Al=67:7:26になるように混合し、乾燥させた混合粉末をるつぼ内で1500℃まで加熱して溶解させた後、その溶湯を単ロール急冷装置で急冷し、負極活物質を得た。これ以外の工程は、実施例11と同様にした。
[Comparative Example 11]
(Preparation of negative electrode active material)
After mixing silicon powder, iron powder, and aluminum powder in an atomic ratio of Si: Fe: Al = 67: 7: 26, the dried mixed powder was heated to 1500 ° C. in a crucible and dissolved. The molten metal was quenched with a single roll quenching device to obtain a negative electrode active material. The other steps were the same as in Example 11.
 [比較例12]
 表1に示す通り、組成・組成比を変更した以外は比較例1と同様の製法、評価方法を用いた。混合粉末の溶解は、1500~2000℃の範囲で行った。
[Comparative Example 12]
As shown in Table 1, the same production method and evaluation method as those in Comparative Example 1 were used except that the composition / composition ratio was changed. The mixed powder was dissolved in the range of 1500 to 2000 ° C.
 (負極活物質の構成の評価)
 図24に示すように、負極活物質の断面のBF-STEM像を観察した。
さらに、図25に示すようにXRD解析を行い、結晶相の同定を行った。その結果、シリコン相(図24の白色部分、第1の相)、3元系シリサイド(FeAlSi)よりなる第2の相(図24の黒色部分)、バナジウムシリサイドVSiよりなる第3の相(図24の灰色部分)、アルミニウム相が確認された。図26に示す通り、元素分布はEDSにより測定した。第2の相(FeAlSi)中の丸形構造は、第4の相(主にVSi)である。
 
この結果から結晶相の位置関係や海島構造の包含関係を確認し、XRD解析結果と合わせて生成物の組成を算出した。その結果を表1に示す。
(Evaluation of composition of negative electrode active material)
As shown in FIG. 24, a BF-STEM image of the cross section of the negative electrode active material was observed.
Furthermore, XRD analysis was performed as shown in FIG. 25 to identify the crystal phase. As a result, the silicon phase (white portion in FIG. 24, first phase), the second phase (black portion in FIG. 24) made of ternary silicide (FeAl 3 Si 2 ), and the third phase made of vanadium silicide VSi 2 . Phase (gray portion in FIG. 24), an aluminum phase was confirmed. As shown in FIG. 26, the element distribution was measured by EDS. The round structure in the second phase (FeAl 3 Si 2 ) is the fourth phase (mainly VSi 2 ).

From this result, the positional relationship of the crystal phase and the inclusion relationship of the sea-island structure were confirmed, and the composition of the product was calculated together with the XRD analysis result. The results are shown in Table 1.
(第3の相の状態)
 第3の相の粒径または厚み、第1相と第3の相中における第3の相の面積比率・体積比率を表1に示す。第3の相の厚みは、SEMまたはTEM画像の解析から算出し、各相の50体積%以上が該当する値の範囲を断面層の厚みとして規定した。面積比率は、画像解析ソフトウェア(旭化成エンジニアリング製「A像くん」)で算出した。
体積比率の算出は、画像情報からCut and Seeによる三次元構築を行い、画像解析処理ソフトにより算出が可能である。Cut and Seeによる方法は、試料をイオンビーム等により、10nm程度の所定の厚さごとに削っては、断面SEM像またはTEM像を観察することを繰り返す方法である。第3の相は、第1の相にほぼ均一に点状に観察される場合や、不均一な斑状や網目状・筋状に観察される場合があり、3次元的なある一定の体積内において画像解析ソフトウェアを用いて計算することで体積比率を算出した。
(State of the third phase)
Table 1 shows the particle diameter or thickness of the third phase, and the area ratio / volume ratio of the third phase in the first phase and the third phase. The thickness of the third phase was calculated from the analysis of the SEM or TEM image, and the range of values corresponding to 50% by volume or more of each phase was defined as the thickness of the cross-sectional layer. The area ratio was calculated with image analysis software ("A Image-kun" manufactured by Asahi Kasei Engineering).
The volume ratio can be calculated using image analysis processing software by performing a three-dimensional construction using Cut and See from the image information. The method according to Cut and See is a method of repeatedly observing a cross-sectional SEM image or a TEM image after cutting a sample with an ion beam or the like every predetermined thickness of about 10 nm. The third phase may be observed almost uniformly in the form of dots in the first phase, or may be observed as uneven spots, meshes or streaks, and within a certain three-dimensional volume. The volume ratio was calculated by calculating using image analysis software.
  なお、表1における第3の相の面積比率評価基準は、以下の通りである。
◎ : 面積比率  20%以上
○ : 面積比率  10%以上、20%未満
△ : 第3の相の存在が確認できるものの、面積比率  10%未満
― : 第3の相 確認できず
 なお、表1における体積比率評価基準については、以下の通りである。
〇 : 体積比率  10%以上
△ : 第3の相の存在が確認できるものの、体積比率  10%未満
― : 第3の相 確認できず
In addition, the area ratio evaluation criteria of the 3rd phase in Table 1 are as follows.
◎: Area ratio 20% or more ○: Area ratio 10% or more, less than 20% △: Although the presence of the third phase can be confirmed, the area ratio is less than 10%-: The third phase cannot be confirmed. The volume ratio evaluation criteria are as follows.
○: Volume ratio of 10% or more △: The presence of the third phase can be confirmed, but the volume ratio is less than 10%-: The third phase cannot be confirmed
(負極活物質を用いてなる二次電池の性能評価について)
 二次電池用負極の作製、および、サイクル特性の評価で示した方法により評価を行った結果を表1に示す。
 なお、表1における100サイクル後の容量維持率の評価基準については、以下の通りである。
◎ : 容量維持率  72%以上
○ : 容量維持率  68%以上、72%未満
△ : 容量維持率  64%以上、68%未満
× : 容量維持率  64%未満
 サイクル特性の評価は実用性を考慮して、100サイクルにおける容量維持率が64%以上を合格とした。
 なお、50サイクルにおける容量維持率は、全ての実施例において72%以上(◎)を満たした。
(Performance evaluation of secondary battery using negative electrode active material)
Table 1 shows the results of evaluation performed by the method described in the preparation of the negative electrode for secondary battery and the evaluation of the cycle characteristics.
The evaluation criteria for the capacity retention rate after 100 cycles in Table 1 are as follows.
◎: Capacity maintenance rate 72% or more ○: Capacity maintenance rate 68% or more and less than 72% △: Capacity maintenance rate 64% or more and less than 68% ×: Capacity maintenance rate Less than 64% Evaluation of cycle characteristics takes practicality into consideration Thus, the capacity maintenance rate in 100 cycles was determined to be 64% or more.
In addition, the capacity maintenance rate in 50 cycles satisfied 72% or more (◎) in all Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例11~19については、第1相中に第3の相であるVSi、TaSi、NbSiが生成していることがわかる。相の同定はXRD解析、断面SEM観察、EPMA、STEM-EDSの併用により行った。以下、測定方法をより具体的に説明する。原料組成物の定量をICP分析、生成物の組成はXRD解析、第1相と第2相の生成物の形状とサイズはSEMとSEM-EDX、第3相と第4相の生成物の形状とサイズはTEMとSTEM-EDX、生成物全体のマッピングはEPMAにて行った。 For Examples 11-19, it can be seen that VSi 2, TaSi 2, NbSi 2 is a third phase to the first phase is generated. Phases were identified by XRD analysis, cross-sectional SEM observation, EPMA, and STEM-EDS in combination. Hereinafter, the measurement method will be described more specifically. ICP analysis for quantification of raw material composition, XRD analysis for product composition, SEM and SEM-EDX for product shape and size of first phase and second phase, product shape for third phase and fourth phase The size was measured by TEM and STEM-EDX, and the whole product was mapped by EPMA.
 実施例11~19における第3の相のサイズ(断面層の厚み)はBF-STEM像の観察結果より1~100nmであった。第3の相の存在によって、充放電に伴うSiの体積膨張により発生するクラックの伸展を抑制することができ、結果、高容量での容量維持率を確保することができたものと考えられる。なお、図26の観察例に見られるように、VSi、TaSi、NbSiの一部は、第4の相にも分布してもよい。 The size of the third phase (thickness of the cross-sectional layer) in Examples 11 to 19 was 1 to 100 nm from the observation result of the BF-STEM image. It is considered that the presence of the third phase can suppress the extension of cracks generated by the volume expansion of Si accompanying charge / discharge, and as a result, the capacity retention rate at a high capacity can be secured. Incidentally, as seen in viewing the example of FIG. 26, a portion of VSi 2, TaSi 2, NbSi 2 may be distributed in the fourth phase.
 一方、比較例11と比較例12については、第1の相となるSi相が実施例16と同等または若干上回る量が確保されており、黒鉛の数倍高い初回放電容量が確保されている。また、比較例11と比較例12は、第2の相も実施例16とほぼ同等の量が確保されて、50サイクル後の容量維持率は64%以上を確保するものの、第3の相の生成が確認できないため、100サイクル後の容量維持率は実用性の判断基準となる64%を確保できないことが分かる。 On the other hand, in Comparative Example 11 and Comparative Example 12, the amount of the Si phase as the first phase is ensured to be equal to or slightly higher than that of Example 16, and the initial discharge capacity several times higher than that of graphite is ensured. Further, in Comparative Example 11 and Comparative Example 12, the second phase is secured in an amount substantially equal to that in Example 16, and the capacity retention rate after 50 cycles is ensured to be 64% or more. Since generation cannot be confirmed, it can be seen that the capacity retention rate after 100 cycles cannot secure 64%, which is a criterion for practicality.
 実施例11、12では、M群元素の投入量が3at%~10at%と多く、第3の相が9at%~30at%析出した。また、第4の相に含まれる金属Alの析出も確認された。
 実施例13~15は、M群元素の投入量が実施例11、12より少なく、第3の相の析出量も実施例11、12より少ない。また、第4の相に含まれる金属Alの析出も確認された。実施例11~15は第1~4相の存在が確認され、中でも第3の相が9at%と多く存在する実施例11は、高い放電容量と容量維持率が良好であった。実施例12、14、15は、充放電に伴う体積膨張・収縮の大きな第1の相が22at%と抑制されており、黒鉛に比べて十分高い放電容量が確保されるとともに、容量維持率が良好である。実施例13は実施例12、14、15に比べて放電容量が3倍近い水準のため、容量維持率が若干低いが、容量維持率自体は68%以上を保っている。
In Examples 11 and 12, the input amount of the M group element was large as 3 at% to 10 at%, and the third phase was precipitated at 9 at% to 30 at%. Moreover, precipitation of metal Al contained in the fourth phase was also confirmed.
In Examples 13 to 15, the input amount of the M group element is smaller than those in Examples 11 and 12, and the precipitation amount of the third phase is also smaller than those in Examples 11 and 12. Moreover, precipitation of metal Al contained in the fourth phase was also confirmed. In Examples 11 to 15, the presence of the first to fourth phases was confirmed, and in particular, Example 11 in which the third phase was present as much as 9 at% had a high discharge capacity and good capacity retention rate. In Examples 12, 14, and 15, the first phase having a large volume expansion / contraction due to charge / discharge is suppressed to 22 at%, and a sufficiently high discharge capacity is ensured as compared with graphite, and the capacity maintenance ratio is high. It is good. Since the discharge capacity of the thirteenth embodiment is nearly three times that of the twelfth, fourteenth, and fifteenth embodiments, the capacity maintenance ratio is slightly low, but the capacity maintenance ratio itself is maintained at 68% or more.
 実施例16では、M群元素の投入により第3の相が確認されたが、Al元素の投入量が20at%であり、金属Al相の析出が確認されなかった。そのため、実施例1~5に比べると粗大な相の割合が高くなり、容量維持率は64%~68%の範囲となった。
実施例17については、M群元素の投入量が実施例3~5と同程度だが、Ta、NbはVより過共晶領域が少量側にあるので、M群元素が少なくても第3の相が所定量確保される。M群元素が少なくなった分第1の相による放電容量が稼げ、Vより高容量で容量維持率が確保できた。
実施例18~19についてはSi元素とM群元素の下限値を示しており、過共晶領域の組成範囲を選択することで高い容量維持率と放電容量を確保できた。
In Example 16, the third phase was confirmed by the addition of the M group element, but the amount of Al element input was 20 at%, and no precipitation of the metallic Al phase was confirmed. Therefore, the proportion of coarse phases was higher than in Examples 1 to 5, and the capacity retention ratio was in the range of 64% to 68%.
In Example 17, the input amount of the M group element is about the same as in Examples 3 to 5, but Ta and Nb have a hypereutectic region on the small amount side from V. A predetermined amount of phase is secured. As the M group element decreased, the discharge capacity of the first phase was increased, and the capacity retention rate could be secured at a capacity higher than V.
Examples 18 to 19 show the lower limit values of the Si element and the M group element, and by selecting the composition range of the hypereutectic region, a high capacity retention ratio and discharge capacity could be secured.
 以上、添付図面を参照しながら、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到しえることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.
 1………負極活物質
 3………シリコン相
 5………第1のシリサイド相
 7………第2のシリサイド相
 11………溶湯
 13………シリサイド初晶
 15………シリコン
 17………第1のシリサイド
 19………第2のシリサイド
 21………ガスアトマイズ装置
 23………るつぼ
 25………ノズル
 27………噴出ガス
 29………ガス噴射機
 31………ガスジェット流
 41………単ロール急冷装置
 43………るつぼ
 45………単ロール
 47………合金
 51………双ロール急冷装置
 53………るつぼ
 55………鋳造ロール
 57………急冷装置
 59………合金
 61………溶融紡糸装置
 63………るつぼ
 65………容器
 67………冷却液
 69………ガイドロール
 70………合金
 71………非水電解質二次電池
 73………正極
 75………負極
 77………セパレータ
 79………電池缶
 81………正極リード
 83………正極端子
 85………負極リード
 87………電解質
 89………封口体
 91………シリコン相
 93………シリサイド(FeAlSi
 100………シリコン粒子
 101………第1のSEI
 103………クラック
 105………第2のSEI
 107………クラック
 111………第1の相
 112………第2の相
 113………第3の相
 114………第1の相
 115………第2の相
 116………第3の相
 117………第1の相
 118………第2の相
 120………負極活物質
DESCRIPTION OF SYMBOLS 1 ......... Negative electrode active material 3 ......... Silicon phase 5 ......... 1st silicide phase 7 ......... 2nd silicide phase 11 ......... Molten metal 13 ......... Silicide primary crystal 15 ......... Silicon 17 ... ...... First silicide 19 ......... Second silicide 21 ......... Gas atomizing device 23 ......... Crucible 25 ......... Nozzle 27 ......... Gas 29> ... Gas injector 31 ......... Gas jet flow 41 ......... Single roll quenching device 43 ......... Crucible 45 ......... Single roll 47 ......... Alloy 51 ... …… Double roll quenching device 53 ... …… Crucible 55 ... …… Casting roll 57 ......... Quenching device 59 ... …… Alloy 61 ... Melt spinning device 63 ... Crucible 65 ... Container 67 ... Coolant 69 ... Guide roll 70 ... Alloy 71 ... Nonaqueous electrolyte secondary battery 73 ... …… Positive electrode 75 ……… Negative 77 ... …… Separator 79 ... …… Battery can 81 ……… Positive lead 83 ……… Positive terminal 85 ……… Negative lead 87 ……… Electrolyte 89 ……… Seal 91 ……… Silicon phase 93 ……… Silicide (FeAl 3 Si 2 )
100 ......... Silicon particle 101 ......... First SEI
103 ……… Crack 105 ……… Second SEI
107 ......... Crack 111 ... ... First phase 112 ... ... Second phase 113 ... ... Third phase 114 ... ... First phase 115 ... ... Second phase 116 ... ... First Phase 3 117 ......... First phase 118 ......... Second phase 120 ......... Negative electrode active material

Claims (28)

  1.  シリコンと、シリコンと化合物を形成可能な元素Mを含み、
     シリコンと前記元素Mの組成が、溶融状態から冷却する際に、シリコンと前記元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはシリコン固溶体が析出する組成であることを特徴とする負極活物質。
    Including silicon and element M capable of forming a compound with silicon,
    When the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is precipitated first, and when further cooled, pure silicon or a silicon solid solution is deposited. Active material.
  2.  シリコンと、シリコンと化合物を形成可能な元素Mを含み、
     シリコンと前記元素Mの組成が、溶融状態から1000K/s以上の速度で冷却する際に、シリコンと前記元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはシリコン固溶体が析出する組成であることを特徴とする負極活物質。
    Including silicon and element M capable of forming a compound with silicon,
    When the composition of silicon and the element M is cooled from the molten state at a rate of 1000 K / s or more, the compound of silicon and the element M is deposited first, and when further cooled, pure silicon or a silicon solid solution is deposited. A negative electrode active material characterized by being.
  3.  前記元素Mが、V、Nb、Ta、Mo、W、Ti、Zr、Crからなる群より選ばれた少なくとも1種の元素であることを特徴とする請求項1または2に記載の負極活物質。 3. The negative electrode active material according to claim 1, wherein the element M is at least one element selected from the group consisting of V, Nb, Ta, Mo, W, Ti, Zr, and Cr. .
  4.  シリコンと前記元素Mの組成が、過共晶領域にあることを特徴とする請求項1~3のいずれか1項に記載の負極活物質。 The negative electrode active material according to any one of claims 1 to 3, wherein the composition of silicon and the element M is in a hypereutectic region.
  5.  前記負極活物質は、純シリコンまたはシリコン固溶体からなるシリコン相と、シリコンと前記元素Mの化合物からなるシリサイド相とを有し、
     前記シリコン相が、前記負極活物質中の20wt%以上であることを特徴とする請求項1~4のいずれか1項に記載の負極活物質。
    The negative electrode active material has a silicon phase made of pure silicon or a silicon solid solution, and a silicide phase made of a compound of silicon and the element M,
    The negative electrode active material according to any one of claims 1 to 4, wherein the silicon phase is 20 wt% or more of the negative electrode active material.
  6.  前記シリコン相のうち、外径または幅が10~300nmのサイズを有する相が、前記シリコン相の50体積%以上を占めることを特徴とする請求項1~5のいずれか1項に記載の負極活物質。 6. The negative electrode according to claim 1, wherein a phase having an outer diameter or width of 10 to 300 nm occupies 50 volume% or more of the silicon phase among the silicon phases. Active material.
  7.  さらに、前記負極活物質が、前記元素Mとは異なる元素D(Al、Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Dy、Sm、Pr、Y、Zr、Nb、Mo、Hf、Ta、W、Re、Os、Ir、Ru、Rh、およびBaからなる群より選ばれた少なくとも1種の元素)を含み、
     前記負極活物質が、シリコンと前記元素Dとの化合物を有する
     ことを特徴とする請求項1~6のいずれか1項に記載の負極活物質。
    Furthermore, the negative electrode active material is an element D different from the element M (Al, Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Dy, Sm. And at least one element selected from the group consisting of Pr, Y, Zr, Nb, Mo, Hf, Ta, W, Re, Os, Ir, Ru, Rh, and Ba),
    The negative electrode active material according to any one of claims 1 to 6, wherein the negative electrode active material includes a compound of silicon and the element D.
  8.  電気化学的にLi伝導性を有する第2の相に、Li吸蔵性を有する第1の相が分散しており、
     前記第1の相は、第1の相よりLi吸蔵性に乏しい第3の相をさらに含むことを特徴とする負極活物質。
    The first phase having Li storage properties is dispersed in the second phase having Li conductivity electrochemically,
    The negative electrode active material, wherein the first phase further includes a third phase that is less Li-occluding than the first phase.
  9.  第2相に対する第1相の面積比率は、10~90%であり、さらに、第3の相を、負極活物質材料に対して1~40原子%含むことを特徴とする、請求項8記載の負極活物質。 9. The area ratio of the first phase to the second phase is 10 to 90%, and further includes the third phase in an amount of 1 to 40 atomic% with respect to the negative electrode active material. Negative electrode active material.
  10.  前記第1の相は純シリコンまたはシリコン固溶体であり、断面層の厚みの平均値が20~2000nmであることを特徴とする請求項8または9記載の負極活物質。 10. The negative electrode active material according to claim 8, wherein the first phase is pure silicon or a silicon solid solution, and the average thickness of the cross-sectional layers is 20 to 2000 nm.
  11.  前記第2の相はシリサイドであり、断面層の厚みの平均値が20~2000nmであることを特徴とする請求項8~10のいずれか1項に記載の負極活物質。 11. The negative electrode active material according to claim 8, wherein the second phase is silicide and the average thickness of the cross-sectional layers is 20 to 2000 nm.
  12.  前記第2の相はSiとAlとを含み、さらに、請求項6記載の元素Dより選ばれる少なくとも1種の元素を含むことを特徴とする請求項8~11のいずれか1項に記載の負極活物質。 The second phase includes Si and Al, and further includes at least one element selected from the element D according to claim 6. Negative electrode active material.
  13.  前記第2の相はSiとAlとを含み、さらに、Fe、Co、Mn、La、Ce、Nd、Pr、Sm、およびDyより選ばれる少なくとも1種の元素を含むことを特徴とする請求項8~12のいずれか1項に記載の負極活物質。 The second phase contains Si and Al, and further contains at least one element selected from Fe, Co, Mn, La, Ce, Nd, Pr, Sm, and Dy. The negative electrode active material according to any one of 8 to 12.
  14.  前記第2の相は、第1の相よりLi吸蔵性に乏しい第4の相を含むことを特徴とする請求項8~13のいずれか1項に記載の負極活物質。 The negative electrode active material according to any one of claims 8 to 13, wherein the second phase includes a fourth phase that is less Li-occluding than the first phase.
  15.  第4の相を負極活物質材料に対して1~50原子%含むことを特徴とする、請求項14記載の非水電解質二次電池用の負極活物質。 15. The negative electrode active material for a nonaqueous electrolyte secondary battery according to claim 14, wherein the fourth phase contains 1 to 50 atomic% with respect to the negative electrode active material.
  16.  前記第3の相の断面層の厚みの平均値が1~100nmであることを特徴とする請求項8~15のいずれか1項に記載の負極活物質。 The negative electrode active material according to any one of claims 8 to 15, wherein the average thickness of the cross-sectional layer of the third phase is 1 to 100 nm.
  17.  前記第3の相は、VSi、TaSi、MoSi、NbSi、WSi、TiSi、ZrSi、CrSiより選ばれる少なくとも1種の化合物を含むことを特徴とする請求項8~16のいずれか1項に記載の負極活物質。 The third phase, VSi 2, TaSi 2, MoSi 2, NbSi 2, WSi 2, TiSi 2, ZrSi 2, claims 8 to 16, characterized in that it comprises at least one compound selected from the CrSi 2 The negative electrode active material according to any one of the above.
  18.  前記第3の相は、VSi、TaSi、NbSiより選ばれる少なくとも1種の化合物を含むことを特徴とする請求項8~17のいずれか1項に記載の負極活物質。 The third phase, the negative active material according to any one of claims 8 to 17, characterized in that it comprises at least one compound selected from VSi 2, TaSi 2, NbSi 2 .
  19.  前記第3の相または第4の相は、SiO、TiO、Al、ZnO、CaO、MgOより選ばれる少なくとも1種の化合物を含むことを特徴とする請求項8~18のいずれか1項に記載の負極活物質。 The third phase or the fourth phase contains at least one compound selected from SiO 2 , TiO 2 , Al 2 O 3 , ZnO, CaO, and MgO. The negative electrode active material according to claim 1.
  20.  第3の相を構成する粒子の体積が、第1の相と第3の相との合計の体積のうち、10%以上を占める領域が存在することを特徴とする請求項8~19のいずれか1項に記載の負極活物質。 The region in which the volume of particles constituting the third phase occupies 10% or more of the total volume of the first phase and the third phase is present. The negative electrode active material according to claim 1.
  21.  集電体上に活物質層を有する非水電解質二次電池用負極であって、
     前記活物質層は、シリコンと、シリコンと化合物を形成可能な元素Mを含み、シリコンと前記元素Mの組成が、溶融状態から冷却する際に、シリコンと前記元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはシリコン固溶体が析出する組成であることを特徴とする負極活物質と、結着剤とを含むことを特徴とする非水電解質二次電池用負極。
    A negative electrode for a non-aqueous electrolyte secondary battery having an active material layer on a current collector,
    The active material layer includes silicon and an element M capable of forming a compound with silicon, and when the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is first precipitated. A negative electrode for a non-aqueous electrolyte secondary battery, comprising: a negative electrode active material characterized in that pure silicon or a silicon solid solution precipitates when further cooled; and a binder.
  22.  リチウムイオンを吸蔵および放出可能な正極と、
     集電体上に活物質層を有する負極と、
     前記正極と前記負極との間に配置されたセパレータとを有し、
     リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けた非水電解質二次電池であって、
     前記負極の前記活物質層は、シリコンと、シリコンと化合物を形成可能な元素Mを含み、シリコンと前記元素Mの組成が、溶融状態から冷却する際に、シリコンと前記元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはシリコン固溶体が析出する組成であることを特徴とする負極活物質と、結着剤とを含むことを特徴とすることを特徴とする非水電解質二次電池。
    A positive electrode capable of inserting and extracting lithium ions;
    A negative electrode having an active material layer on a current collector;
    Having a separator disposed between the positive electrode and the negative electrode;
    A non-aqueous electrolyte secondary battery in which the positive electrode, the negative electrode, and the separator are provided in an electrolyte having lithium ion conductivity,
    The active material layer of the negative electrode includes silicon and an element M capable of forming a compound with silicon, and when the composition of silicon and the element M is cooled from a molten state, the compound of silicon and the element M is first A non-aqueous electrolyte secondary battery comprising: a negative electrode active material characterized by having a composition in which pure silicon or a silicon solid solution is deposited when cooled and further cooled; and a binder .
  23.  シリコンと、シリコンと化合物を形成可能な元素Mとを含み、シリコンと前記元素Mの組成が、溶融状態から冷却する際にシリコンと前記元素Mの化合物が最初に析出し、さらに冷却すると純シリコンまたはシリコン固溶体が析出する組成である溶湯を、1000K/s以上の速度で冷却することを特徴とする負極活物質の製造方法。 Silicon and an element M capable of forming a compound with silicon, and the composition of silicon and the element M first precipitates when the compound of silicon and the element M is cooled from a molten state, and when further cooled, pure silicon Or the manufacturing method of the negative electrode active material characterized by cooling the molten metal which is a composition in which a silicon solid solution precipitates at a speed | rate of 1000 K / s or more.
  24.  前記溶湯が、単ロール法、双ロール法、溶融紡糸法、ガスアトマイズ法、または水アトマイズ法により冷却されることを特徴とする請求項23に記載の負極活物質の製造方法。 The method for producing a negative electrode active material according to claim 23, wherein the molten metal is cooled by a single roll method, a twin roll method, a melt spinning method, a gas atomizing method, or a water atomizing method.
  25.  請求項8~20のいずれか記載の非水電解質二次電池用の負極活物質材料を用いてなる、非水電解質二次電池用負極。 A negative electrode for a nonaqueous electrolyte secondary battery, comprising the negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 8 to 20.
  26.  請求項25記載の非水電解質二次電池用負極を用いてなる、非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to claim 25.
  27.  Si、Al、Alを除く元素群D(Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Dy、Sm、Pr、Y、Zr、Nb、Mo、Hf、Ta、W、Re、Os、Ir、Ru、Rh、およびBaより選ばれる少なくとも1種の元素)、元素群M(V、Ta、Mo、Nb、W、Ti、Zr、Crより選ばれる少なくとも1種の元素)を含有する合金を溶解後、単ロール法、双ロール法、溶融紡糸法、ガスアトマイズ法、および、水アトマイズ法のいずれかの方法で急冷(1000K/秒 以上)凝固させ、かつ、1000℃以下の温度で第2の相を析出させることを特徴とする、請求項8~19記載の非水電解質二次電池用の負極活物質材料の製造方法。
    ただし、元素群Mと元素群Dから選ばれる元素は同一ではない元素とする。
    Element group D excluding Si, Al, Al (Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Dy, Sm, Pr, Y, Zr, Nb , Mo, Hf, Ta, W, Re, Os, Ir, Ru, Rh, and Ba), element group M (V, Ta, Mo, Nb, W, Ti, Zr, Cr) After melting an alloy containing at least one element selected from the group consisting of a single roll method, a twin roll method, a melt spinning method, a gas atomizing method, and a water atomizing method (1000 K / second or more) 20. The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 8, wherein the second phase is solidified and the second phase is precipitated at a temperature of 1000 ° C. or lower.
    However, an element selected from the element group M and the element group D is not the same element.
  28.  Alを除く元素群Dの元素が、Fe、Co、Mn、La、Ce、Nd、Pr、Sm、およびDyより選ばれる少なくとも一種の元素であることを特徴とする、請求項27記載の非水電解質二次電池用の負極活物質材料の製造方法。 28. The non-water according to claim 27, wherein an element of element group D excluding Al is at least one element selected from Fe, Co, Mn, La, Ce, Nd, Pr, Sm, and Dy. A method for producing a negative electrode active material for an electrolyte secondary battery.
PCT/JP2014/078743 2013-10-30 2014-10-29 Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery WO2015064633A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167005676A KR20160063323A (en) 2013-10-30 2014-10-29 Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery
JP2015545265A JPWO2015064633A1 (en) 2013-10-30 2014-10-29 NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, NEGATIVE ELECTRODE AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN201480054169.3A CN105594025A (en) 2013-10-30 2014-10-29 Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-225611 2013-10-30
JP2013225611 2013-10-30
JP2014-132468 2014-06-27
JP2014132468 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015064633A1 true WO2015064633A1 (en) 2015-05-07

Family

ID=53004233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078743 WO2015064633A1 (en) 2013-10-30 2014-10-29 Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery

Country Status (4)

Country Link
JP (1) JPWO2015064633A1 (en)
KR (1) KR20160063323A (en)
CN (1) CN105594025A (en)
WO (1) WO2015064633A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224537A (en) * 2016-06-16 2017-12-21 日産自動車株式会社 Negative electrode active material for electric device and electric device arranged by use thereof
WO2018193864A1 (en) * 2017-04-17 2018-10-25 山陽特殊製鋼株式会社 Negative electrode material for power storage device
WO2021263273A1 (en) * 2020-06-25 2021-12-30 6K Inc. Microcomposite alloy structure
US11273491B2 (en) 2018-06-19 2022-03-15 6K Inc. Process for producing spheroidized powder from feedstock materials
US11311938B2 (en) 2019-04-30 2022-04-26 6K Inc. Mechanically alloyed powder feedstock
CN115367760A (en) * 2022-08-17 2022-11-22 贵州安达科技能源股份有限公司 Porous silicon material, preparation method and application thereof, carbon-silicon composite material, and preparation method and application thereof
US11577314B2 (en) 2015-12-16 2023-02-14 6K Inc. Spheroidal titanium metallic powders with custom microstructures
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11611130B2 (en) 2019-04-30 2023-03-21 6K Inc. Lithium lanthanum zirconium oxide (LLZO) powder
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
WO2024024532A1 (en) * 2022-07-29 2024-02-01 大同特殊鋼株式会社 Negative electrode active material
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
EP4205885A4 (en) * 2020-08-31 2024-03-06 Panasonic Ip Man Co Ltd Negative electrode active material for secondary batteries, and secondary battery
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106270535B (en) * 2016-08-15 2019-06-21 苏州科技大学 A kind of mechanical crushing method of metal-air battery cathode (Mg, Al, Zn, Fe) micro Nano material that graphene surface packet is attached
CN109792042A (en) * 2017-09-04 2019-05-21 超能高新材料股份有限公司 Lithium ion battery negative material
CN107613599A (en) * 2017-10-25 2018-01-19 大同宇林德石墨设备股份有限公司 A kind of graphite electrode containing the electric conductivity graphene film that is not easy to misplace
CN111063874B (en) * 2019-12-18 2020-08-18 宁波禾木纳米科技有限公司 Preparation method and application of hard carbon nano material for ion battery
CN111952543B (en) * 2020-08-24 2023-05-05 广东工业大学 Three-dimensional lithium metal electrode, preparation method thereof and lithium metal battery
EP4290611A1 (en) * 2021-02-26 2023-12-13 Shanghai Shanshan Tech Co., Ltd. Porous negative electrode active material and manufacturing method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294112A (en) * 1997-02-24 1998-11-04 Hitachi Metals Ltd Lithium secondary battery
JP2000149937A (en) * 1998-09-08 2000-05-30 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacture
JP2001297757A (en) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP2004362895A (en) * 2003-06-03 2004-12-24 Sony Corp Negative electrode material, and battery using it
JP2009032644A (en) * 2007-06-26 2009-02-12 Daido Steel Co Ltd Negative electrode active material for lithium secondary battery, and lithium secondary battery
JP2012150910A (en) * 2011-01-17 2012-08-09 Sanyo Special Steel Co Ltd Si ALLOY POWDER FOR LITHIUM ION SECONDARY BATTERY NEGATIVE ELECTRODE AND MANUFACTURING METHOD FOR THE SAME
JP2012527741A (en) * 2010-07-30 2012-11-08 イルジン エレクトリック コーポレーション リミテッド Negative electrode active material
JP2013161786A (en) * 2012-02-01 2013-08-19 Samsung Sdi Co Ltd Negative electrode active material, method of preparing the same, negative electrode for lithium secondary battery including the negative electrode active material, and lithium secondary battery including the negative electrode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366978B1 (en) * 1998-09-08 2003-01-09 마츠시타 덴끼 산교 가부시키가이샤 Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
KR100796664B1 (en) 2007-03-21 2008-01-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
JP5621753B2 (en) 2011-11-15 2014-11-12 信越化学工業株式会社 Anode material for lithium ion battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294112A (en) * 1997-02-24 1998-11-04 Hitachi Metals Ltd Lithium secondary battery
JP2000149937A (en) * 1998-09-08 2000-05-30 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacture
JP2001297757A (en) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP2004362895A (en) * 2003-06-03 2004-12-24 Sony Corp Negative electrode material, and battery using it
JP2009032644A (en) * 2007-06-26 2009-02-12 Daido Steel Co Ltd Negative electrode active material for lithium secondary battery, and lithium secondary battery
JP2012527741A (en) * 2010-07-30 2012-11-08 イルジン エレクトリック コーポレーション リミテッド Negative electrode active material
JP2012150910A (en) * 2011-01-17 2012-08-09 Sanyo Special Steel Co Ltd Si ALLOY POWDER FOR LITHIUM ION SECONDARY BATTERY NEGATIVE ELECTRODE AND MANUFACTURING METHOD FOR THE SAME
JP2013161786A (en) * 2012-02-01 2013-08-19 Samsung Sdi Co Ltd Negative electrode active material, method of preparing the same, negative electrode for lithium secondary battery including the negative electrode active material, and lithium secondary battery including the negative electrode

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11577314B2 (en) 2015-12-16 2023-02-14 6K Inc. Spheroidal titanium metallic powders with custom microstructures
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
JP2017224537A (en) * 2016-06-16 2017-12-21 日産自動車株式会社 Negative electrode active material for electric device and electric device arranged by use thereof
WO2018193864A1 (en) * 2017-04-17 2018-10-25 山陽特殊製鋼株式会社 Negative electrode material for power storage device
US11273491B2 (en) 2018-06-19 2022-03-15 6K Inc. Process for producing spheroidized powder from feedstock materials
US11465201B2 (en) 2018-06-19 2022-10-11 6K Inc. Process for producing spheroidized powder from feedstock materials
US11471941B2 (en) 2018-06-19 2022-10-18 6K Inc. Process for producing spheroidized powder from feedstock materials
US11311938B2 (en) 2019-04-30 2022-04-26 6K Inc. Mechanically alloyed powder feedstock
US11611130B2 (en) 2019-04-30 2023-03-21 6K Inc. Lithium lanthanum zirconium oxide (LLZO) powder
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
WO2021263273A1 (en) * 2020-06-25 2021-12-30 6K Inc. Microcomposite alloy structure
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
EP4205885A4 (en) * 2020-08-31 2024-03-06 Panasonic Ip Man Co Ltd Negative electrode active material for secondary batteries, and secondary battery
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
WO2024024532A1 (en) * 2022-07-29 2024-02-01 大同特殊鋼株式会社 Negative electrode active material
CN115367760A (en) * 2022-08-17 2022-11-22 贵州安达科技能源股份有限公司 Porous silicon material, preparation method and application thereof, carbon-silicon composite material, and preparation method and application thereof

Also Published As

Publication number Publication date
CN105594025A (en) 2016-05-18
KR20160063323A (en) 2016-06-03
JPWO2015064633A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015064633A1 (en) Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery
JP5884573B2 (en) Negative electrode active material for lithium ion battery and negative electrode for lithium ion battery using the same
WO2013146658A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries using same, and lithium ion secondary battery
JP5979251B2 (en) Active material with excellent high voltage characteristics
KR100366978B1 (en) Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
JP5147170B2 (en) Lithium secondary battery
JP5790282B2 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2009032644A (en) Negative electrode active material for lithium secondary battery, and lithium secondary battery
JP2011034836A (en) Nanosized particles, nanosized-particles-included negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing nanosized particles
JP2013253012A (en) Silicide combined silicon material and nonaqueous electrolyte secondary battery using the same
JP2014107132A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery
JP7375569B2 (en) Negative active material for lithium ion batteries
JP2012178344A (en) Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20150008099A (en) Negative electrode for nonaqueous electrolyte rechargeable battery and nonaqueous electrolyte rechargeable battery using same
JP2017224499A (en) Negative electrode active material for lithium ion battery and lithium ion battery
JP2013191529A (en) Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015095301A (en) Negative electrode active material for secondary batteries, negative electrode for secondary batteries, and nonaqueous electrolyte secondary battery
JP2012014866A (en) Negative electrode active substance for lithium secondary battery, and method of manufacturing the same
WO2012063765A1 (en) Non-aqueous electrolyte secondary battery
WO2015174009A1 (en) Lithium composite metal oxide and method for producing same
JP2017050204A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
JP7337580B2 (en) Anode materials for lithium-ion batteries containing multicomponent silicides and silicon
KR102317162B1 (en) Negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery and lithium-ion battery
JP2015056313A (en) Negative electrode active material for secondary battery, negative electrode and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015545265

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167005676

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857595

Country of ref document: EP

Kind code of ref document: A1