JP4368139B2 - Anode material for non-aqueous electrolyte secondary battery - Google Patents

Anode material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4368139B2
JP4368139B2 JP2003129705A JP2003129705A JP4368139B2 JP 4368139 B2 JP4368139 B2 JP 4368139B2 JP 2003129705 A JP2003129705 A JP 2003129705A JP 2003129705 A JP2003129705 A JP 2003129705A JP 4368139 B2 JP4368139 B2 JP 4368139B2
Authority
JP
Japan
Prior art keywords
negative electrode
solid phase
secondary battery
electrolyte secondary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003129705A
Other languages
Japanese (ja)
Other versions
JP2004335272A (en
Inventor
治成 島村
貴之 中本
秀明 大山
靖彦 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Sumitomo Metal Industries Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Sumitomo Metal Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Sumitomo Metal Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003129705A priority Critical patent/JP4368139B2/en
Publication of JP2004335272A publication Critical patent/JP2004335272A/en
Application granted granted Critical
Publication of JP4368139B2 publication Critical patent/JP4368139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、改良された非水電解質二次電池用負極材料に関し、特に、充放電サイクル特性および高率放電特性に優れた非水電解質二次電池を与える負極材料に関する。本発明の非水電解質二次電池用負極材料を備えた非水電解質二次電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モータを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車などに好適である。
【0002】
【従来の技術】
高起電力、高エネルギー密度などの特長を持つ非水電解質二次電池、特にリチウム二次電池は、移動体通信機器、携帯電子機器などの主電源として、従来から用いられている。負極材料としては、リチウム金属または黒鉛が主に用いられており、特に、リチウム金属を用いる場合には、最も高いエネルギー密度を得ることができる。
【0003】
しかしながら、リチウム金属を負極材料とするリチウム二次電池には、充電時に負極に析出したデンドライトが、充放電の繰り返しにより成長して、セパレータを貫通し、内部短絡を引き起こすという欠点がある。また、黒鉛を負極材料とするリチウム二次電池には、黒鉛の理論容量(372mAh/g)が、リチウム金属の理論容量よりも10%程度小さいことから、近年における高エネルギー密度化の要請に充分に応えることができないという欠点がある。
【0004】
そこで、近年、新たな負極材料として、ケイ素(Si)を用いることが検討されている。ケイ素は、理論上、リチウムイオンを、ケイ素原子5個あたり最大22個まで、すなわち、Li22Si5の組成になるまで吸蔵することが可能である。ケイ素の理論容量は4199mAh/gであり、黒鉛の理論容量よりも遙かに大きい。また、ケイ素を負極材料として用いた場合、通常の充電では、金属リチウムが負極の表面に析出することがないので、デンドライトの成長による内部短絡の虞もない。
【0005】
このようなケイ素を用いた負極材料は、これまで数多く提案されている(例えば、特許文献1〜3参照。)。特許文献1では、固相Aからなる核粒子、および前記核粒子の表面の全部または一部を覆う固相Bの被覆層からなる複合粒子が負極材料として提案されている。固相Aには、ケイ素またはケイ素を含む固溶体もしくは金属間化合物が用いられている。固相Bには、固相Aとは組成が異なるように、ケイ素またはケイ素を含む固溶体もしくは金属間化合物が用いられている。また、特許文献1には明記されていないが、合金溶湯を電気炉内で冷却することにより前記複合粒子を得ていることから、固相Aも固相Bも結晶質相である。
【0006】
【特許文献1】
特開2000−30703号公報(第4頁、〔0018〕)
【特許文献2】
特開2000−243389号公報
【特許文献3】
特開平10−83817号公報
【0007】
【発明が解決しようとする課題】
ケイ素は、リチウムと反応すると体積が約4倍に膨張する。このため、ケイ素を負極材料とするリチウム二次電池の充放電を繰り返すと、ケイ素粒子内に大きな内部歪みが生じてクラックが発生し、粒子が微粉化しやすいという問題がある。このような微粉化は、電池の充放電サイクル特性の低下につながる。
【0008】
特許文献1で提案されているように、ケイ素を他元素と合金化することにより、粒子の微粉化をある程度抑制することは可能である。
しかしながら、固相Aも固相Bも結晶質相からなる場合、微粉化を充分に抑制することは困難である。
【0009】
本発明は、上記を鑑みたものであり、ケイ素の微粉化を充分に抑制することにより、充放電サイクル特性および高率放電特性に優れた非水電解質二次電池を与える負極材料を提供することを目的とする。
【0010】
【課題を解決するための手段】
すなわち、本発明は、固相Aからなる核粒子の表面の一部または全部に、固相Bからなる被覆層が形成された複合粒子からなる非水電解質二次電池用負極材料であって、固相Aは、Siと、SbおよびPよりなる群から選ばれる少なくとも1種またはBとを含む非晶質合金相であり、固相Bは、Siと、Mg、Ti、Zr、V、Mo、W、Mn、Fe、Cu、CoおよびNiよりなる群から選ばれる少なくとも1種とを含む結晶質合金相であり、前記固相AのSi含有率が、95〜99.99重量%であり、前記固相AにおけるSb、PおよびBの合計の含有率が、0.01〜5重量%である、非水電解質二次電池用負極材料に関する。
【0011】
記核粒子と前記被覆層との重量比は、5:95〜40:60であることが好ましい。
【0012】
固相Bは、SiとTiとの結晶質合金相からなることが好ましく、特に組成式がTiSi2で表される金属間化合物相からなることが好ましい。
【0013】
本発明は、また、上記の非水電解質二次電池用負極材料を、リチウムイオンを吸蔵および放出する材料として備えた非水電解質二次電池用負極に関する。
【0014】
本発明は、また、前記非水電解質二次電池用負極と、リチウムの吸蔵・放出が可能な正極と、前記負極と正極との間に介在するセパレータと、非水電解質を具備する非水電解質二次電池に関する。
【0015】
【発明の実施の形態】
本発明の非水電解質二次電池用負極材料は、固相Aからなる核粒子の表面の一部または全部に、固相Bからなる被覆層が形成された複合粒子からなり、固相Aは、Siと、SbおよびPよりなる群から選ばれる少なくとも1種またはBとを含む非晶質合金相であり、固相Bは、Siと、Mg、Ti、Zr、V、Mo、W、Mn、Fe、Cu、CoおよびNiよりなる群から選ばれる少なくとも1種とを含む結晶質合金相である。
つまり、固相Aと固相Bは、組成および結晶状態が異なる。
【0016】
本発明において、非晶質合金相とは、広角X線回折法により得られる回折パターンにおいて、その合金相の結晶面に帰属されるピークが存在しないことをいう。また、結晶質合金相とは、広角X線回折法により得られる回折パターンにおいて、その合金相の結晶面に帰属されるピークが存在することをいう。「ピークが存在しない」とは、アニール(500℃で1時間保持)後の結晶子サイズが100nm以下、または非晶質相であることをいう。
【0017】
SiをP、SbまたはBと非晶質合金化することにより、ケイ素とリチウムとの反応による固相Aの体積膨張を抑制できる。また、P、SbまたはBをSiにドープすることにより(以下、P、SbおよびBをドープ元素ともいう。)、メカニカルアロイング法などの固相反応により、固相Aを非晶質化するのに必要な時間を短縮することができる。また、その結果、固相Aと固相Bからなる複合粒子を製造する段階で、固相Bの非晶質化を防止することもできる。
【0018】
固相Aからなる核粒子の表面の一部または全部に、固相Bからなる被覆層を形成することにより、核粒子の微粉化が抑制されるとともに、負極材料の電子伝導性が向上する。固相Bが結晶質合金相でなければならないのは、結晶粒界が多い非晶質相であると、クラックが生じて電子伝導性が低下し、高率放電特性の低下を招くからである。
【0019】
固相AのSi含有率は、95〜99.999重量%が好ましく、98〜99.99重量%がより好ましい。固相AのSi含有率が95重量%未満の場合、すなわちドープ元素の含有率が5重量%を超える場合、得られる負極材料の容量が減少する。また、ドープ元素を5重量%より多くドープしても、固相Aの非晶質化に要する時間はほとんど短縮されない。一方、固相AのSi含有率が、99.999重量%を超える場合、すなわちドープ元素の含有率が0.001重量%未満の場合は、固相反応による製造工程において、固相Aの非晶質化が進行しにくくなるため、負極材料を得るのに長時間を要するのみならず、固相Bの非晶質化を招く虞がある。
【0020】
固相Bとしては、高率放電特性を改善する上で、電子伝導性の高いSiとTiとの結晶質合金相が好ましく、組成式TiSi2で表される金属間化合物相が特に好ましい。SiとTiとの結晶質合金相からなる粒子には、固相反応により、固相Aからなる核粒子と複合粒子化することが容易であるという製造上の利点もある。
固相Bが固溶体の場合、二元合金については、Siと合金化元素M1との重量比が10:90〜40:60であることが好ましく、また、三元合金については、Siと合金化元素M1と合金化元素M2との重量比が10:90(M1とM2の重量比は任意)〜40:60(M1とM2の重量比は任意)であることが好ましい。
【0021】
核粒子と被覆層との重量比は、5:95〜40:60が好ましい。核粒子の割合が過少な場合は、初期放電容量が減少する。一方、被覆層の割合が過少な場合は、核粒子の被覆が充分でないためにSiとLiとの反応による固相Aの膨張を有効に抑えることができなくなり、充放電サイクル特性が低下する。さらに、電子伝導性の低下により、高率放電特性も低下する。
【0022】
なお、固相Aについては0.001重量%以下の量、また、固相Bについては0.1重量%以下の量であれば、それぞれ上記した各構成元素以外の元素、例えばO、C、N、S、Ca、Mg、Alなどの不純物を含んでいても構わない。
【0023】
以下に、本発明の負極材料の製造方法について説明する。
まず、固相Aを構成する各元素を所定の割合で溶解槽にて加熱溶融させて合金溶湯を得、この合金溶湯を急冷凝固させて第一の合金塊を製造する。また、固相Bを構成すべき各元素を所定の割合で溶解槽にて加熱溶融させて合金溶湯を得、この合金溶湯を急冷凝固させて第二の合金塊を製造する。それぞれの合金溶湯を得る際に溶融させる各構成元素は、単体の形態で溶解槽に投入してもよく、固溶体、金属間化合物などの合金の形態で溶解槽に投入してもよい。なお、溶融の方法としては、高周波溶解法、アーク溶解法などの従来公知の方法を用いることができる。また、急冷凝固させる方法としては、ロールスピニング法、メルトドラッグ法、直接鋳造圧延法などの従来公知の方法を用いることができる。
【0024】
次いで、第一の合金塊と第二の合金塊とを、ボールミルを用いて、機械的に攪拌、混合し、合金粉末を作製するいわゆるメカニカルアロイングを行う。このメカニカルアロイングを適宜の時間実施することにより、非晶質合金相である固相Aからなる核粒子の表面に、結晶質合金相である固相Bからなる被覆層を形成することができる。
【0025】
本発明に係る非水電解質二次電池用負極は、上述した負極材料をリチウムイオンを吸蔵および放出する材料として用いた電極である。例えば、本発明の負極材料を、導電剤および結着剤溶液とともに混練してスラリー状の負極合剤を調製し、この負極合剤を、厚み1〜500μm程度の銅箔などからなる集電体上に塗布し、乾燥後、圧延することにより、負極板を作製することができる。上記の負極合剤に代えて、本発明の負極材料の粒子表面に導電剤層を形成した後、これと結着剤溶液とを混練して得たスラリー状の負極合剤を用いてもよい。導電剤としては、人造黒鉛、膨張黒鉛などの黒鉛、アセチレンブラック、ケッチェンブラックなどの無定形炭素が例示される。導電剤の一般的な添加量は、負極材料100重量部に対して1〜50重量部であるが、導電剤の添加量が過多になると容量減少が顕著になるので、導電剤は、負極材料100重量部に対して30重量部を超えないことが好ましい。結着剤としては、スチレンブタジエンゴム、ポリフッ化ビニリデンなどが例示される。集電体材料としては、ステンレス鋼、ニッケル、銅、銅合金などが例示される。なかでも電子伝導性が極めて良好な銅および銅合金が好ましい。
【0026】
【実施例】
本発明を実施例に基づいてさらに詳細に説明する。本発明は下記実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
【0027】
[実験1]
本発明の負極材料および比較のための負極材料を作製し、各負極材料の固相Aの結晶状態および粉体抵抗率を調べた。また、各負極材料を用いて非水電解質二次電池を作製し、各電池の高率放電特性および充放電サイクル特性を調べた。
【0028】
《実施例1》
固相Aには、SiとPを用い、これらを重量比19.9:0.1の混合物とした。この混合物を高周波溶解槽に投入して溶解させ、得られた合金溶湯を、単ロール法により急冷凝固させて、核粒子の前駆体である第一の合金塊を得た。
また、固相Bには、CoとSiを用い、これらを原子比1:2の混合物とした。この混合物を高周波溶解槽に投入して溶解させ、得られた合金溶湯を、単ロール法により急冷凝固させて、組成式CoSi2で表される金属間化合物からなる被覆層の前駆体である第二の合金塊を得た。
次いで、第一の合金塊と第二の合金塊とを重量比20:80で混合した混合物を、遊星ボールミルの容器内に投入し、ミルの回転速度を2800rpmに設定してメカニカルアロイングを1時間行った。これにより、核粒子の表面に被覆層が形成された複合粒子粉末を得た。この複合粒子粉末を篩で分級して、平均粒径45μmの負極材料A1を作製した。
【0029】
《実施例2〜88》
Siと混合するドープ元素の種類およびSiとドープ元素との重量比を表1または2に示すように変えたこと以外は、実施例1と同様にして、第一の合金塊を作製した。
固相Bには、表1または2に示す金属間化合物または固溶体からなる第二の合金塊を用いた。
次いで、第一の合金塊と、第二の合金塊とを重量比20:80で混合した混合物を、遊星ボールミルの容器内に投入し、ミルの回転速度を2800rpmに設定してメカニカルアロイングを1時間行った。これにより、核粒子の表面に金属間化合物相または固溶体相からなる被覆層が形成された複合粒子粉末を得た。この複合粒子粉末を篩で分級して、平均粒径45μmの負極材料A2〜A88を作製した。
なお、被覆層を形成する固相Bが固溶体である負極材料A45〜A88については、第二の合金塊を作製するにあたり、二元合金についてはSiと合金化元素M1との原子比が99:1の混合物を使用し、また三元合金についてはSiと合金化元素M1と合金化元素M2との原子比が99:0.5:0.5の混合物を使用した。
【0030】
【表1】

Figure 0004368139
【0031】
【表2】
Figure 0004368139
【0032】
《比較例1》
メカニカルアロイングの時間を、1時間に代えて、30分間としたこと以外は、実施例1と同様にして、核粒子の表面に被覆層が形成された複合粒子粉末を得た。この複合粒子粉末を篩で分級して、平均粒径45μmの負極材料X1を作製した。
【0033】
《比較例2〜22》
第二の合金塊として、組成式CoSi2で表される金属間化合物からなる合金塊に代えて、表3に示す固相Bの金属間化合物または固溶体からなる合金塊を用いたこと以外は、比較例1と同様にして、核粒子の表面に金属間化合物または固溶体からなる被覆層が形成された複合粒子粉末を得た。各複合粒子粉末を篩で分級して、平均粒径45μmの負極材料X2〜X22を作製した。なお、被覆層を形成する固相Bが固溶体である負極材料X12〜X22については、二元合金として第二の合金塊を作製するにあたり、Siと合金化元素M1との原子比が99:1の混合物を使用した。
【0034】
【表3】
Figure 0004368139
【0035】
(i)正極板の作製
正極活物質としてのコバルト酸リチウム(LiCoO2)粉末85重量部と、導電剤としてのアセチレンブラック10重量部と、結着剤としてのPVdF(ポリフッ化ビニリデン)5重量部との混合物を、NMP(脱水N−メチル−2−ピロリドン)に分散させて、スラリー状の正極合剤を調製した。この正極合剤を厚さ20μmのアルミニウム箔からなる正極集電体上に、片面あたり150μm厚に塗布し、乾燥後、圧延して、正極板を作製した。
【0036】
(ii)負極板の作製
上記の実施例または比較例で作製した各負極材料75重量部と、導電剤としてのアセチレンブラック20重量部と、結着剤としてのPVdF5重量部との混合物を、NMPに分散させて、スラリー状の負極合剤を調製した。この負極合剤を厚さ14μmの銅箔からなる負極集電体上に、片面あたり50μm厚に塗布し、乾燥後、圧延して、負極板を作製した。
【0037】
(iii)非水電解液の調製
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との体積比1:1の混合溶媒に、LiPF6を1モル/リットルの濃度で溶かして非水電解液を調製した。
【0038】
(iv)非水電解質二次電池の作製
上記の正極板、負極板および非水電解液を用いて、直径18mm、高さ65mmの円筒形の非水電解質二次電池A1〜A88、X1〜X22(電池の符号は、用いた負極材料の符号に対応する)を作製した。セパレータには、ポリエチレン製の微多孔フィルムを用いた。
【0039】
図2は作製した非水電解質二次電池の縦断面図であり、その内部構造の一部を分解斜視図で示してある。非水電解質二次電池は、正極1、負極2、これら両電極を離間するセパレータ3、絶縁板4、電池ケース5、ガスケット7、安全弁を備える封口板8、正極リード6などからなる。正極1および負極2は、セパレータ3を間に配して渦巻き状に巻き取られた状態で電池ケース5内に収容されており、正極1は正極リード6を介して封口板8に、負極2は負極リード(図示せず)を介して電池ケース5の底部に、それぞれ接続されて、充放電可能な構成となっている。
【0040】
[固相Aの結晶状態]
各負極材料中の固相Aの結晶状態を評価するために、波長1.5405nmのCuKα線を線源とする広角X線回折装置(商品コード:RINT−2500、理学電機社製)を用い、回折角2θ=10°〜80°の範囲における回折強度を測定した。固相Aの結晶面に帰属されるピークの有無を調べた。結果を表4〜6に示す。表中のピークの有無において、「無」は固相Aの結晶面に帰属されるピークが存在せず、固相Aが非晶質相であったことを示し、「有」は上記ピークが存在し、固相Aが結晶質相であったことを示す。一例として、負極材料A3およびX3の回折パターンを図1に示す。
図1において、横軸は、固相Aおよび固相Bの回折角2θ(度)であり、縦軸は、回折強度である。図中◎は固相Aの結晶面に帰属されるピークを示し、●は、固相Bの結晶面に帰属されるピークを示す。
【0041】
[粉体抵抗率]
各負極材料を2g秤取し、2つの電流端子と2つの電圧端子の合計4つの測定点を有するセルの中に投入し、400kgf/cm2の圧力を加えた状態で、電流と電圧を同時に測定して、各負極材料の粉体抵抗率(Ω・cm)を測定した(4端子法)。粉体抵抗率の低い負極材料ほど、電子伝導性が良い負極材料である。結果を表4〜6に示す。
【0042】
[初期放電容量および高率放電特性]
各電池を、20°Cに保持した恒温槽に入れ、1000mAで4.2Vまで充電した後、200mAで2.5Vまで放電して、放電容量C1(mAh)を求めた(初期放電容量)。次いで、それらの各電池を、1000mAで4.2Vまで充電した後、1000mAで2.5Vまで放電して、放電容量C2(mAh)を求めた。放電容量C1に対する放電容量C2の比率P(%)を下式(1)に基づいて算出して、各電池の高率放電特性Pを評価した。Pの値が大きい電池ほど、高率放電特性が良い電池である。結果を表4〜6に示す。
【0043】
P(%)=(C2/C1)×100 (1)
【0044】
[充放電サイクル特性]
また、各電池を、20°Cに保持した恒温槽に入れ、1000mAで4.2Vまで充電した後、200mAで2.5Vまで放電する充放電を100サイクル行った。そして、1サイクル目の放電容量C3に対する100サイクル目の放電容量C4の容量維持率Q(%)を下式(2)に基づいて算出して、充放電サイクル特性Qを評価した。Qの値が大きい電池ほど、充放電サイクル特性が良い電池である。結果を表4〜6に示す。
【0045】
Q(%)=(C4/C3)×100 (2)
【0046】
【表4】
Figure 0004368139
【0047】
【表5】
Figure 0004368139
【0048】
【表6】
Figure 0004368139
【0049】
(v)電池の評価
表4〜6に示すように、負極材料A1〜A88の粉体抵抗率は、1×10-1〜9×10-1Ω・cmと低い値を得たのに対して、負極材料X1〜X22の粉体抵抗率は5×100〜9.5×100Ω・cmと高い値であった。このことから、負極材料A1〜A88は負極材料X1〜X22に比べて電子伝導性が良いことが分かった。
【0050】
また、図1の負極材料X3の回折パターンに見られるように、比較例の負極材料X1〜X22については、固相Aの結晶面に帰属される回折角(2θ=28°および48°)付近にピークが認められたが、負極材料A3の回折パターンに見られるように、実施例の負極材料A1〜A88については、それらの回折角付近にピークが認められなかった。このことから、負極材料A1〜A88は、その固相Aが非晶質相であるのに対して、負極材料X1〜X22は、その固相Aが結晶質相であることが分かった。また、図1より、負極材料A3の固相Bと、負極材料X3の固相Bとは、同程度の結晶性を有していることも分かった。
【0051】
さらに、表4〜6に示すように、電池A1〜A88の高率放電特性Pの値が90%以上と大きいことから、これらの負極材料を用いることにより高率放電特性の良い非水電解質二次電池を得ることが分かった。
【0052】
さらにまた、表4〜6に示すように、電池A1〜A88の充放電サイクル特性Qの値が90%以上であり、電池X1〜X22の充放電サイクル特性Qの値が78%以下であることから、負極材料A1〜A88を用いることにより充放電サイクル特性の良い非水電解質二次電池を得ることが分かった。
【0053】
[実験2]
固相AのSi含有率と高率放電特性との関係を調べた。
第一の合金塊の作製において、SiとPとの重量比19.9:0.1の混合物に代えて、表7に示す固相Aの各Si含有率を有する混合物を用いるとともに、第一の合金塊と第二の合金塊との重量比を21:79としたこと以外は、実施例1と同様にして、核粒子の表面に被覆層が形成された複合粒子粉末を得た。これらの各複合粒子粉末を篩で分級して、平均粒径45μmの負極材料B1〜B13を作製した。
【0054】
【表7】
Figure 0004368139
【0055】
また、第一の合金塊の作製において、SiとPとの重量比19.9:0.1の混合物に代えて、表8に示す固相Aの各Si含有率を有する混合物を用いるとともに、第一の合金塊と第二の合金塊との重量比を21:79としたこと以外は、実施例45と同様にして、核粒子の表面に被覆層が形成された複合粒子粉末を得た。これらの各複合粒子粉末を篩で分級して、平均粒径45μmの負極材料B14〜B26を作製した。
【0056】
【表8】
Figure 0004368139
【0057】
上記各負極材料(B1〜B26)の固相Aの結晶状態および粉体抵抗率を調べた。また、上記各負極材料を用いて非水電解質二次電池を作製し、各電池の高率放電特性および充放電サイクル特性を調べた。結果を表9および10に示す。
【0058】
【表9】
Figure 0004368139
【0059】
【表10】
Figure 0004368139
【0060】
負極材料B1〜B26のいずれの回折パターンにも、固相Aの結晶面に帰属されるピークが認められなかった。このことから、それらの固相Aが全て非晶質相であることが分かった。また、表9および10より、固相AのSi含有率が低くなるにつれて高率放電特性Pは向上するものの、初期放電容量は減少することが分かった。初期放電容量と高率放電特性との特性バランスを考慮すると、電池B4〜B11および電池B17〜B24が特に優れていた。このことから、固相AのSi含有率として、95〜99.999重量%が好ましいことが分かった。なお、表9および10には示さなかったが、電池B1〜B26の容量維持率Qは86%〜93%であった。
【0061】
[実験3]
核粒子と被覆層との重量比と高率放電特性との関係を調べた。
第一の合金塊と第二の合金塊との重量比を、表11に示す重量比としたこと以外は、実施例2と同様にして、基体粒子の表面に被覆層が形成された複合粒子粉末を得た。これらの各複合粒子粉末を篩で分級して、平均粒径45μmの負極材料D1〜D10を作製した。
【0062】
【表11】
Figure 0004368139
【0063】
また、第一の合金塊と第二の合金塊との重量比を、表12に示す重量比としたこと以外は、実施例46と同様にして、基体粒子の表面に被覆層が形成された複合粒子粉末を得た。これらの各複合粒子粉末を篩で分級して、平均粒径45μmの負極材料D11〜D19を作製した。
【0064】
【表12】
Figure 0004368139
【0065】
上記各負極材料D1〜D19の固相Aの結晶状態および粉体抵抗率を調べた。また、各負極材料を用いて非水電解質二次電池を作製し、各電池の高率放電特性および充放電サイクル特性を調べた。結果を表13および14に示す。
【0066】
【表13】
Figure 0004368139
【0067】
【表14】
Figure 0004368139
【0068】
負極材料D1〜D19のいずれの回折パターンにも、固相Aの結晶面に帰属されるピークは認められなかった。このことから、それらの固相Aが全て非晶質相であることが分かった。また、表13および14より、核粒子に対する被覆層の割合が大きくなるにつれて高率放電特性Pは向上するものの、初期放電容量は減少することが分かった。初期放電容量と高率放電特性との特性バランスを考慮すると、電池D3〜D7および電池D12〜D16が特に優れていた。このことから、基体粒子と被覆層との重量比は、5:95〜40:60が好ましいことが分かった。なお、表13および14には示さなかったが、電池D1〜D19の容量維持率Qは86%〜93%であった。
【0069】
[実験4]
固相Bの種類と高率放電特性との関係を調べた。
実施例1と同様にして、第一の合金塊を得た。この第一の合金塊と表15に示す固相Bの第二の合金塊との重量比22:78の混合物を、遊星ボールミルの容器内に投入し、ミルの回転速度を2800rpmに設定してメカニカルアロイングを1時間行い、核粒子の表面に金属間化合物相からなる被覆層が形成された複合粒子粉末を得た。これらの複合粒子粉末を篩で分級して、平均粒径45μmの負極材料E1〜E11を作製した。
【0070】
【表15】
Figure 0004368139
【0071】
実施例45と同様にして、第一の合金塊を得た。この第一の合金塊と表16に示す固相Bの第二の合金塊との重量比22:78の混合物を、遊星ボールミルの容器内に投入し、ミルの回転速度を2800rpmに設定してメカニカルアロイングを1時間行い、核粒子の表面に固溶体相からなる被覆層が形成された複合粒子粉末を得た。これらの複合粒子粉末を篩で分級して、平均粒径45μmの負極材料E12〜E22を作製した。
【0072】
【表16】
Figure 0004368139
【0073】
各負極材料の固相Aの結晶状態および粉体抵抗率を調べた。また、各負極材料を用いて非水電解質二次電池を作製し、各電池の高率放電特性および充放電サイクル特性を調べた。結果を表17および18に示す。
【0074】
【表17】
Figure 0004368139
【0075】
【表18】
Figure 0004368139
【0076】
負極材料E1〜E22のいずれの回折パターンにも、固相Aの結晶面に帰属されるピークが認められなかった。このことから、これらの固相Aが全て非晶質相であることが分かった。また、表17および18に示すように、電池E8およびE19の初期放電容量が特に大きく、また高率放電特性の値が特に良かった。このことから、固相BがTiとSiとの結晶質合金相である場合、特に固相Bが組成式TiSi2で表される金属間化合物相である場合に、高率放電特性が極めて良く、しかも初期放電容量の大きい非水電解質二次電池が得られることが分かった。なお、表17および18には示さなかったが、電池E1〜E22の容量維持率Qは86%〜93%であった。
【0077】
上記実施例では、負極材料を円筒形の非水電解質二次電池の負極材料として用いる場合について述べたが、本発明負極材料は、円筒形のほか、コイン型、ボタン型、シート型、積層型、偏平型、角型など、種々の形状の非水電解質二次電池の負極材料として用いることができる。
【0078】
【発明の効果】
本発明によれば、Siと、SbおよびPよりなる群から選ばれる少なくとも1種またはBとを含む核粒子の表面の一部または全部に、Siと、金属元素とを含む被覆層が形成された複合粒子からなる非水電解質二次電池用負極材料を作製し、これを非水電解質二次電池に備えることにより、優れた充放電サイクル特性および高率放電特性を有することができる。
【図面の簡単な説明】
【図1】実施例及び比較例で作製した負極材料のX線回折によるパターン図である。
【図2】実施例で作製した円筒形の非水電解質二次電池の縦断面図であり、その内部構造の一部を分解斜視図で示したものである。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 絶縁板
5 電池ケース
6 正極リード
7 ガスケット
8 封口板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved negative electrode material for a non-aqueous electrolyte secondary battery, and more particularly, to a negative electrode material that provides a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics and high rate discharge characteristics. A non-aqueous electrolyte secondary battery comprising the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle powered by a motor, an electric vehicle, It is suitable for a hybrid electric vehicle.
[0002]
[Prior art]
Nonaqueous electrolyte secondary batteries, particularly lithium secondary batteries, having features such as high electromotive force and high energy density, have been conventionally used as main power sources for mobile communication devices and portable electronic devices. As the negative electrode material, lithium metal or graphite is mainly used. In particular, when lithium metal is used, the highest energy density can be obtained.
[0003]
However, a lithium secondary battery using lithium metal as a negative electrode material has a drawback that dendrites deposited on the negative electrode during charging grow by repeated charge and discharge, penetrate the separator, and cause an internal short circuit. In addition, for a lithium secondary battery using graphite as a negative electrode material, the theoretical capacity of graphite (372 mAh / g) is about 10% smaller than the theoretical capacity of lithium metal, which is sufficient for the recent demand for higher energy density. There is a drawback that it cannot respond to.
[0004]
Therefore, in recent years, the use of silicon (Si) as a new negative electrode material has been studied. Silicon theoretically contains up to 22 lithium ions per 5 silicon atoms, ie Li twenty two Si Five It is possible to occlude until the composition becomes. The theoretical capacity of silicon is 4199 mAh / g, which is much larger than the theoretical capacity of graphite. In addition, when silicon is used as the negative electrode material, metal lithium does not precipitate on the surface of the negative electrode during normal charging, so there is no risk of an internal short circuit due to dendrite growth.
[0005]
Many negative electrode materials using such silicon have been proposed so far (see, for example, Patent Documents 1 to 3). In Patent Document 1, a core particle composed of a solid phase A and a composite particle composed of a coating layer of a solid phase B that covers all or part of the surface of the core particle is proposed as a negative electrode material. For the solid phase A, silicon, a solid solution containing silicon, or an intermetallic compound is used. For the solid phase B, silicon, a solid solution containing silicon, or an intermetallic compound is used so that the composition differs from that of the solid phase A. Although not specified in Patent Document 1, since the composite particles are obtained by cooling the molten alloy in an electric furnace, both the solid phase A and the solid phase B are crystalline phases.
[0006]
[Patent Document 1]
JP 2000-30703 A (page 4, [0018])
[Patent Document 2]
JP 2000-243389 A
[Patent Document 3]
JP-A-10-83817
[0007]
[Problems to be solved by the invention]
Silicon expands about four times in volume when it reacts with lithium. For this reason, when charging / discharging of a lithium secondary battery using silicon as a negative electrode material is repeated, there is a problem that a large internal strain is generated in the silicon particles, cracks are generated, and the particles are easily pulverized. Such pulverization leads to deterioration of charge / discharge cycle characteristics of the battery.
[0008]
As proposed in Patent Document 1, it is possible to suppress the pulverization of particles to some extent by alloying silicon with other elements.
However, when both solid phase A and solid phase B are composed of a crystalline phase, it is difficult to sufficiently suppress pulverization.
[0009]
The present invention has been made in view of the above, and provides a negative electrode material that provides a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics and high-rate discharge characteristics by sufficiently suppressing silicon pulverization. With the goal.
[0010]
[Means for Solving the Problems]
That is, the present invention is a negative electrode material for a non-aqueous electrolyte secondary battery comprising composite particles in which a coating layer comprising a solid phase B is formed on part or all of the surface of a core particle comprising a solid phase A, The solid phase A is an amorphous alloy phase containing Si and at least one selected from the group consisting of Sb and P or B, and the solid phase B is Si, Mg, Ti, Zr, V, Mo , W, Mn, Fe, Cu, Co and a crystalline alloy phase containing at least one selected from the group consisting of Ni The solid phase A has a Si content of 95 to 99.99% by weight, and the total content of Sb, P and B in the solid phase A is 0.01 to 5% by weight. The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery.
[0011]
in front The weight ratio of the nucleus particles to the coating layer is preferably 5:95 to 40:60.
[0012]
The solid phase B is preferably composed of a crystalline alloy phase of Si and Ti, and in particular the composition formula is TiSi. 2 It is preferable to consist of the intermetallic compound phase represented by these.
[0013]
The present invention also relates to a negative electrode for a nonaqueous electrolyte secondary battery provided with the above negative electrode material for a nonaqueous electrolyte secondary battery as a material that absorbs and releases lithium ions.
[0014]
The present invention also provides a non-aqueous electrolyte comprising the non-aqueous electrolyte secondary battery negative electrode, a positive electrode capable of occluding and releasing lithium, a separator interposed between the negative electrode and the positive electrode, and a non-aqueous electrolyte. The present invention relates to a secondary battery.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is composed of composite particles in which a coating layer composed of a solid phase B is formed on a part or all of the surface of a core particle composed of a solid phase A. , Si and at least one selected from the group consisting of Sb and P, or B, which is an amorphous alloy phase, where the solid phase B is Si, Mg, Ti, Zr, V, Mo, W, Mn A crystalline alloy phase containing at least one selected from the group consisting of Fe, Cu, Co and Ni.
That is, the solid phase A and the solid phase B are different in composition and crystal state.
[0016]
In the present invention, the amorphous alloy phase means that there is no peak attributed to the crystal plane of the alloy phase in the diffraction pattern obtained by the wide-angle X-ray diffraction method. The crystalline alloy phase means that there is a peak attributed to the crystal plane of the alloy phase in a diffraction pattern obtained by a wide-angle X-ray diffraction method. “No peak” means that the crystallite size after annealing (held at 500 ° C. for 1 hour) is 100 nm or less, or is in an amorphous phase.
[0017]
By making Si amorphous with P, Sb or B, volume expansion of the solid phase A due to the reaction between silicon and lithium can be suppressed. Further, by doping P, Sb or B into Si (hereinafter, P, Sb and B are also referred to as doping elements), the solid phase A is made amorphous by a solid phase reaction such as a mechanical alloying method. The time required for this can be shortened. As a result, it is possible to prevent the solid phase B from becoming amorphous at the stage of producing composite particles composed of the solid phase A and the solid phase B.
[0018]
By forming the coating layer made of the solid phase B on part or all of the surface of the core particle made of the solid phase A, the pulverization of the core particles is suppressed and the electron conductivity of the negative electrode material is improved. The reason why the solid phase B must be a crystalline alloy phase is that if it is an amorphous phase with many crystal grain boundaries, cracks are generated, the electron conductivity is lowered, and the high rate discharge characteristics are lowered. .
[0019]
The Si content of the solid phase A is preferably 95 to 99.999% by weight, and more preferably 98 to 99.99% by weight. When the Si content of the solid phase A is less than 95% by weight, that is, when the content of the doping element exceeds 5% by weight, the capacity of the obtained negative electrode material decreases. Further, even if the doping element is doped more than 5% by weight, the time required for making the solid phase A amorphous is hardly shortened. On the other hand, when the Si content of the solid phase A exceeds 99.999% by weight, that is, when the content of the dope element is less than 0.001% by weight, the non-solid phase A is not produced in the production process by solid phase reaction. Since crystallization hardly proceeds, not only a long time is required to obtain the negative electrode material, but also the solid phase B may become amorphous.
[0020]
As the solid phase B, in order to improve the high rate discharge characteristics, a crystalline alloy phase of Si and Ti having high electron conductivity is preferable. 2 An intermetallic compound phase represented by is particularly preferred. Particles made of a crystalline alloy phase of Si and Ti also have a manufacturing advantage that it is easy to form composite particles with core particles made of solid phase A by a solid phase reaction.
When the solid phase B is a solid solution, the binary alloy preferably has a weight ratio of Si to the alloying element M1 of 10:90 to 40:60, and the ternary alloy is alloyed with Si. The weight ratio of the element M1 and the alloying element M2 is preferably 10:90 (the weight ratio of M1 and M2 is arbitrary) to 40:60 (the weight ratio of M1 and M2 is arbitrary).
[0021]
The weight ratio between the core particles and the coating layer is preferably 5:95 to 40:60. When the ratio of the core particles is too small, the initial discharge capacity decreases. On the other hand, when the ratio of the coating layer is too small, the coating of the core particles is not sufficient, so that the expansion of the solid phase A due to the reaction between Si and Li cannot be effectively suppressed, and the charge / discharge cycle characteristics are deteriorated. Furthermore, the high-rate discharge characteristics are also reduced due to the decrease in electron conductivity.
[0022]
In addition, as long as it is an amount of 0.001% by weight or less for the solid phase A and 0.1% by weight or less for the solid phase B, elements other than the above-described constituent elements, for example, O, C, Impurities such as N, S, Ca, Mg, and Al may be included.
[0023]
Below, the manufacturing method of the negative electrode material of this invention is demonstrated.
First, each element constituting the solid phase A is heated and melted at a predetermined ratio in a melting tank to obtain a molten alloy, and the molten alloy is rapidly solidified to produce a first alloy lump. In addition, each element constituting the solid phase B is heated and melted in a melting tank at a predetermined ratio to obtain a molten alloy, and the molten alloy is rapidly solidified to produce a second alloy lump. Each constituent element to be melted when each molten alloy is obtained may be put into the melting tank in the form of a simple substance, or may be put into the melting tank in the form of an alloy such as a solid solution or an intermetallic compound. As a melting method, a conventionally known method such as a high frequency melting method or an arc melting method can be used. In addition, as a method of rapid solidification, a conventionally known method such as a roll spinning method, a melt drag method, a direct casting rolling method, or the like can be used.
[0024]
Next, the first alloy lump and the second alloy lump are mechanically stirred and mixed using a ball mill to perform so-called mechanical alloying to produce alloy powder. By performing this mechanical alloying for an appropriate period of time, a coating layer made of the solid phase B that is the crystalline alloy phase can be formed on the surface of the core particle made of the solid phase A that is the amorphous alloy phase. .
[0025]
The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention is an electrode using the negative electrode material described above as a material that absorbs and releases lithium ions. For example, the negative electrode material of the present invention is kneaded with a conductive agent and a binder solution to prepare a slurry-like negative electrode mixture, and the negative electrode mixture is made from a copper foil having a thickness of about 1 to 500 μm. A negative electrode plate can be produced by applying the coating onto the substrate, drying it, and rolling it. Instead of the above-mentioned negative electrode mixture, a slurry-like negative electrode mixture obtained by kneading this and a binder solution after forming a conductive agent layer on the particle surface of the negative electrode material of the present invention may be used. . Examples of the conductive agent include graphite such as artificial graphite and expanded graphite, and amorphous carbon such as acetylene black and ketjen black. The general addition amount of the conductive agent is 1 to 50 parts by weight with respect to 100 parts by weight of the negative electrode material. However, when the addition amount of the conductive agent is excessive, the capacity decrease becomes significant. It is preferable not to exceed 30 parts by weight with respect to 100 parts by weight. Examples of the binder include styrene butadiene rubber and polyvinylidene fluoride. Examples of the current collector material include stainless steel, nickel, copper, and copper alloy. Of these, copper and copper alloys having very good electronic conductivity are preferred.
[0026]
【Example】
The present invention will be described in more detail based on examples. The present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention.
[0027]
[Experiment 1]
A negative electrode material of the present invention and a negative electrode material for comparison were prepared, and the crystal state and powder resistivity of the solid phase A of each negative electrode material were examined. Moreover, a non-aqueous electrolyte secondary battery was produced using each negative electrode material, and the high rate discharge characteristics and charge / discharge cycle characteristics of each battery were examined.
[0028]
Example 1
As the solid phase A, Si and P were used, and these were used as a mixture having a weight ratio of 19.9: 0.1. This mixture was put into a high-frequency melting tank to be melted, and the obtained molten alloy was rapidly cooled and solidified by a single roll method to obtain a first alloy lump that is a precursor of core particles.
Moreover, Co and Si were used for the solid phase B, and these were used as a mixture having an atomic ratio of 1: 2. This mixture is put into a high-frequency melting tank to be melted, and the obtained molten alloy is rapidly solidified by a single roll method to obtain a composition formula CoSi. 2 The 2nd alloy lump which is a precursor of the coating layer which consists of intermetallic compounds represented by these was obtained.
Next, a mixture obtained by mixing the first alloy lump and the second alloy lump at a weight ratio of 20:80 is put into a container of a planetary ball mill, the rotational speed of the mill is set to 2800 rpm, and mechanical alloying is performed at 1 Went for hours. As a result, a composite particle powder having a coating layer formed on the surface of the core particle was obtained. The composite particle powder was classified with a sieve to prepare a negative electrode material A1 having an average particle diameter of 45 μm.
[0029]
<< Examples 2-88 >>
A first alloy lump was produced in the same manner as in Example 1 except that the type of the doping element mixed with Si and the weight ratio of Si to the doping element were changed as shown in Table 1 or 2.
As the solid phase B, a second alloy lump made of an intermetallic compound or a solid solution shown in Table 1 or 2 was used.
Next, a mixture obtained by mixing the first alloy lump and the second alloy lump at a weight ratio of 20:80 is put into a container of a planetary ball mill, the rotational speed of the mill is set to 2800 rpm, and mechanical alloying is performed. It went for 1 hour. As a result, a composite particle powder in which a coating layer composed of an intermetallic compound phase or a solid solution phase was formed on the surface of the core particle was obtained. The composite particle powder was classified with a sieve to prepare negative electrode materials A2 to A88 having an average particle diameter of 45 μm.
In addition, for the negative electrode materials A45 to A88 in which the solid phase B forming the coating layer is a solid solution, the atomic ratio between Si and the alloying element M1 is 99 for the binary alloy in producing the second alloy lump. 1 was used, and for the ternary alloy, a mixture in which the atomic ratio of Si, alloying element M1, and alloying element M2 was 99: 0.5: 0.5 was used.
[0030]
[Table 1]
Figure 0004368139
[0031]
[Table 2]
Figure 0004368139
[0032]
<< Comparative Example 1 >>
A composite particle powder in which a coating layer was formed on the surface of the core particle was obtained in the same manner as in Example 1 except that the mechanical alloying time was changed to 30 minutes instead of 1 hour. The composite particle powder was classified with a sieve to produce a negative electrode material X1 having an average particle diameter of 45 μm.
[0033]
<< Comparative Examples 2-22 >>
As the second alloy mass, the composition formula CoSi 2 In the same manner as in Comparative Example 1 except that an alloy lump composed of an intermetallic compound of solid phase B shown in Table 3 or a solid solution was used instead of the alloy lump composed of an intermetallic compound represented by A composite particle powder having a coating layer made of an intermetallic compound or solid solution formed on the surface was obtained. Each composite particle powder was classified with a sieve to prepare negative electrode materials X2 to X22 having an average particle diameter of 45 μm. For the negative electrode materials X12 to X22 in which the solid phase B forming the coating layer is a solid solution, the atomic ratio between Si and the alloying element M1 is 99: 1 in producing the second alloy mass as a binary alloy. A mixture of was used.
[0034]
[Table 3]
Figure 0004368139
[0035]
(I) Preparation of positive electrode plate
Lithium cobaltate (LiCoO) as positive electrode active material 2 ) A mixture of 85 parts by weight of powder, 10 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of PVdF (polyvinylidene fluoride) as a binder is dispersed in NMP (dehydrated N-methyl-2-pyrrolidone). Thus, a slurry-like positive electrode mixture was prepared. This positive electrode mixture was applied onto a positive electrode current collector made of an aluminum foil having a thickness of 20 μm so as to have a thickness of 150 μm per side, dried and rolled to produce a positive electrode plate.
[0036]
(Ii) Production of negative electrode plate
A mixture of 75 parts by weight of each negative electrode material prepared in the above examples or comparative examples, 20 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of PVdF as a binder is dispersed in NMP to form a slurry. A negative electrode mixture was prepared. This negative electrode mixture was applied to a negative electrode current collector made of a copper foil having a thickness of 14 μm so as to have a thickness of 50 μm per side, dried and rolled to prepare a negative electrode plate.
[0037]
(Iii) Preparation of non-aqueous electrolyte
In a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1, LiPF 6 Was dissolved at a concentration of 1 mol / liter to prepare a non-aqueous electrolyte.
[0038]
(Iv) Fabrication of non-aqueous electrolyte secondary battery
Cylindrical nonaqueous electrolyte secondary batteries A1 to A88, X1 to X22 having a diameter of 18 mm and a height of 65 mm using the positive electrode plate, the negative electrode plate, and the nonaqueous electrolyte solution (the symbols of the batteries are the same as those of the negative electrode material used). Corresponding to the code). As the separator, a microporous film made of polyethylene was used.
[0039]
FIG. 2 is a longitudinal sectional view of the produced nonaqueous electrolyte secondary battery, and a part of its internal structure is shown in an exploded perspective view. The nonaqueous electrolyte secondary battery includes a positive electrode 1, a negative electrode 2, a separator 3 that separates both electrodes, an insulating plate 4, a battery case 5, a gasket 7, a sealing plate 8 having a safety valve, a positive electrode lead 6, and the like. The positive electrode 1 and the negative electrode 2 are accommodated in the battery case 5 with the separator 3 interposed therebetween and wound in a spiral shape. The positive electrode 1 is connected to the sealing plate 8 via the positive electrode lead 6 and the negative electrode 2. Are connected to the bottom of the battery case 5 via a negative electrode lead (not shown), respectively, so that they can be charged and discharged.
[0040]
[Crystal state of solid phase A]
In order to evaluate the crystalline state of the solid phase A in each negative electrode material, a wide-angle X-ray diffractometer (product code: RINT-2500, manufactured by Rigaku Corporation) using a CuKα ray having a wavelength of 1.5405 nm as a radiation source was used. The diffraction intensity in the range of diffraction angle 2θ = 10 ° to 80 ° was measured. The presence or absence of a peak attributed to the crystal plane of the solid phase A was examined. The results are shown in Tables 4-6. In the presence or absence of a peak in the table, “None” indicates that there is no peak attributed to the crystal plane of the solid phase A, indicating that the solid phase A was an amorphous phase, and “Yes” indicates that the above peak is present. Present, indicating that solid phase A was a crystalline phase. As an example, the diffraction patterns of the negative electrode materials A3 and X3 are shown in FIG.
In FIG. 1, the horizontal axis represents the diffraction angle 2θ (degrees) of the solid phase A and the solid phase B, and the vertical axis represents the diffraction intensity. In the figure, ◎ indicates a peak attributed to the crystal plane of the solid phase A, and ● indicates a peak attributed to the crystal plane of the solid phase B.
[0041]
[Powder resistivity]
2 g of each negative electrode material was weighed and put into a cell having a total of four measurement points of two current terminals and two voltage terminals, and 400 kgf / cm 2 In the state where the pressure was applied, the current and voltage were measured simultaneously to measure the powder resistivity (Ω · cm) of each negative electrode material (4-terminal method). A negative electrode material having a lower powder resistivity is a negative electrode material having better electron conductivity. The results are shown in Tables 4-6.
[0042]
[Initial discharge capacity and high rate discharge characteristics]
Each battery was put in a thermostat kept at 20 ° C., charged to 4.2 V at 1000 mA, and then discharged to 2.5 V at 200 mA to obtain a discharge capacity C1 (mAh) (initial discharge capacity). Next, each of these batteries was charged at 1000 mA to 4.2 V, and then discharged at 1000 mA to 2.5 V to obtain a discharge capacity C2 (mAh). The ratio P (%) of the discharge capacity C2 to the discharge capacity C1 was calculated based on the following formula (1) to evaluate the high rate discharge characteristics P of each battery. A battery having a larger value of P is a battery having better high rate discharge characteristics. The results are shown in Tables 4-6.
[0043]
P (%) = (C2 / C1) × 100 (1)
[0044]
[Charge / discharge cycle characteristics]
Each battery was placed in a thermostat kept at 20 ° C., charged at 1000 mA to 4.2 V, and then charged and discharged at 200 mA to 2.5 V for 100 cycles. Then, the capacity maintenance rate Q (%) of the discharge capacity C4 of the 100th cycle with respect to the discharge capacity C3 of the first cycle was calculated based on the following formula (2), and the charge / discharge cycle characteristics Q were evaluated. A battery having a larger Q value has better charge / discharge cycle characteristics. The results are shown in Tables 4-6.
[0045]
Q (%) = (C4 / C3) × 100 (2)
[0046]
[Table 4]
Figure 0004368139
[0047]
[Table 5]
Figure 0004368139
[0048]
[Table 6]
Figure 0004368139
[0049]
(V) Battery evaluation
As shown in Tables 4-6, the negative electrode materials A1-A88 have a powder resistivity of 1 × 10 -1 ~ 9x10 -1 While the low value of Ω · cm was obtained, the powder resistivity of the negative electrode materials X1 to X22 was 5 × 10 0 ~ 9.5 × 10 0 The value was as high as Ω · cm. From this, it was found that the negative electrode materials A1 to A88 had better electron conductivity than the negative electrode materials X1 to X22.
[0050]
Further, as seen in the diffraction pattern of the negative electrode material X3 in FIG. 1, for the negative electrode materials X1 to X22 of the comparative example, near the diffraction angles (2θ = 28 ° and 48 °) attributed to the crystal plane of the solid phase A However, as can be seen in the diffraction pattern of the negative electrode material A3, no peak was observed in the vicinity of the diffraction angles of the negative electrode materials A1 to A88 of the example. From this, it was found that the solid phase A of the negative electrode materials A1 to A88 is an amorphous phase, whereas the solid phase A of the negative electrode materials X1 to X22 is a crystalline phase. Further, FIG. 1 also shows that the solid phase B of the negative electrode material A3 and the solid phase B of the negative electrode material X3 have the same degree of crystallinity.
[0051]
Further, as shown in Tables 4 to 6, since the value of the high rate discharge characteristic P of the batteries A1 to A88 is as large as 90% or more, the use of these negative electrode materials makes it possible to obtain a non-aqueous electrolyte with good high rate discharge characteristics. It turns out that the next battery is obtained.
[0052]
Furthermore, as shown in Tables 4 to 6, the values of the charge / discharge cycle characteristics Q of the batteries A1 to A88 are 90% or more, and the values of the charge / discharge cycle characteristics Q of the batteries X1 to X22 are 78% or less. Thus, it was found that by using the negative electrode materials A1 to A88, a nonaqueous electrolyte secondary battery having good charge / discharge cycle characteristics was obtained.
[0053]
[Experiment 2]
The relationship between the Si content of the solid phase A and the high rate discharge characteristics was investigated.
In the production of the first alloy lump, instead of the mixture of Si and P having a weight ratio of 19.9: 0.1, a mixture having each Si content of solid phase A shown in Table 7 was used. A composite particle powder having a coating layer formed on the surface of the core particle was obtained in the same manner as in Example 1 except that the weight ratio of the alloy lump and the second alloy lump was 21:79. Each of these composite particle powders was classified with a sieve to prepare negative electrode materials B1 to B13 having an average particle diameter of 45 μm.
[0054]
[Table 7]
Figure 0004368139
[0055]
Further, in the production of the first alloy lump, instead of a mixture of Si and P in a weight ratio of 19.9: 0.1, a mixture having each Si content of solid phase A shown in Table 8 was used, A composite particle powder having a coating layer formed on the surface of the core particle was obtained in the same manner as in Example 45 except that the weight ratio of the first alloy lump to the second alloy lump was 21:79. . Each of these composite particle powders was classified with a sieve to prepare negative electrode materials B14 to B26 having an average particle diameter of 45 μm.
[0056]
[Table 8]
Figure 0004368139
[0057]
The crystal state and powder resistivity of the solid phase A of each of the negative electrode materials (B1 to B26) were examined. In addition, a non-aqueous electrolyte secondary battery was produced using each of the negative electrode materials, and the high rate discharge characteristics and charge / discharge cycle characteristics of each battery were examined. The results are shown in Tables 9 and 10.
[0058]
[Table 9]
Figure 0004368139
[0059]
[Table 10]
Figure 0004368139
[0060]
In any of the diffraction patterns of the negative electrode materials B1 to B26, no peak attributed to the crystal plane of the solid phase A was observed. From this, it was found that those solid phases A were all amorphous phases. Further, from Tables 9 and 10, it was found that, as the Si content of the solid phase A decreases, the high rate discharge characteristic P improves, but the initial discharge capacity decreases. Considering the characteristic balance between the initial discharge capacity and the high rate discharge characteristics, the batteries B4 to B11 and the batteries B17 to B24 were particularly excellent. From this, it was found that the Si content of the solid phase A is preferably 95 to 99.999% by weight. Although not shown in Tables 9 and 10, the capacity maintenance rates Q of the batteries B1 to B26 were 86% to 93%.
[0061]
[Experiment 3]
The relationship between the weight ratio between the core particles and the coating layer and the high rate discharge characteristics was investigated.
A composite particle in which a coating layer is formed on the surface of the base particle in the same manner as in Example 2 except that the weight ratio of the first alloy lump to the second alloy lump was changed to the weight ratio shown in Table 11. A powder was obtained. These composite particle powders were classified with a sieve to prepare negative electrode materials D1 to D10 having an average particle diameter of 45 μm.
[0062]
[Table 11]
Figure 0004368139
[0063]
Further, a coating layer was formed on the surface of the base particle in the same manner as in Example 46 except that the weight ratio of the first alloy lump and the second alloy lump was changed to the weight ratio shown in Table 12. A composite particle powder was obtained. These composite particle powders were classified with a sieve to prepare negative electrode materials D11 to D19 having an average particle diameter of 45 μm.
[0064]
[Table 12]
Figure 0004368139
[0065]
The crystal state and powder resistivity of the solid phase A of each of the negative electrode materials D1 to D19 were examined. Moreover, a non-aqueous electrolyte secondary battery was produced using each negative electrode material, and the high rate discharge characteristics and charge / discharge cycle characteristics of each battery were examined. The results are shown in Tables 13 and 14.
[0066]
[Table 13]
Figure 0004368139
[0067]
[Table 14]
Figure 0004368139
[0068]
No peak attributed to the crystal plane of the solid phase A was observed in any of the diffraction patterns of the negative electrode materials D1 to D19. From this, it was found that those solid phases A were all amorphous phases. Further, from Tables 13 and 14, it was found that, as the ratio of the coating layer to the core particles increases, the high rate discharge characteristic P improves, but the initial discharge capacity decreases. In consideration of the balance between the initial discharge capacity and the high rate discharge characteristics, the batteries D3 to D7 and the batteries D12 to D16 were particularly excellent. From this, it was found that the weight ratio of the base particles to the coating layer is preferably 5:95 to 40:60. Although not shown in Tables 13 and 14, the capacity maintenance rates Q of the batteries D1 to D19 were 86% to 93%.
[0069]
[Experiment 4]
The relationship between the type of solid phase B and high rate discharge characteristics was investigated.
In the same manner as in Example 1, a first alloy lump was obtained. A mixture of the first alloy lump and the second alloy lump of solid phase B shown in Table 15 in a weight ratio of 22:78 was put into a container of a planetary ball mill, and the rotation speed of the mill was set to 2800 rpm. Mechanical alloying was performed for 1 hour to obtain a composite particle powder in which a coating layer composed of an intermetallic compound phase was formed on the surface of the core particle. These composite particle powders were classified with a sieve to prepare negative electrode materials E1 to E11 having an average particle diameter of 45 μm.
[0070]
[Table 15]
Figure 0004368139
[0071]
In the same manner as in Example 45, a first alloy ingot was obtained. A mixture of the first alloy lump and the second alloy lump of solid phase B shown in Table 16 in a weight ratio of 22:78 was put into a container of a planetary ball mill, and the rotation speed of the mill was set to 2800 rpm. Mechanical alloying was performed for 1 hour to obtain a composite particle powder in which a coating layer composed of a solid solution phase was formed on the surface of the core particle. These composite particle powders were classified with a sieve to prepare negative electrode materials E12 to E22 having an average particle diameter of 45 μm.
[0072]
[Table 16]
Figure 0004368139
[0073]
The crystal state of the solid phase A and the powder resistivity of each negative electrode material were examined. Moreover, a non-aqueous electrolyte secondary battery was produced using each negative electrode material, and the high rate discharge characteristics and charge / discharge cycle characteristics of each battery were examined. The results are shown in Tables 17 and 18.
[0074]
[Table 17]
Figure 0004368139
[0075]
[Table 18]
Figure 0004368139
[0076]
No peak attributed to the crystal plane of the solid phase A was observed in any diffraction pattern of the negative electrode materials E1 to E22. From this, it was found that these solid phases A were all amorphous. Further, as shown in Tables 17 and 18, the initial discharge capacities of the batteries E8 and E19 were particularly large, and the value of the high rate discharge characteristic was particularly good. From this, when the solid phase B is a crystalline alloy phase of Ti and Si, the solid phase B particularly has the composition formula TiSi. 2 It was found that a non-aqueous electrolyte secondary battery having a very good high rate discharge characteristic and a large initial discharge capacity can be obtained when the intermetallic compound phase represented by Although not shown in Tables 17 and 18, the capacity maintenance rates Q of the batteries E1 to E22 were 86% to 93%.
[0077]
In the above embodiment, the case where the negative electrode material is used as the negative electrode material of the cylindrical non-aqueous electrolyte secondary battery is described. However, the negative electrode material of the present invention is not only cylindrical but also coin type, button type, sheet type, laminated type In addition, it can be used as a negative electrode material for non-aqueous electrolyte secondary batteries having various shapes such as flat type and square type.
[0078]
【The invention's effect】
According to the present invention, a coating layer containing Si and a metal element is formed on part or all of the surface of a core particle containing Si and at least one selected from the group consisting of Sb and P or B. By preparing a negative electrode material for a non-aqueous electrolyte secondary battery composed of the composite particles and providing it in a non-aqueous electrolyte secondary battery, it is possible to have excellent charge / discharge cycle characteristics and high rate discharge characteristics.
[Brief description of the drawings]
FIG. 1 is a pattern diagram by X-ray diffraction of negative electrode materials prepared in Examples and Comparative Examples.
FIG. 2 is a longitudinal sectional view of a cylindrical non-aqueous electrolyte secondary battery manufactured in an example, showing a part of its internal structure in an exploded perspective view.
[Explanation of symbols]
1 Positive electrode
2 Negative electrode
3 Separator
4 Insulation plate
5 Battery case
6 Positive lead
7 Gasket
8 Sealing plate

Claims (6)

固相Aからなる核粒子の表面の一部または全部に、固相Bからなる被覆層が形成された複合粒子からなる非水電解質二次電池用負極材料であって、
固相Aは、Siと、SbおよびPよりなる群から選ばれる少なくとも1種またはBとを含む非晶質合金相であり、
固相Bは、Siと、Mg、Ti、Zr、V、Mo、W、Mn、Fe、Cu、CoおよびNiよりなる群から選ばれる少なくとも1種とを含む結晶質合金相であり、
前記固相AのSi含有率が、95〜99.99重量%であり、
前記固相AにおけるSb、PおよびBの合計の含有率が、0.01〜5重量%である、非水電解質二次電池用負極材料。
A negative electrode material for a non-aqueous electrolyte secondary battery comprising composite particles in which a coating layer comprising a solid phase B is formed on part or all of the surface of a core particle comprising a solid phase A,
The solid phase A is an amorphous alloy phase containing Si and at least one selected from the group consisting of Sb and P or B,
Solid Phase B, Si and, Mg, Ti, Zr, V , Mo, W, Mn, Ri crystalline alloy phase der containing at least one kind Fe, Cu, selected from the group consisting of Co and Ni,
The Si content of the solid phase A is 95-99.99 wt%,
A negative electrode material for a non-aqueous electrolyte secondary battery, wherein the total content of Sb, P and B in the solid phase A is 0.01 to 5% by weight .
前記核粒子と前記被覆層との重量比が、5:95〜40:60である請求項1に記載の非水電解質二次電池用負極材料。2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein a weight ratio of the core particles to the coating layer is 5:95 to 40:60. 固相Bは、SiとTiとの結晶質合金相からなる請求項1または2に記載の非水電解質二次電池用負極材料。The solid phase B is a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1 or 2 , comprising a crystalline alloy phase of Si and Ti. 前記SiとTiとの結晶質合金相が、組成式TiSi2で表される金属間化合物相である請求項3に記載の非水電解質二次電池用負極材料。The negative electrode material for a nonaqueous electrolyte secondary battery according to claim 3, wherein the crystalline alloy phase of Si and Ti is an intermetallic compound phase represented by a composition formula TiSi 2 . 請求項1〜のいずれかに記載の非水電解質二次電池用負極材料を、リチウムイオンを吸蔵および放出する材料として備えた非水電解質二次電池用負極。A negative electrode for a non-aqueous electrolyte secondary battery comprising the negative electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4 as a material that absorbs and releases lithium ions. 請求項記載の非水電解質二次電池用負極と、リチウムの吸蔵・放出が可能な正極と、前記負極と正極との間に介在するセパレータと、非水電解質を具備する非水電解質二次電池。A nonaqueous electrolyte secondary battery comprising: a negative electrode for a nonaqueous electrolyte secondary battery according to claim 5; a positive electrode capable of inserting and extracting lithium; a separator interposed between the negative electrode and the positive electrode; and a nonaqueous electrolyte. battery.
JP2003129705A 2003-05-08 2003-05-08 Anode material for non-aqueous electrolyte secondary battery Expired - Fee Related JP4368139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129705A JP4368139B2 (en) 2003-05-08 2003-05-08 Anode material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129705A JP4368139B2 (en) 2003-05-08 2003-05-08 Anode material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004335272A JP2004335272A (en) 2004-11-25
JP4368139B2 true JP4368139B2 (en) 2009-11-18

Family

ID=33505427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129705A Expired - Fee Related JP4368139B2 (en) 2003-05-08 2003-05-08 Anode material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4368139B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201060A (en) * 2010-11-08 2013-07-10 古河电气工业株式会社 Nanoscale particles used in negative electrode for lithium ion secondary battery and method for manufacturing same
KR101520557B1 (en) * 2010-11-08 2015-05-14 후루카와 덴키 고교 가부시키가이샤 Non-aqueous electrolyte secondary battery

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030414B2 (en) * 2004-11-15 2012-09-19 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7955735B2 (en) 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP4984402B2 (en) * 2005-02-28 2012-07-25 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN100533821C (en) * 2005-06-03 2009-08-26 松下电器产业株式会社 Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode
US7771861B2 (en) 2005-10-13 2010-08-10 3M Innovative Properties Company Method of using an electrochemical cell
US7662514B2 (en) 2005-11-17 2010-02-16 Panasonic Corporation Non-aqueous electrolyte secondary battery and method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP5061458B2 (en) 2005-12-19 2012-10-31 パナソニック株式会社 Anode material for non-aqueous electrolyte secondary battery and method for producing the same
EP2375476B1 (en) * 2008-12-30 2017-04-12 LG Chem, Ltd. Active anode substance for secondary battery
JP5656570B2 (en) * 2010-11-08 2015-01-21 古河電気工業株式会社 Method for producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode material for lithium ion secondary battery
JP2012101958A (en) * 2010-11-08 2012-05-31 Furukawa Electric Co Ltd:The Nanoscale particle, negative electrode material for lithium ion secondary battery containing the same, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for producing the nanoscale particle
JP2012102354A (en) * 2010-11-08 2012-05-31 Furukawa Electric Co Ltd:The Nano-size particle, negative electrode material for lithium ion secondary battery including the nano-size particle, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing the nano-size particle
KR101718058B1 (en) 2012-08-01 2017-03-20 삼성에스디아이 주식회사 Negative active material, preparing method thereof, and lithium battery employing the same
KR101739297B1 (en) 2012-11-27 2017-05-24 삼성에스디아이 주식회사 Anode active material, lithium secondary battery employing the same, and preparing method thereof
KR20150006703A (en) * 2013-07-09 2015-01-19 삼성정밀화학 주식회사 Negative active material for rechargeabl lithium battery, composition for negative electrode including the same, and rechargeabl lithium battery
JP6318859B2 (en) * 2014-05-29 2018-05-09 株式会社豊田自動織機 Copper-containing silicon material, manufacturing method thereof, negative electrode active material, and secondary battery
WO2016098215A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Electrical device
JP6380554B2 (en) * 2014-12-17 2018-08-29 日産自動車株式会社 Electrical device
JP2016225143A (en) * 2015-05-29 2016-12-28 エルジー・ケム・リミテッド Negative electrode material for secondary battery and nonaqueous electrolyte secondary battery using the same
CN110828794B (en) * 2019-10-28 2021-01-15 珠海格力绿色再生资源有限公司 Preparation method of multiple modified silicon-manganese alloy composite negative electrode material
CN114097108A (en) * 2021-03-26 2022-02-25 宁德新能源科技有限公司 Cathode material, preparation method thereof, electrochemical device and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201060A (en) * 2010-11-08 2013-07-10 古河电气工业株式会社 Nanoscale particles used in negative electrode for lithium ion secondary battery and method for manufacturing same
KR101520557B1 (en) * 2010-11-08 2015-05-14 후루카와 덴키 고교 가부시키가이샤 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2004335272A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP4368139B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP3846661B2 (en) Lithium secondary battery
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JP4767428B2 (en) Nonaqueous electrolyte secondary battery
WO2013115223A1 (en) Si-BASED-ALLOY ANODE MATERIAL
JP5790282B2 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP4739462B1 (en) Si-based alloy negative electrode material with excellent conductivity
TW201316596A (en) Negative electrode active material for lithium ion battery, and negative electrode for lithium ion battery using the same
JP4270894B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2001332255A (en) Negative electrode of lithium secondary battery
JP2001338646A (en) Lithium secondary battery negative electrode
WO2014034494A1 (en) Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
JP2002216746A (en) Negative electrode for lithium secondary battery and its manufacturing method
WO2003079469A1 (en) Cathode material and non-aqueous electrolyte secondary battery using it
JP2004185991A (en) Negative electrode material for lithium secondary battery, lithium secondary battery using the same, and negative electrode material manufcturing method
JP2004087264A (en) Negative electrode material for non-water electrolysis liquid secondary battery, and its manufacturing method
KR101840885B1 (en) Thin film alloy electrodes
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4439660B2 (en) Nonaqueous electrolyte secondary battery
JP2004356054A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, negative electrode for nonaqueous electrolyte secondary battery using it, and nonaqueous electrolyte secondary battery
JP4372451B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6245954B2 (en) Negative electrode active material for lithium ion secondary battery
JP4032893B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP3567843B2 (en) Anode materials for non-aqueous electrolyte secondary batteries
JP2004193005A (en) Electrode material for nonaqueous electrolyte battery, electrode, and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees