JPS63175348A - Lithium cell - Google Patents

Lithium cell

Info

Publication number
JPS63175348A
JPS63175348A JP62007354A JP735487A JPS63175348A JP S63175348 A JPS63175348 A JP S63175348A JP 62007354 A JP62007354 A JP 62007354A JP 735487 A JP735487 A JP 735487A JP S63175348 A JPS63175348 A JP S63175348A
Authority
JP
Japan
Prior art keywords
lithium
separator
nonwoven fabric
negative electrode
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62007354A
Other languages
Japanese (ja)
Inventor
Hiroshi Sasama
笹間 拓
Kiyoshi Miso
三曽 清
Masahiko Imaizumi
今泉 雅彦
Osamu Okamoto
修 岡本
Futayasu Iwamaru
岩丸 二康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP62007354A priority Critical patent/JPS63175348A/en
Publication of JPS63175348A publication Critical patent/JPS63175348A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent a short from occurring, by installing a lithium alloy layer in the side opposed to a separator of the lithium layer of a negative electrode, and combining a micro-porous resin film of the specified hole diameter as the separator together with a nonwoven fabric of the specified porosity. CONSTITUTION:As metals to be electrochemically alloyed with lithium, those of aluminum, tin, zinc, lead, bismuth, silicon, antimony, magnesium, gallium, germanium, etc., are used. As a separator 2, a micro-porous resin film of less than 0.3mum in hole diameter and a nonwoven fabric of 70-90 capacity% in porosity are combined together and used. And, the micro-porous resin film small in hole diameter and high in stopping power of movement in lithium alloy powder is set up at the side of a negative electrode 2, preventing this lithium alloy powder from being passed through, while the nonwoven fabric high in holding capacity of an electrolyte is set up at the side of a positive electrode 4, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to lithium batteries.

〔従来の技術〕[Conventional technology]

リチウム電池では、負極に金属リチウムが用いられてい
るが、リチウムは化学的に非常に活性であり、その化学
的活性の大きいことが電池としての種々の特長を生み出
すものの、その反面では活性が強すぎるために電池の使
用中あるいは貯蔵中に種々の問題を引き起こす0例えば
二次電池では、充電時の電着リチウムが特に活性が強く
電解液中の成分と反応して負極表面に不働態膜を生成し
、負極を劣化させて充放電サイクル特性の低下を引き起
こすことが報告されている。そのため、リチウムをアル
ミニウムと合金化し、充電時にリチウムとアルミニウム
との電気化学的合金化反応を利用して、活性な電着リチ
ウムの状態でとどまるのを極力少なくして、負極の劣化
を防止し、充放電サイクル特性を向上させることが提案
されている(例えば、米国特許第4,002,492号
明細書)。しかし、上記のようなリチウムの合金化は、
二次電池では一次電池におけるほど放電容量の低下に対
して考慮を払う必要がなく、合金化による放電容量の低
下よりも充放電サイクル特性の向上の方がより望ましい
ということに立贋しており、合金化の程度もリチウム含
有量がかなり低くなるまで合金化が行われ、例えば特開
昭61−208749号公報ではリチウム含有量が35
〜58原子%(atomic%)で好ましい結果が得ら
れると記載されている。
In lithium batteries, metallic lithium is used for the negative electrode, but lithium is chemically very active, and although its high chemical activity gives it various features as a battery, on the other hand, it is also highly active. For example, in secondary batteries, electrodeposited lithium during charging is particularly active and reacts with components in the electrolyte, causing various problems during battery use or storage. It has been reported that the negative electrode is generated and the negative electrode is deteriorated, resulting in a decrease in charge/discharge cycle characteristics. Therefore, by alloying lithium with aluminum and utilizing the electrochemical alloying reaction between lithium and aluminum during charging, we minimize the amount of lithium remaining in the active electrodeposited state and prevent deterioration of the negative electrode. It has been proposed to improve charge/discharge cycle characteristics (eg, US Pat. No. 4,002,492). However, the alloying of lithium as described above
In secondary batteries, it is not necessary to pay as much consideration to a decrease in discharge capacity as in primary batteries, and it is argued that it is more desirable to improve charge-discharge cycle characteristics than to reduce discharge capacity due to alloying. The degree of alloying is also carried out until the lithium content is considerably low. For example, in JP-A No. 61-208749, the lithium content is 35
It is stated that preferable results can be obtained at atomic % to 58 atomic %.

また、−次電池においても、リチウム板のセパレータと
対向する側の面に、アルミニウム、鉛、亜鉛、錫、ビス
マス、インジウム、ガリウム、マグネシウムなどのリチ
ウムと電気化学的に合金化する金属の薄板を配置して、
電解液の存在下にリチウムと上記金属とを電気化学的に
合金化させ、リチウム表面の活性を低下させて、電解液
との反応を抑制し、負極表面への不働態膜の生成を防止
して、負極の界面抵抗の増加を抑制し、貯蔵特性や閉路
電圧特性を向上させることが研究され、既に特許出願が
なされている(特開昭61−74264号公報)。
Furthermore, in secondary batteries, a thin plate of a metal that electrochemically alloys with lithium, such as aluminum, lead, zinc, tin, bismuth, indium, gallium, or magnesium, is placed on the side of the lithium plate facing the separator. Place it and
Lithium and the above metals are electrochemically alloyed in the presence of an electrolyte to reduce the activity of the lithium surface, suppress the reaction with the electrolyte, and prevent the formation of a passive film on the negative electrode surface. Therefore, research has been conducted on suppressing the increase in the interfacial resistance of the negative electrode and improving storage characteristics and closed circuit voltage characteristics, and a patent application has already been filed (Japanese Patent Application Laid-Open No. 74264/1983).

しかし、上記のようにリチウムと他の金属とを電解液の
存在下で電気化学的に合金化させた場合、合金が微粉末
化し、それがまた、負極の反応面積を増加させ、電解液
を保持して、パルス閉路電圧を高めるなど、電池性能を
向上させる要因となるが、その反面では、粉末化したリ
チウム合金がセパレータを通り抜け、正極に達して短絡
を引き起こす。
However, when lithium and other metals are electrochemically alloyed in the presence of an electrolyte as described above, the alloy becomes a fine powder, which also increases the reaction area of the negative electrode and displaces the electrolyte. This is a factor that improves battery performance by increasing the pulse closing voltage, but on the other hand, the powdered lithium alloy passes through the separator and reaches the positive electrode, causing a short circuit.

特に二酸化マンガンを正極活物質とするリチウム電池で
は、正極活物質の充填量を高め、かつ厚みの薄い正極で
も適当な強度が保ち得るように、正極の空隙率は比較的
小さく成形されるので、正極内に充分な電解液を吸蔵す
ることができず、そのため、セパレータにはポリプロピ
レン不織布などの電解液保持能力が高い不織布が用いら
れているが、従来使用の不織布は空孔の孔径が約40μ
mと大きいため、リチウム合金層をセパレータに対向す
る側に設けると、微粉末化したリチウム合金がセパレー
タを通り抜けて短絡を非常に起こしやすい状況にある。
In particular, in lithium batteries that use manganese dioxide as the positive electrode active material, the porosity of the positive electrode is molded to be relatively small in order to increase the filling amount of the positive electrode active material and maintain appropriate strength even with a thin positive electrode. It is not possible to store enough electrolyte in the positive electrode, so nonwoven fabrics with high electrolyte holding capacity, such as polypropylene nonwoven fabric, are used for the separator, but conventionally used nonwoven fabrics have pores of about 40μ
If the lithium alloy layer is provided on the side facing the separator, the finely powdered lithium alloy will pass through the separator and cause a short circuit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は上記従来のリチウム電池が持っていたリチウ
ム合金粉末がセパレータを通り抜けて内部短絡を引き起
こすという問題点を解決し、短絡発生がなく、かつ電池
性能の優れたリチウム電池を提供することを目的とする
The purpose of this invention is to solve the problem of the lithium alloy powder of the conventional lithium battery passing through the separator and causing an internal short circuit, and to provide a lithium battery that is free from short circuits and has excellent battery performance. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、負極のリチウム層のセパレータと対向する側
に電気化学的合金化によるリチウム合金層を設けること
によって、パルス閉路電圧特性などの電池性能を向上さ
せるとともに、セパレータとして孔径が0.3μm以下
の微孔性樹脂フィルムと空孔率が70〜90容量%の不
織布とを組み合わせて用い、かつ上記微孔性樹脂フィル
ムを負極と対向する側に配置し、不織布を正極と対向す
る側に配置することによって、リチウム合金層の微粉末
化によるセパレータの通り抜は防止と正負極界面におけ
る充分な電解液の確保を達成して、短絡発生がなく、か
つ電池性能の優れたリチウム電池を提供したものである
The present invention improves battery performance such as pulsed circuit voltage characteristics by providing a lithium alloy layer by electrochemical alloying on the side facing the separator of the lithium layer of the negative electrode, and the pore diameter of the separator is 0.3 μm or less. A microporous resin film and a nonwoven fabric having a porosity of 70 to 90% by volume are used in combination, and the microporous resin film is placed on the side facing the negative electrode, and the nonwoven fabric is placed on the side facing the positive electrode. By doing so, it was possible to prevent the lithium alloy layer from passing through the separator due to the pulverization, and to ensure sufficient electrolyte at the positive and negative electrode interfaces, thereby providing a lithium battery with no short circuits and excellent battery performance. It is something.

すなわち、リチウムをアルミニウムなどと電解液の存在
下に電気化学的に合金化させると、リチウム合金が粉末
化する。この粉末化の程度は、リチウムに対する他の金
属の合金化比率、合金化する金属の種類、合金化時の温
度などによって異なる゛が、最も小さい粒子は0.4μ
m程度のものがあり、使用するセパレータについて考慮
を払うことなく、従来使用のポリプロピレン不織布など
をそのままセパレータとして使用すると、リチウム合金
粉末がセパレータを通り抜けて正極に達して内部短絡を
引き起こす、そこで、本発明では、セパレータとして孔
径が0.3μm以下の微孔性樹脂フィルムと空孔率が7
0〜90容量%の不織布を組み合わせて用い、かつ上記
のように孔径が小さくリチウム合金粉末の移動阻止能が
高い微孔性樹脂フィルムを負極側に配置して、リチウム
合金粉末の通り抜けを防止し、電解液の保持能力が高い
不織布を正極側に配置して正負極界面に充分な電解液が
確保されるようにして、短絡発生がなく、かつ電池性能
の優れたリチウム電池を提供したものである。
That is, when lithium is electrochemically alloyed with aluminum or the like in the presence of an electrolyte, the lithium alloy is powdered. The degree of this powdering varies depending on the alloying ratio of other metals to lithium, the type of metal to be alloyed, the temperature during alloying, etc., but the smallest particle is 0.4 μm.
If conventionally used polypropylene nonwoven fabric is used as a separator without paying any consideration to the separator used, the lithium alloy powder will pass through the separator and reach the positive electrode, causing an internal short circuit. In the invention, a microporous resin film with a pore diameter of 0.3 μm or less and a porosity of 7 is used as a separator.
A microporous resin film that uses a combination of 0 to 90% by volume nonwoven fabric and has a small pore size and a high ability to inhibit the movement of lithium alloy powder as described above is placed on the negative electrode side to prevent the lithium alloy powder from passing through. , a nonwoven fabric with high electrolyte retention capacity is placed on the positive electrode side to ensure sufficient electrolyte at the interface between the positive and negative electrodes, thereby providing a lithium battery that is free from short circuits and has excellent battery performance. be.

本発明において、セパレータに用いる微孔性樹脂フィル
ムとしては、例えば微孔性ポリプロピレンフィルム、微
孔性ポリエチレンフィルム、微孔性ナイロンフィルムな
どがあげられる。特に「ジュラガード」の商品名で市販
されている微孔性ポリプロピレンフィルムが好用される
。そして、上記微孔性ポリプロピレンフィルムの中には
、その微孔が真円形ではなく方向性を有していて、その
長袖方向の長さく長径)と短軸方向の長さく短径)が異
なっているものがあるが、そのように微孔が方向性を有
する場合は、たとえ長軸方向の長さく長径)が0.3μ
鋼より大きい場合でも、短軸方向の長さく短径)が0.
3μm以下であれば、そのような方向性を持つ微孔を設
けた微孔性樹脂フィルムをその微孔の方向が直交するよ
うに2枚以上重ね合わせて使用することにより、セパレ
ータの微孔の孔径を実質的に0.3μm以下にすること
ができるので、この場合も本発明の範囲に含まれる。
In the present invention, examples of the microporous resin film used for the separator include microporous polypropylene film, microporous polyethylene film, and microporous nylon film. In particular, a microporous polypropylene film commercially available under the trade name "Duraguard" is preferably used. In the above-mentioned microporous polypropylene film, the micropores are not perfectly circular but have directionality, and the length in the long axis direction (long axis) and the short axis direction (length in the short axis direction) are different. However, if the micropores have directionality, even if the length in the major axis direction (major axis) is 0.3μ
Even if it is larger than steel, the length in the minor axis direction (minor axis) is 0.
If the diameter is 3 μm or less, the fine pores of the separator can be reduced by stacking two or more microporous resin films with such directional micropores so that the directions of the micropores are perpendicular to each other. Since the pore diameter can be substantially reduced to 0.3 μm or less, this case is also within the scope of the present invention.

なお、セパレータの孔径は小さいほど短絡防止という観
点からは好ましいが、孔径が小さくなると、電池の内部
抵抗が太き(なるおそれがあるので、最大孔径が0.3
μm以下の範囲で、0.03μm以上の微孔性樹脂フィ
ルムを用いることが好ましい。
Note that the smaller the pore diameter of the separator is, the better it is from the viewpoint of preventing short circuits, but if the pore diameter is small, the internal resistance of the battery may become thicker, so the maximum pore diameter should be 0.3
It is preferable to use a microporous resin film of 0.03 μm or more within the range of μm or less.

一方、不織布としては、例えばポリプロピレン不織布、
ポリエチレン不織布、ナイロン不織布、ポリエステル不
織布などが用いられる。そして、本発明においては、上
記不織布として空孔率が70〜90容量%のものを用い
るが、これは空孔率が70容景%より小さくなると電解
液の保持能力が低下し、放電反応に必要な電解液を保持
できなくなり、また空孔率が90容量%を超えると強度
が弱くなり、破れて電解液の保持材料としての役割を果
たせな(なるからである。
On the other hand, examples of nonwoven fabric include polypropylene nonwoven fabric,
Polyethylene nonwoven fabric, nylon nonwoven fabric, polyester nonwoven fabric, etc. are used. In the present invention, a nonwoven fabric with a porosity of 70 to 90% by volume is used, but if the porosity is less than 70% by volume, the electrolyte retention capacity will decrease and the discharge reaction will be inhibited. If the porosity exceeds 90% by volume, the material will not be able to hold the necessary electrolytic solution, and if the porosity exceeds 90% by volume, the strength will become weak, and it will break and be unable to fulfill its role as an electrolyte-retaining material.

本発明において、リチウム合金層を形成するために用い
られるリチウムと電気化学的に合金化する金属としては
、例えばアルミニウム、錫、亜鉛、鉛、ビスマス、ケイ
素、アンチモン、マグネシウム、インジウム、ガリウム
、ゲルマニウムなどがあげられる。特にアルミニウム、
錫、亜鉛、鉛、ビスマス、ケイ素、アンチモン、マグネ
シウムなどはパルス閉路電圧特性を向上させる効果が大
きく、本発明において好用される。
In the present invention, metals that are electrochemically alloyed with lithium and used to form the lithium alloy layer include, for example, aluminum, tin, zinc, lead, bismuth, silicon, antimony, magnesium, indium, gallium, germanium, etc. can be given. Especially aluminum,
Tin, zinc, lead, bismuth, silicon, antimony, magnesium, etc. have a great effect of improving the pulse closed circuit voltage characteristics and are preferably used in the present invention.

リチウム合金層の形成は、通常、負極缶にリチウム板と
、アルミニウム板などのリチウムと電気化学的に合金化
する金属(以下、簡略化のためアルミニウムを代表的に
例をあげて説明する)の板を挿入し、電池組立をして、
電池内で電解液の存在下にリチウム板のアルミニウム板
近傍のリチウムとアルミニウムとを電気化学的に合金化
させることによって形成される。
The formation of the lithium alloy layer is usually done by placing a lithium plate in the negative electrode can and a metal that electrochemically alloys with lithium, such as an aluminum plate (hereinafter, aluminum will be explained as a representative example for simplicity). Insert the board, assemble the battery,
It is formed by electrochemically alloying lithium and aluminum near the aluminum plate of a lithium plate in the presence of an electrolyte in a battery.

リチウム合金層の厚さは、薄いものでよく、微粉末化し
ているため正確な厚み測定は困難であるが、5μm程度
以上あれば、貯蔵中におけるリチウムと水分や電解液中
の不純物との反応を抑制することができ、またリチウム
合金の微粉末化による負極の反応面積増加とリチウム合
金微粉末の電解液保持作用とによりパルス閉路電圧特性
などの電池性能を向上させる効果を発揮し得る。一方、
リチウム合金層が厚くなると、パルス閉路電圧特性など
を向上させる上からは好都合であるが、リチウム合金を
構成するアルミニウムなどの合金元素が増えたぶん負極
の電気容量が低下するので、アルミニウムなどの合金元
素は負極全体中、つまりリチウムとアルミニウムなどの
合金元素との総量中0.5〜10原子%(ato+*i
c%)、特に1〜7原子%、より望ましくは2〜4原子
%にするのが好ましい。
The thickness of the lithium alloy layer can be thin, and it is difficult to accurately measure the thickness because it is finely powdered, but if it is about 5 μm or more, there is a possibility that lithium may react with moisture or impurities in the electrolyte during storage. Furthermore, by increasing the reaction area of the negative electrode due to the pulverization of the lithium alloy and the electrolyte retention effect of the lithium alloy fine powder, it is possible to exhibit the effect of improving battery performance such as pulse closed circuit voltage characteristics. on the other hand,
A thicker lithium alloy layer is advantageous in terms of improving pulse circuit voltage characteristics, etc., but since the amount of alloying elements such as aluminum that make up the lithium alloy increases, the electrical capacity of the negative electrode probably decreases. is 0.5 to 10 atomic% (ato++i
c%), particularly 1 to 7 atom%, more preferably 2 to 4 atom%.

電解液や正極活物質には、この種の電池に通常用いられ
るものをそのまま使用することができる。
As the electrolytic solution and the positive electrode active material, those commonly used in this type of battery can be used as they are.

電解液についてその具体例をあげると、例えば、1.2
−ジメトキシエタン、1,2−ジェトキシエタン、エチ
レンカーボネート、プロピレンカーボネート、T−ブチ
ロラクトン、テトラヒドロフラン、1.3−ジオキソラ
ン、4−メチル−1,3−ジオキソランなどの有機溶媒
の単独または2種以上の混合溶媒に、例えばLiCl0
a 、LiPF6、LiAsF6、Li5bF、 、L
iBFn 、LiB(CiHs)4などの電解質の1種
または2種以上を溶解させることによって調製したもの
を使用することができる。また、正極活物質としては、
例えば二酸化マンガンなどを用いることができる。
To give a specific example of the electrolyte, for example, 1.2
- A single or mixed solvent of two or more organic solvents such as dimethoxyethane, 1,2-jethoxyethane, ethylene carbonate, propylene carbonate, T-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, etc. For example, LiCl0
a, LiPF6, LiAsF6, Li5bF, ,L
One prepared by dissolving one or more electrolytes such as iBFn and LiB(CiHs)4 can be used. In addition, as a positive electrode active material,
For example, manganese dioxide can be used.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving examples.

実施例1 負極缶に直径16+wm、厚さ0.2mmのリチウム板
と直径16ffim、厚さ0.005IN+mのアルミ
ニウム板とを重ね合わせて挿入し、正極には二酸化マン
ガン(MnO□)を活物質とする成形合剤を用い、電解
液にはプロピレンカーボネートと1.2−ジメトキシエ
タンとの容量比2:1の混合溶媒に過塩素酸リチウム(
LiC10,)を1モル/l溶解させた有機電解液を用
い、セパレータには厚さ25μ暖で長径0.4μm、短
径0,04μmの方向性を有する微孔を多数設けた微孔
性ポリプロピレンフィルムをその微孔の長袖方向が直交
するように2枚重ね合わせて用い、第1図に示すような
構造で直径20.0+sm、高さ1.61のリチウム電
池を作製した。
Example 1 A lithium plate with a diameter of 16+wm and a thickness of 0.2mm and an aluminum plate with a diameter of 16ffim and a thickness of 0.005IN+m were stacked and inserted into a negative electrode can, and manganese dioxide (MnO□) was used as an active material in the positive electrode. A molding mixture is used, and the electrolyte contains lithium perchlorate (
Using an organic electrolyte in which 1 mol/l of LiC10,) is dissolved, the separator is made of microporous polypropylene with a thickness of 25 μm and a large number of directional micropores with a major axis of 0.4 μm and a minor axis of 0.04 μm. A lithium battery with a diameter of 20.0+ sm and a height of 1.61 cm was fabricated using two films stacked one on top of the other so that the long directions of the pores were perpendicular to each other, as shown in FIG.

第1図において、1はステンレス調製で表面にニッケル
メッキを施した負極缶で、2はリチウム層2aとリチウ
ム合金層2bとからなる負極であり、3は微孔性樹脂フ
ィルム3aと不織布3bとからなるセパレータである。
In Fig. 1, 1 is a negative electrode can made of stainless steel and plated with nickel on the surface, 2 is a negative electrode made of a lithium layer 2a and a lithium alloy layer 2b, and 3 is a negative electrode made of a microporous resin film 3a and a nonwoven fabric 3b. A separator consisting of

本実施例において、上記負極2のリチウム合金層2bは
、前記のように負極缶1内に直径16m+w、厚さ0.
2mmのリチウム板と直径16■、厚さ0.005mm
のアルミニウム板を積み重ねるようにして挿入し、電池
組立を行い、電池内で電解液の存在下で上記リチウム板
のアルミニウム板近傍のリチウムとアルミニウムとを電
解液の存在下に電気化学的に合金化させて形成したもの
であり、リチウム合金層2bがセパレータ3側に配置し
ている。そして、リチウム層2aは前記リチウム板のア
ルミニウムと合金化しなかった部分で構成されるもので
あり、負極2中のアルミニウム量は3原子%に相当する
In this embodiment, the lithium alloy layer 2b of the negative electrode 2 is placed inside the negative electrode can 1 as described above, with a diameter of 16 m+w and a thickness of 0.5 m.
2mm lithium plate, diameter 16mm, thickness 0.005mm
Insert the aluminum plates in a stacked manner to assemble the battery, and electrochemically alloy the lithium and aluminum near the aluminum plate of the lithium plate in the presence of an electrolyte in the battery. The lithium alloy layer 2b is arranged on the separator 3 side. The lithium layer 2a is composed of a portion of the lithium plate that is not alloyed with aluminum, and the amount of aluminum in the negative electrode 2 corresponds to 3 atomic %.

セパレータ3を構成する微孔性樹脂フィルム3aは、第
1図では1層で構成されているかのように図示されてい
るが、実際には第2図に示すように長径0.4μm、短
径0.04μmの方向性のある微孔3azを多数設けた
微孔性ポリプロピレンフィルム3a+を2枚その微孔3
a、の方向が互いに直交するように重ね合わせて用いた
ものであり、不織布3bは空孔率84容量%で、最大孔
径40μ繭、厚さ350μlのポリプロピレン不織布が
用いられている。
Although the microporous resin film 3a constituting the separator 3 is shown as being composed of one layer in FIG. 1, it actually has a major axis of 0.4 μm and a minor axis as shown in FIG. Two microporous polypropylene films 3a+ each having a large number of directional micropores 3az of 0.04 μm.
The nonwoven fabric 3b is a polypropylene nonwoven fabric with a porosity of 84% by volume, a maximum pore diameter of 40 μl, and a thickness of 350 μl.

そして、微孔性樹脂フィルム3aが負極2と対向する側
に配置し、不織布3bが正極4側に配置している。正極
4は二酸化マンガン100重量部、りん状黒鉛10重量
部およびポリテトラフルオロエチレン1重量部からなる
混合粉末を加圧成形した直径16PRm、厚さ0.6m
mの成形体からなり、その加圧成形時に一方の側にステ
ンレス鋼製網を正極側の集電体5として配置している。
The microporous resin film 3a is placed on the side facing the negative electrode 2, and the nonwoven fabric 3b is placed on the positive electrode 4 side. The positive electrode 4 is made by pressure-molding a mixed powder consisting of 100 parts by weight of manganese dioxide, 10 parts by weight of phosphorous graphite, and 1 part by weight of polytetrafluoroethylene, and has a diameter of 16 PRm and a thickness of 0.6 m.
A stainless steel mesh is placed on one side as a current collector 5 on the positive electrode side during pressure molding.

6はステンレス鋼製で表面にニッケルメッキを施した正
極缶で、7はポリプロピレン製の環状ガスケットである
。そして、この電池には、電解液としてプロピレンカー
ボネートと1,2−ジメトキシエタンとの容量比で2:
1に混合した混合溶媒に過塩素酸リチウムを1モル/l
溶解した有機電解液が注入されている。
6 is a positive electrode can made of stainless steel with a nickel-plated surface, and 7 is an annular gasket made of polypropylene. This battery uses propylene carbonate and 1,2-dimethoxyethane as an electrolyte at a capacity ratio of 2:
Add 1 mol/l of lithium perchlorate to the mixed solvent mixed in 1.
A dissolved organic electrolyte is injected.

実施例2 セパレータ3を構成する微孔性樹脂フィルム3aとして
孔径0.3μmで微孔形状が円形をしている厚さ25μ
mの微孔性ポリプロピレンフィルムを用い(ただし、1
枚使用)、不織布3bとして空孔率75容量%で、最大
孔径20μm、厚さ350μmのポリプロピレン不織布
を用いたほかは実施例1と同様の構成からなるリチウム
電池を作製した。
Example 2 A microporous resin film 3a constituting the separator 3 has a thickness of 25 μm and has a pore diameter of 0.3 μm and a circular micropore shape.
m microporous polypropylene film (however, 1
A lithium battery was produced having the same structure as in Example 1, except that a polypropylene nonwoven fabric with a porosity of 75% by volume, a maximum pore diameter of 20 μm, and a thickness of 350 μm was used as the nonwoven fabric 3b.

比較例1 セパレータとして空孔率84容量%で最大孔径40μm
1厚さ350μ閘のポリプロピレン不織布のみを用い、
微孔性ポリプロピレンフィルムを用いなかったほかは実
施例1と同様の構成からなるリチウム電池を作製した。
Comparative Example 1 As a separator, the porosity was 84% by volume and the maximum pore diameter was 40 μm.
1. Using only polypropylene non-woven fabric with a thickness of 350μ,
A lithium battery having the same structure as in Example 1 was produced except that a microporous polypropylene film was not used.

比較例2 セパレータとして長径0.4μm、短径0.04μmの
微孔を多数設けた微孔性ポリプロピレンフィルムを2枚
その微孔の方向が直交するように重ね合わせて用い、ポ
リプロピレン不織布を用いなかったほかは実施例1と同
様の構成からなるリチウム電池を作製した。
Comparative Example 2 As a separator, two microporous polypropylene films each having a large number of micropores with a major diameter of 0.4 μm and a minor diameter of 0.04 μm were used, stacked so that the directions of the micropores were perpendicular to each other, and no polypropylene nonwoven fabric was used. A lithium battery having the same structure as in Example 1 except for the above was produced.

比較例3 セパレータ3を構成する不織布3bとして、空孔率60
容量%で最大孔径15μm、厚さ350u11のポリプ
ロピレン不織布を用いたほかは実施例1と同様の構成か
らなるリチウム電池を作製した。
Comparative Example 3 The nonwoven fabric 3b constituting the separator 3 had a porosity of 60
A lithium battery was produced having the same structure as in Example 1, except that a polypropylene nonwoven fabric having a maximum pore diameter of 15 μm in volume % and a thickness of 350 μl was used.

上記実施例1〜2の電池および比較例1〜3の電池を2
5°C215にΩで連続放電させたときの放電特性を第
3図に示す。
The batteries of Examples 1 and 2 and the batteries of Comparative Examples 1 and 3 were
Fig. 3 shows the discharge characteristics when continuously discharging at 5°C and 215Ω.

第3図に示すように、実施例1〜2の電池は、比較例1
〜3の電池に比べて、安定した放電特性を示し放電持続
時間も長かった。
As shown in FIG. 3, the batteries of Examples 1 and 2 were
Compared to batteries No. 3 to 3, it exhibited stable discharge characteristics and a longer discharge duration.

これに対し、セパレータとしてポリプロピレン不織布だ
けを用いた比較例1の電池は、リチウム合金粉末の通り
抜けによる内部短絡が発生し、放電初期に急激な電圧低
下が生じ、放電持続時間が非常に短かった。また、セパ
レータとして微孔性ポリプロピレンフィルムだけを用い
た比較例2の電池は、リチウム合金粉末の通り抜けによ
る内部短絡の発生は防止できたものの、セパレータの電
解液の保持能力が小さいため、放電持続時間は実施例1
〜2の電池に比べて大幅に短くなった。そして、比較例
3の電池は不織布の空孔率が小さいぶん電解液の保持能
力が小さくなり、その結果、放電持続時間が実施例1〜
2の電池より短かった。
On the other hand, in the battery of Comparative Example 1 in which only polypropylene nonwoven fabric was used as a separator, an internal short circuit occurred due to the passage of the lithium alloy powder, a sudden voltage drop occurred at the beginning of discharge, and the discharge duration was very short. In addition, although the battery of Comparative Example 2, which used only a microporous polypropylene film as a separator, was able to prevent internal short circuits due to the passage of lithium alloy powder, the separator's ability to retain electrolyte was small, so the discharge duration was is Example 1
The battery life was significantly shorter than that of the battery No.2. In the battery of Comparative Example 3, the porosity of the nonwoven fabric is small, so the electrolyte holding capacity is small, and as a result, the discharge duration is the same as that of Example 1.
It was shorter than the second battery.

また、実施例1〜2の電池は、両者とも上記放電270
時間後(放電深度的80%)の20°C15にΩ、7.
8m5ecのパルス閉路電圧が2.7v以上あったが、
負極2を直径16n+m、厚さ0.2+amのリチウム
板のみで構成した第4図に示すような電池では、セパレ
ータ3に空孔率84容量%で、最大孔径40μ爾、厚さ
350μmのポリプロピレン不織布を用いているが、上
記実施例1〜2の電池と同条件下でパルス閉路電圧は2
.5V1.、かてなかった。
In addition, both of the batteries of Examples 1 and 2 had the above-mentioned discharge 270
After an hour (80% depth of discharge) at 20°C, 15Ω, 7.
The pulse closing voltage of 8m5ec was more than 2.7v,
In a battery as shown in FIG. 4 in which the negative electrode 2 is composed of only a lithium plate with a diameter of 16 nm+m and a thickness of 0.2+ am, the separator 3 is made of a polypropylene nonwoven fabric with a porosity of 84% by volume, a maximum pore diameter of 40 μm, and a thickness of 350 μm. However, under the same conditions as the batteries of Examples 1 and 2 above, the pulse closed circuit voltage was 2.
.. 5V1. , it didn't work.

〔発明の効果] 以上説明したように、本発明では、負極のリチウム層の
セパレータと対向する側に電気化学的合金化によるリチ
ウム合金層を設け、かつセパレータとして孔径が0.3
μm以下の微孔性樹脂フィルムと空孔率70〜90容量
%の不織布とを組み合わせて用い、かつ微孔性樹脂フィ
ルムを負極側に配置し、不織布を正極側に配置すること
によって、短絡がなく、かつ電池性能の優れたリチウム
電池を提供することができた。
[Effects of the Invention] As explained above, in the present invention, a lithium alloy layer formed by electrochemical alloying is provided on the side facing the separator of the lithium layer of the negative electrode, and the separator has a pore diameter of 0.3.
By using a combination of a microporous resin film of micrometers or less and a nonwoven fabric with a porosity of 70 to 90% by volume, and placing the microporous resin film on the negative electrode side and the nonwoven fabric on the positive electrode side, short circuits can be prevented. We were able to provide a lithium battery with excellent battery performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るリチウム電池の一例を示す断面図
であり、第2図は本発明の電池にセパレータの構成部材
として使用された微孔性樹脂フィルムの一例を模式的に
示す要部斜視図である。第3図は実施例1〜2の電池と
比較例1〜3の電池の放電特性図である。第4図は従来
のリチウム電池の一例を示す断面図である。 2・・・負極、 2a・・・リチウム層、 2b・・・
リチウム合金層、 3・・・セパレータ、 3a・・・
微孔性樹脂フィルム、 3b・・・不織布、 4・・・
正極第3閏 巷4図
FIG. 1 is a sectional view showing an example of a lithium battery according to the present invention, and FIG. 2 is a main part schematically showing an example of a microporous resin film used as a component of a separator in the battery of the present invention. FIG. FIG. 3 is a diagram showing the discharge characteristics of the batteries of Examples 1 and 2 and the batteries of Comparative Examples 1 and 3. FIG. 4 is a sectional view showing an example of a conventional lithium battery. 2... Negative electrode, 2a... Lithium layer, 2b...
lithium alloy layer, 3... separator, 3a...
Microporous resin film, 3b... Nonwoven fabric, 4...
Positive pole 3rd leap lane 4

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムを負極活物質とするリチウム電池におい
て、リチウム層のセパレータと対向する側に、リチウム
と該リチウムに電気化学的に合金化する金属との電気化
学的合金化によるリチウム合金層を設け、セパレータと
して孔径が0.3μm以下の微孔性樹脂フィルムと空孔
率が70〜90容量%の不織布とを組み合わせて用い、
かつ上記微孔性樹脂フィルムを負極と対向する側に配置
し、不織布を正極と対向する側に配置したことを特徴と
するリチウム電池。
(1) In a lithium battery using lithium as a negative electrode active material, a lithium alloy layer is provided on the side of the lithium layer facing the separator by electrochemical alloying of lithium and a metal that electrochemically alloys with the lithium. , using a combination of a microporous resin film with a pore diameter of 0.3 μm or less and a nonwoven fabric with a porosity of 70 to 90% by volume as a separator,
A lithium battery characterized in that the microporous resin film is disposed on a side facing the negative electrode, and the nonwoven fabric is disposed on the side facing the positive electrode.
(2)リチウムと電気化学的に合金化する金属がアルミ
ニウム、錫、亜鉛、鉛、ビスマス、ケイ素、アンチモン
およびマグネシウムよりなる群から選ばれた少なくとも
1種であることを特徴とする特許請求の範囲第1項記載
のリチウム電池。
(2) Claims characterized in that the metal electrochemically alloyed with lithium is at least one selected from the group consisting of aluminum, tin, zinc, lead, bismuth, silicon, antimony, and magnesium. The lithium battery according to item 1.
JP62007354A 1987-01-14 1987-01-14 Lithium cell Pending JPS63175348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007354A JPS63175348A (en) 1987-01-14 1987-01-14 Lithium cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007354A JPS63175348A (en) 1987-01-14 1987-01-14 Lithium cell

Publications (1)

Publication Number Publication Date
JPS63175348A true JPS63175348A (en) 1988-07-19

Family

ID=11663621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007354A Pending JPS63175348A (en) 1987-01-14 1987-01-14 Lithium cell

Country Status (1)

Country Link
JP (1) JPS63175348A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234458A (en) * 2006-03-02 2007-09-13 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
KR100787418B1 (en) * 2001-03-02 2007-12-21 삼성에스디아이 주식회사 Lithium secondary cells which have improved ion conductivity and method for producing the same
JP2012199252A (en) * 2012-07-13 2012-10-18 Nissan Motor Co Ltd Separator for battery, and battery comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174264A (en) * 1984-09-17 1986-04-16 Hitachi Maxell Ltd Lithium cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174264A (en) * 1984-09-17 1986-04-16 Hitachi Maxell Ltd Lithium cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787418B1 (en) * 2001-03-02 2007-12-21 삼성에스디아이 주식회사 Lithium secondary cells which have improved ion conductivity and method for producing the same
JP2007234458A (en) * 2006-03-02 2007-09-13 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2012199252A (en) * 2012-07-13 2012-10-18 Nissan Motor Co Ltd Separator for battery, and battery comprising the same

Similar Documents

Publication Publication Date Title
EP0482287B2 (en) A non-aqueous secondary electrochemical battery
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
JPH11162505A (en) Nickel-hydrogen battery
JPH1186854A (en) Lithium secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPS63126156A (en) Lithium cell
JPS63175348A (en) Lithium cell
JPH0425676B2 (en)
JP3152307B2 (en) Lithium secondary battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JPS63126159A (en) Lithium cell
JP3049854B2 (en) Sealed battery
JPH01239761A (en) Thin lithium battery
JPS63143744A (en) Lithium battery
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JPS63175350A (en) Lithium cell
JP2621213B2 (en) Organic electrolyte lithium secondary battery
JP3118812B2 (en) Alkaline storage battery
JPS63175349A (en) Lithium-manganese dioxide cell
JP3168615B2 (en) Non-aqueous electrolyte secondary battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2714078B2 (en) Non-aqueous electrolyte battery
JPS6174258A (en) Lithium organic secondary battery
JPS63126158A (en) Lithium cell
JPH09259868A (en) Nonaqueous electrolyte secondary battery