JPS6174264A - Lithium cell - Google Patents

Lithium cell

Info

Publication number
JPS6174264A
JPS6174264A JP19533784A JP19533784A JPS6174264A JP S6174264 A JPS6174264 A JP S6174264A JP 19533784 A JP19533784 A JP 19533784A JP 19533784 A JP19533784 A JP 19533784A JP S6174264 A JPS6174264 A JP S6174264A
Authority
JP
Japan
Prior art keywords
lithium
foil
thickness
circuit voltage
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19533784A
Other languages
Japanese (ja)
Other versions
JPH0665044B2 (en
Inventor
Kazumi Yoshimitsu
由光 一三
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP59195337A priority Critical patent/JPH0665044B2/en
Publication of JPS6174264A publication Critical patent/JPS6174264A/en
Publication of JPH0665044B2 publication Critical patent/JPH0665044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Abstract

PURPOSE:To improve a strage property and a closed circuit voltage property by arranging a thin foil of a metal with which alloy lithium electrochemically at the face where la negative lithium pole is opposited to its positive pole. CONSTITUTION:A thin foil 3b of a metal with which alloy lithium such as aluminum, lead, zinc, bithmuth, gallium and magnesium is arranged to a plane 3a of a negative lithium pole opposited to is positive pole 6. Thereby, it enables to lower the reaction with electrolytic liquid reducing the degree of activation without a large loss of its discharging capacity and restaining the increase in the interfacial resistance of the negative pole 3 based on the reaction of the electrolytic liquid and lithium and it enables also to obtain a lithium cell which is superior in a strage property and a closed circuit voltage property.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to lithium batteries.

〔従来の技術〕[Conventional technology]

リチウム電池では、負極にホイル状の金泥リチウムが用
いられているが、リチウムが非常に活性に冨むため、二
次電池では充放電特性の低下を引き起ずなどの問題があ
り、そのため、リチウムをアルミ゛ニウムで合金化して
、リチウムの活性を下げ、充放電特性を向上させること
が提案されている(米国特許第4,002,492号明
細書)、これは二次電池では一次電池におけるほど放電
容量の低下に対して考慮を払う必要がなく、合金化によ
る放電容量の低下よりも充放電特性の向上の方がより望
ましいことに立脚している。したがって合金化の程度も
リチウム含を量が原子パーセントで約63〜92%とか
なりリチウム含有量が低くなるまで合金化が行なわれて
いる。
In lithium batteries, foil-shaped lithium gold mud is used for the negative electrode, but since lithium is highly active, there are problems such as deterioration of charge/discharge characteristics in secondary batteries. It has been proposed (U.S. Pat. No. 4,002,492) to alloy lithium with aluminum to lower the activity of lithium and improve charge/discharge characteristics. This is based on the fact that there is no need to pay any consideration to a decrease in discharge capacity, and improvement in charge-discharge characteristics is more desirable than a decrease in discharge capacity due to alloying. Therefore, alloying is carried out until the lithium content is considerably low, about 63 to 92% in atomic percent.

しかしながら、−次電池では放電容量の損失が電池特性
の大きな欠点としてあられれるため、負極に関してリチ
ウムの活性を低下させるような研究はほとんど行なわれ
ていないのが現状である。
However, in negative electrodes, loss of discharge capacity is a major drawback in battery characteristics, and therefore, at present, almost no research has been conducted on reducing the activity of lithium in negative electrodes.

(発明が解決しようとする問題点〕 しかしながら、−次電池でも、リチウムの活性が強すぎ
るために、貯蔵中にリチウムが有殿電解液と反応して、
リチウム表面に電池反応に関与しないリチウムの有機物
皮膜が住成し、リチウム負極の界面抵抗が高くなって、
特に閉路電圧特性などの電池性能が低下するという問題
がある。
(Problem to be solved by the invention) However, even in negative batteries, the activity of lithium is too strong, so lithium reacts with the precipitate electrolyte during storage.
A lithium organic film that does not participate in battery reactions forms on the lithium surface, increasing the interfacial resistance of the lithium negative electrode.
In particular, there is a problem in that battery performance such as closed circuit voltage characteristics deteriorates.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の問題点を解決するためになされたもので
あり、負極リチウムの正極と対向する面に、アルミニウ
ム、鉛、亜鉛、錫、ビスマス、インジウム、ガリウム、
マグ不ソウムなどのリチウムと電気化学的に合金化する
金属の薄いホイルを配置することによって、放電容量の
大きな損失を招くことなく、リチウムの活性度を下げて
電解液との反応性を低下させ、電解液とリチウムとの反
応に基づく負極の界面抵抗の増加を抑制して、貯蔵特性
ならびに閉路電圧特性の優れたリチウム電池を提供した
ものである。
The present invention was made to solve the above-mentioned problems, and the surface of the negative lithium electrode facing the positive electrode contains aluminum, lead, zinc, tin, bismuth, indium, gallium, etc.
By placing a thin foil of a metal that electrochemically alloys with lithium, such as MagFusium, it is possible to reduce the activity of the lithium and reduce its reactivity with the electrolyte without incurring significant loss of discharge capacity. The present invention provides a lithium battery with excellent storage characteristics and closed circuit voltage characteristics by suppressing an increase in the interfacial resistance of the negative electrode due to the reaction between the electrolyte and lithium.

すなわち、負極リチウムの正極に対向する面に、前記の
ようなリチウムと電気化学的に合金化する金属の薄いホ
イルを配置すると、電解液中でリチウムと上記金属との
電気化学的合金化反応が進行し、リチウム表面にリチウ
ム合金の薄い層が形成され、このリチウム合金はリチウ
ムより反応性が低いので、電解液との反応が抑制され、
電解液との反応に基づくリチウムの有機物皮膜の生成が
誠少し、それによって負極の界面抵抗が減少して貯蔵特
性ならびに閉路電圧特性が向上するのである。
In other words, if a thin foil of a metal that electrochemically alloys with lithium is placed on the surface of the negative lithium electrode facing the positive electrode, an electrochemical alloying reaction between lithium and the metal will occur in the electrolyte. As the process progresses, a thin layer of lithium alloy is formed on the lithium surface, and this lithium alloy is less reactive than lithium, so the reaction with the electrolyte is suppressed.
The formation of an organic film of lithium due to the reaction with the electrolyte reduces the interfacial resistance of the negative electrode and improves the storage characteristics and closed circuit voltage characteristics.

リチウムと電気化学的に合金化する金属のホイルは1μ
m程度からと非常に薄いものでよく、負極に用いるリチ
ウム(通常、ホイル状のリチウムが用いられる)に対し
てはその1 /200以上の厚さがあればよい、上記リ
チウムと電気化学的に合金化する金属のホイルは、厚く
ても界面抵抗の低下をはかる面からは何らさしつかえな
いが、−次電池ではそれらの金属の増えた分だけ放電容
量が敲しることになるので、厚くてもリチウムホイルの
厚さの10/200以下にするのが好ましい、上記リチ
ウムと電気化学的に合金化する金属のホイルのリチウム
ホイルの厚さに対する比を原子パーセントに換算すると
リチウムとの合計中リチウムと電気化学的に合金化する
金属の没が0.1〜6%に相当する。
The metal foil that electrochemically alloys with lithium is 1μ
It can be very thin, from about 1.5 m thick, and it only needs to be 1/200 or more thicker than the lithium used for the negative electrode (usually foil-shaped lithium). Even if the metal foil to be alloyed is thick, there is no problem in reducing the interfacial resistance, but in a secondary battery, the discharge capacity will be increased by the amount of metal added, so it is not necessary to make it thick. The ratio of the metal foil electrochemically alloyed with lithium to the thickness of the lithium foil is preferably 10/200 or less of the thickness of the lithium foil, and the ratio of the thickness of the metal foil electrochemically alloyed with lithium to the thickness of the lithium foil is calculated as atomic percent. This corresponds to 0.1 to 6% of the metal that is electrochemically alloyed.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving Examples.

“ 実施例1 厚さ0.23+am、直i14mII+のリチウムホイ
ルに厚さ5μm、直径14mmのアルミニウムホイルを
重ねアルミニウムホイル側を正極と対向する側に配置し
て負極とし、正極に二硫化チタンを正極活物質とする成
形合剤を用い、i!電解液4−メチル−1,3−ノオキ
フランと1.2−ジメトキンエタンとヘキサメチルホス
ホルアミドとの容♀比60 : 34.8 : 5゜2
の混合溶媒に1iPF6をl mol / 11g解し
た育機電解質熔液を用いて、第1図に示す構成のボタン
形電池を作製した。
“Example 1 An aluminum foil with a thickness of 5 μm and a diameter of 14 mm was layered on a lithium foil with a thickness of 0.23+ am and a diameter of 14 m II+, and the aluminum foil side was placed on the side facing the positive electrode to serve as a negative electrode, and titanium disulfide was used as the positive electrode. Using a molding mixture as an active material, the volume ratio of i!electrolyte 4-methyl-1,3-nookyfuran, 1,2-dimethyneethane, and hexamethylphosphoramide was 60: 34.8: 5゜2.
A button-shaped battery having the configuration shown in FIG. 1 was prepared using an incubating electrolyte solution prepared by dissolving 1 mol/11 g of 1iPF6 in a mixed solvent.

第1図において、1はステンレス鋼製で表面にニッケル
メッキを施した1を極缶で、2はステンレス鋼網よりな
る負極集電体であり、3は負極で、この負1fi3はリ
チウムホイル3aとその正極と対向する面に配置された
リチウムと電気化学的に合金化する金属の薄いホイル3
bとから形成され、前記のように本実施例では二のリチ
ウムと電気化学的に合金化する金属としてアルミニウム
が使用されている。そして、このアルミニウムは電解液
の存在によってリチウムと電気化学的に合金化して、リ
チウム−アルミニウム合金となっている。4は微孔性ポ
リプロピレンフィルムよりなるセパレータで、5はポリ
プロピレン不織布よりなる電解液吸収体、6は二硫化チ
タンを正極活物質とする成形合剤よりなる正極で、7は
ステンレス鋼網よりなる正極集電体、8シよステンレス
鋼製で表面にニッケルメッキを施した正極缶、9はポリ
プロピレン製の環状ガスケットである。
In Fig. 1, 1 is a pole can made of stainless steel and nickel plated on the surface, 2 is a negative electrode current collector made of stainless steel mesh, 3 is a negative electrode, and this negative 1fi3 is a lithium foil 3a. and a thin metal foil 3 that electrochemically alloys with the lithium, disposed on its surface facing the positive electrode.
As mentioned above, in this embodiment, aluminum is used as the metal that electrochemically alloys with lithium. This aluminum is electrochemically alloyed with lithium due to the presence of the electrolyte, forming a lithium-aluminum alloy. 4 is a separator made of a microporous polypropylene film, 5 is an electrolyte absorber made of polypropylene nonwoven fabric, 6 is a positive electrode made of a molding mixture containing titanium disulfide as the positive electrode active material, and 7 is a positive electrode made of a stainless steel mesh. Current collector 8 is a positive electrode can made of stainless steel with a nickel-plated surface, and 9 is an annular gasket made of polypropylene.

実施例2 負極に厚さ0.23mm、直径14IIIInのリチウ
ムホイルと、その正極に対向する面に厚さ10μm、直
!冬14mmの鉛ホイルを重ねて用いたほか、よ実施例
1と同様の電池を作製した。
Example 2 A lithium foil with a thickness of 0.23 mm and a diameter of 14IIIn was used as the negative electrode, and a lithium foil with a thickness of 10 μm was placed on the surface facing the positive electrode. A battery similar to that of Example 1 was prepared except that 14 mm thick lead foil was used.

実施例3 負極に厚さ0.23+vm、 直径14++v+のリチ
ウムホイルと、その正極に7[向する面にjrJ、さ5
μm、i径14]@の亜10ボイルを市わて用いたほか
は実施fall 1と同様の電池を作製した。
Example 3 A lithium foil with a thickness of 0.23+vm and a diameter of 14+v+ was used as the negative electrode, and a lithium foil with a thickness of 7[deg.
A battery was produced in the same manner as in Fall 1, except that a sub-10 boiler with a diameter of 14 μm and an i diameter of 14] was used.

実施例4 負極に厚さ0231M11.直1冬+4+n11のリチ
ウムホイルと、その正極に対向する面に)Iさ10μm
、直径141の錫ホイルを重ねて用いたほかは実施例1
と同様の電池を作製した。
Example 4 Negative electrode has a thickness of 0231M11. Lithium foil of 1 + 4 + n11 and the surface facing the positive electrode) I 10 μm
, Example 1 except that tin foils with a diameter of 141 were used in layers.
A battery similar to that was fabricated.

実施例5 負1tに厚さ0.23mm、直径141のリチウムホイ
ルと、その正極に対向する面に′厚さlOIJm、直i
冬141のビスマスホイルを重ねて用いたほかは実施例
1と同様の電池を作製した。
Example 5 A lithium foil with a thickness of 0.23 mm and a diameter of 141 was placed on the negative 1t, and a lithium foil with a thickness of lOIJm and a straight line was placed on the surface facing the positive electrode.
A battery was produced in the same manner as in Example 1, except that winter 141 bismuth foil was used in layers.

実施例6 負極に厚さ0 、23+nm、直i条14IIII11
のりチウムホイルと、その正極に対向する面に厚さ10
μm、直径14wmのインジウムホイルを重ねて用いた
ほかは実施例Iと同様の電池を作製した。
Example 6 Negative electrode thickness: 0, 23+nm, straight i-line 14III11
Nori tium foil with a thickness of 10 mm on the surface facing the positive electrode.
A battery similar to Example I was produced except that indium foils having a diameter of 14 wm and a diameter of 14 wm were used.

実施例7 i極に厚さ0 、23+a+a、直径141のリチウム
ホイルと、その正極に対向する面に厚さ5μ頂、直径1
4關のガリウムホイルを屯ねて用いたほかは実施例1と
同様の電池を作製した。
Example 7 A lithium foil with a thickness of 0, 23+a+a, and a diameter of 141 was used as the i-electrode, and a lithium foil with a thickness of 5μ and a diameter of 1 was used on the surface facing the positive electrode.
A battery was prepared in the same manner as in Example 1 except that 4 pieces of gallium foil were used.

実施例8 負極に厚さ0.23mm、直径14III11のリチウ
ムホイルと、その正極に対向する面に厚さ5μm、直径
14mmのマグ不ソウムホイルを重ねて用いたほかは実
施例1と同様の電池を作製した6 比較例1 負極に厚さ0.23mm、直径14mmのリチウムホイ
ルを用いたほかは実施例1と同様の電池を作製した。
Example 8 A battery similar to that of Example 1 was used, except that a lithium foil with a thickness of 0.23 mm and a diameter of 14III11 was used as the negative electrode, and a lithium foil with a thickness of 5 μm and a diameter of 14 mm was stacked on the surface facing the positive electrode. Manufactured 6 Comparative Example 1 A battery similar to Example 1 was manufactured except that a lithium foil with a thickness of 0.23 mm and a diameter of 14 mm was used as the negative electrode.

上記実施例1〜8の電池および比較例1の電池の20℃
における開路電圧、閉路電圧およびインピーダンスを測
定した。また上記電池を60℃で60日間貯蔵後の開路
電圧、閉路電圧および120Hzインピーダンスを測定
した。それらの結果を第1表に示す。
20°C of the batteries of Examples 1 to 8 and the battery of Comparative Example 1
The open circuit voltage, closed circuit voltage and impedance were measured. In addition, the open circuit voltage, closed circuit voltage, and 120 Hz impedance of the battery were measured after storage at 60° C. for 60 days. The results are shown in Table 1.

また前記実施例1〜2の電池および比?2例1の電池を
60℃で貯蔵した際の貯蔵に伴なう開路電圧変化、閉路
電圧変化および120 HZのインピーダンス変化を調
べ、開路電圧変化を第2図に、閉路電圧変化を第3図に
、インピーダンス変化を第4図に示した。
Also, what about the batteries and ratios of Examples 1 and 2? 2. When the battery of Example 1 was stored at 60°C, the open circuit voltage change, closed circuit voltage change, and impedance change at 120 Hz due to storage were investigated. The open circuit voltage change is shown in Figure 2, and the closed circuit voltage change is shown in Figure 3. Figure 4 shows the impedance change.

第1表に示すように、本発明の実施例1〜8の電池は、
従来1!i池である比較例1の電池に比べて、120 
Hzインピーダンス(負極の界面抵抗を含んだインピー
ダンス)が小さく、閉路電圧特性が優れていた。また第
1表ならびに第3〜4図に示すように、本発明の実施例
1〜8の電池は、高温貯蔵によるインピーダンスの増加
が少なく、閉路電圧の低下が少なかった。
As shown in Table 1, the batteries of Examples 1 to 8 of the present invention were:
Conventional 1! 120 compared to the battery of Comparative Example 1, which is an i-cell.
The Hz impedance (impedance including the interfacial resistance of the negative electrode) was low, and the closed circuit voltage characteristics were excellent. Moreover, as shown in Table 1 and FIGS. 3 and 4, the batteries of Examples 1 to 8 of the present invention had little increase in impedance and little decrease in closed circuit voltage due to high temperature storage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば負極リチウムの正
極と対向する面にアルミニウム、鉛、亜鉛、錫、ビスマ
ス、インジウム、ガリウムおよびマグ不ノウムよりなる
群から選ばれた少なくとも1種のリチウムと電気化学的
に合金化する金属の薄いホイルを配置することにより、
貯蔵特性および閉路電圧特性が向上した。
As explained above, according to the present invention, at least one type of lithium selected from the group consisting of aluminum, lead, zinc, tin, bismuth, indium, gallium, and magnonium is added to the surface of the negative lithium electrode facing the positive electrode. By placing a thin foil of metal that alloys electrochemically,
Storage characteristics and closed circuit voltage characteristics have been improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のリチウム電池の一実施例を示す断面図
であり、第2図は本発明の実施例1〜2の電池と比較+
fl+ 1の電池の貯蔵に伴なう開路電圧の変化を示す
図、第3図は本発明の実施例1〜2の電池と比較例1の
電池の貯蔵に伴なう閉路電圧の変化を示す図であり、第
4図は本発明の実施例1〜2の電池と比較例1の電池の
貯蔵に伴なう120Hzインピーダンス変化を示す図で
ある。 3・・・負極、 3a・・・リチウムホイル、 3b・
・・リチウムと電気化学的に合金化する金属の薄いホイ
ル、  4・・・セパレータ、 6・・・正極3−・−
貢符 3a−−・す+ンムホイ11/ 3b・−・りづ−゛シ5ttフiイ乙掌9り4・・−で
ペレータ 第3図 四T跋日伎(別
Figure 1 is a cross-sectional view showing one embodiment of the lithium battery of the present invention, and Figure 2 is a comparison with the batteries of Examples 1 and 2 of the present invention.
Figure 3 shows the change in open circuit voltage due to storage of the fl+ 1 battery, and Figure 3 shows the change in closed circuit voltage due to storage of the batteries of Examples 1 and 2 of the present invention and the battery of Comparative Example 1. FIG. 4 is a diagram showing 120 Hz impedance changes during storage of the batteries of Examples 1 and 2 of the present invention and the battery of Comparative Example 1. 3... Negative electrode, 3a... Lithium foil, 3b.
... Thin foil of metal that electrochemically alloys with lithium, 4... Separator, 6... Positive electrode 3--
Tribute 3a--・S+Nmhui 11/ 3b--・Riz-i-shi 5tt Fii Otsusho 9ri 4...- in Peeta Figure 3 4T Bakunichi (Separate)

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムを負極活物質とするリチウム電池におい
て、リチウムの正極と対向する面に、アルミニウム、鉛
、亜鉛、錫、ビスマス、インジウム、ガリウムおよびマ
グネシウムよりなる群から選ばれた少なくとも1種のリ
チウムと電気化学的に合金化する金属の薄いホイルを配
置したことを特徴とするリチウム電池。
(1) In a lithium battery using lithium as a negative electrode active material, at least one type of lithium selected from the group consisting of aluminum, lead, zinc, tin, bismuth, indium, gallium, and magnesium is placed on the surface facing the lithium positive electrode. A lithium battery characterized by an arrangement of thin foils of metal that are electrochemically alloyed with.
(2)リチウムと電気化学的に合金化する金属のホイル
の厚さがリチウムの厚さの1/200〜10/200で
ある特許請求の範囲第1項記載のリチウム電池。
(2) The lithium battery according to claim 1, wherein the thickness of the metal foil that electrochemically alloys with lithium is 1/200 to 10/200 of the thickness of lithium.
JP59195337A 1984-09-17 1984-09-17 Lithium organic primary battery Expired - Lifetime JPH0665044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59195337A JPH0665044B2 (en) 1984-09-17 1984-09-17 Lithium organic primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195337A JPH0665044B2 (en) 1984-09-17 1984-09-17 Lithium organic primary battery

Publications (2)

Publication Number Publication Date
JPS6174264A true JPS6174264A (en) 1986-04-16
JPH0665044B2 JPH0665044B2 (en) 1994-08-22

Family

ID=16339494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195337A Expired - Lifetime JPH0665044B2 (en) 1984-09-17 1984-09-17 Lithium organic primary battery

Country Status (1)

Country Link
JP (1) JPH0665044B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126157A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell
JPS63126159A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell
JPS63133448A (en) * 1986-11-21 1988-06-06 Hitachi Maxell Ltd Lithium battery
JPS63175349A (en) * 1987-01-14 1988-07-19 Hitachi Maxell Ltd Lithium-manganese dioxide cell
JPS63175348A (en) * 1987-01-14 1988-07-19 Hitachi Maxell Ltd Lithium cell
JPH01105464A (en) * 1987-10-17 1989-04-21 Sony Corp Organic electrolyte cell
JPH0215566A (en) * 1988-07-01 1990-01-19 Sanyo Electric Co Ltd Nonaqueous type electrolyte battery
JPH06231755A (en) * 1993-06-08 1994-08-19 Hitachi Maxell Ltd Button type lithium organic secondary battery and its manufacture
WO2024043273A1 (en) * 2022-08-24 2024-02-29 パナソニックIpマネジメント株式会社 Lithium primary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315843A1 (en) 2012-05-25 2013-11-28 The Procter & Gamble Company Composition for reduction of trpa1 and trpv1 sensations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176875A (en) * 1982-04-09 1983-10-17 Seiko Instr & Electronics Ltd Nonaqueous electrolyte battery
JPS6091557A (en) * 1983-06-24 1985-05-22 レイオバツク コ−ポレ−シヨン Lithium-niobium chloride battery reduced in voltage delay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176875A (en) * 1982-04-09 1983-10-17 Seiko Instr & Electronics Ltd Nonaqueous electrolyte battery
JPS6091557A (en) * 1983-06-24 1985-05-22 レイオバツク コ−ポレ−シヨン Lithium-niobium chloride battery reduced in voltage delay

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126157A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell
JPS63126159A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell
JPS63133448A (en) * 1986-11-21 1988-06-06 Hitachi Maxell Ltd Lithium battery
JPS63175349A (en) * 1987-01-14 1988-07-19 Hitachi Maxell Ltd Lithium-manganese dioxide cell
JPS63175348A (en) * 1987-01-14 1988-07-19 Hitachi Maxell Ltd Lithium cell
JPH01105464A (en) * 1987-10-17 1989-04-21 Sony Corp Organic electrolyte cell
JP2812943B2 (en) * 1987-10-17 1998-10-22 ソニー株式会社 Organic electrolyte battery
JPH0215566A (en) * 1988-07-01 1990-01-19 Sanyo Electric Co Ltd Nonaqueous type electrolyte battery
JPH06231755A (en) * 1993-06-08 1994-08-19 Hitachi Maxell Ltd Button type lithium organic secondary battery and its manufacture
WO2024043273A1 (en) * 2022-08-24 2024-02-29 パナソニックIpマネジメント株式会社 Lithium primary battery

Also Published As

Publication number Publication date
JPH0665044B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JPS61126770A (en) All solid type lithium cell
JPS6174264A (en) Lithium cell
JPH0630246B2 (en) Button type lithium organic secondary battery
JP2643344B2 (en) Lithium-based thermal battery
JPS60175375A (en) Lithium organic secondary cell
JPS6313267A (en) Lithium secondary battery
JPS63126156A (en) Lithium cell
JPH01124969A (en) Lithium secondary battery
JPH0425676B2 (en)
JPH06310125A (en) Negative electrode for lithium secondary battery
JPS61208748A (en) Lithium organic secondary battery
US4136235A (en) Secondary batteries
JPS60175373A (en) Lithium cell
JPS63143744A (en) Lithium battery
JPH0588506B2 (en)
JPH0471162A (en) Nonaqueous electrolytic battery
JPS63175348A (en) Lithium cell
JPH06101325B2 (en) Lithium secondary battery
JPH01140557A (en) Lead-acid battery
JPS60175374A (en) Lithium cell
JPH07118321B2 (en) Lead acid battery
JPS62123651A (en) Lithium secondary battery
JPH02276157A (en) Nonaqueous electrolyte battery
JPH0773050B2 (en) Organic electrolyte secondary battery
JPH07118320B2 (en) Lead acid battery grid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term