JPS63133448A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPS63133448A
JPS63133448A JP61279467A JP27946786A JPS63133448A JP S63133448 A JPS63133448 A JP S63133448A JP 61279467 A JP61279467 A JP 61279467A JP 27946786 A JP27946786 A JP 27946786A JP S63133448 A JPS63133448 A JP S63133448A
Authority
JP
Japan
Prior art keywords
lithium
plate
negative electrode
alloy
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61279467A
Other languages
Japanese (ja)
Other versions
JPH084002B2 (en
Inventor
Kazumi Yoshimitsu
由光 一三
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61279467A priority Critical patent/JPH084002B2/en
Publication of JPS63133448A publication Critical patent/JPS63133448A/en
Publication of JPH084002B2 publication Critical patent/JPH084002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the storage life of a battery and to prevent the short circuit owing to alloying by stacking a lithium plate and a lithium alloy plate in which the content of lithium is high, and facing the lithium plate to a negative can and the lithium alloy plate to a separator. CONSTITUTION:A negative electrode 2 consists of a lithium plate 2a and a lithium alloy plate 2b, and the lithium plate 2a is faced to a negative can 1, and the lithium alloy plate 2b is faced to a separator 3. Since the reaction area of the negative electrode 2 is of the lithium alloy layer, reaction with moisture and solvent of electrolyte is retarded, and the formation of passive film on the surface of the negative electrode 2 is also retarded. Thereby, an increase in internal resistance and a drop in closed circuit voltage during storage of a battery are retarded. Since the lithium alloy plate is different from the alloy formed by electrochemically alloying inside a battery, the alloy is not pulverized to fine particles, and short circuit caused by lithium alloy powder can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム電池に係わり、さらに詳しくはその負
極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to lithium batteries, and more particularly to improvements in their negative electrodes.

〔従来の技術〕[Conventional technology]

従来、リチウム電池は負極に金属リチウムを用い、正極
には二酸化マンガン、硫化鉄、酸化鋼、二硫化チタンな
どの各種活物質を適宜選択採用して電池構成をしてきた
が、リチウムの化学的活性が大きいため、高温下での貯
蔵、例えば60℃での貯蔵では、貯蔵中に負極のリチウ
ムが電解液中に含まれる微量の水分や電解液溶媒と反応
して、負極のリチウム表面に不動態膜を生成するため、
負極表面が劣化して、内部抵抗の増加や閉路電圧特性の
低下を招くという問題があった。
Conventionally, lithium batteries have been constructed using metallic lithium for the negative electrode and various active materials such as manganese dioxide, iron sulfide, oxidized steel, and titanium disulfide for the positive electrode, but the chemical activity of lithium Because of the large To produce a film,
There was a problem in that the surface of the negative electrode deteriorated, leading to an increase in internal resistance and a decrease in closed circuit voltage characteristics.

そのため、負極にリチウム合金を用いることによって、
負極表面の劣化を防止することが提案されている(例え
ば、特開昭53−75434号公報、特開昭58−20
9862号公報)、シかし、それらは電池内でリチウム
板と例えばアルミニウム板などのリチうムと電気化学的
に合金化する金属の板とを重ね合わせ、リチウムと上記
金属とを電解液の存在下で電気化学的に合金化させるも
のであるため、リチウム合金が微粉末状態になりやすく
、微粉末化したリチウム合金がセパレータを通り恢けて
短絡を引き起こしたり、あるいは合金化時の局部的な体
積増加による変形によって短絡が発生するという問題が
あった。
Therefore, by using a lithium alloy for the negative electrode,
It has been proposed to prevent deterioration of the negative electrode surface (for example, Japanese Patent Laid-Open No. 53-75434, Japanese Patent Laid-Open No. 58-20).
However, they overlap a lithium plate and a plate of a metal that electrochemically alloys with lithium, such as an aluminum plate, in a battery, and then combine the lithium and the metal in an electrolyte. Since the lithium alloy is electrochemically alloyed in the presence of metal, the lithium alloy tends to become a fine powder, and the finely powdered lithium alloy may pass through the separator and cause short circuits, or localized damage during alloying may occur. There was a problem in that short circuits occurred due to deformation due to volume increase.

(発明が解決しようとする問題点〕 この発明は、上記従来のリチウム電池が貯蔵中に内部抵
抗増加や閉路電圧低下を引き起こしたり、あるいはそれ
を防止するための合金化により短絡を引き起こしていた
という問題点を解決し、貯蔵特性が良好で、かつ合金化
による短絡発生がないリチウム電池を提供することを目
的とする。
(Problems to be Solved by the Invention) This invention solves the problem that the above-mentioned conventional lithium batteries cause an increase in internal resistance and a drop in closed-circuit voltage during storage, or cause short circuits due to alloying to prevent this. The object of the present invention is to solve the problems and provide a lithium battery that has good storage characteristics and does not cause short circuits due to alloying.

〔問題点を解決するための手段〕 本発明は負極をリチウム板とリチウム含量の高いリチウ
ム合金板とを重ね合わせて構成し、リチウム板を負極缶
と対向する側に配置し、リチウム合金板をセパレータと
対向する側に配置することによって、貯蔵中における内
部抵抗の増加や閉路電圧特性の低下を防止し、かつ合金
化に基づく短絡発生のないリチウム電池を提供したもの
である。
[Means for Solving the Problems] The present invention comprises a negative electrode made by stacking a lithium plate and a lithium alloy plate with a high lithium content, the lithium plate is placed on the side facing the negative electrode can, and the lithium alloy plate is placed on the side facing the negative electrode can. By arranging it on the side facing the separator, it is possible to prevent an increase in internal resistance and a decrease in closed circuit voltage characteristics during storage, and to provide a lithium battery that does not suffer from short circuits due to alloying.

すなわち、本発明ではセパレータと対向する側にリチウ
ム合金板を配置するので、負極の反応面はリチウム合金
層となり、このリチウム合金はリチウムはど反応性が強
くないので、貯蔵中における水分や電解液溶媒などとの
反応が抑制され、したがって負極表面に不動態膜を生成
することが少なくなって、貯蔵中における内部抵抗増加
や閉路電圧特性の低下が抑制されるようになる。
That is, in the present invention, since the lithium alloy plate is placed on the side facing the separator, the reaction surface of the negative electrode becomes a lithium alloy layer, and since this lithium alloy does not have strong lithium reactivity, it will not absorb moisture or electrolyte during storage. Reactions with solvents and the like are suppressed, and therefore the formation of a passive film on the surface of the negative electrode is reduced, and an increase in internal resistance and a decrease in closed circuit voltage characteristics during storage are suppressed.

しかも、前記リチウム合金板は電池内で電気化学的に合
金化したものではないため、微粉末化せず、したがって
リチウム合金粉末に基づく短絡発生が防止される。また
、電池外であらかじめ合金化しているものであるため、
電池内での合金化による変形、例えば中央部が局部的に
体積増加を引き起こして、セパレータ側に突出し、それ
によってセパレータが位置ズレを起こして短絡が発生す
ることなどが防止される。
Moreover, since the lithium alloy plate is not electrochemically alloyed within the battery, it is not pulverized, thus preventing short circuits caused by the lithium alloy powder. In addition, since it is pre-alloyed outside the battery,
This prevents deformation due to alloying within the battery, such as a local increase in volume at the center and protrusion toward the separator, which would cause the separator to shift in position and cause a short circuit.

リチウム合金板としては、リチウムと、例えばアルミニ
ウム、錫、マグネシウム、鉛、ビスマス、亜鉛、ゲルマ
ニウム、ケイ素、アンチモン、インジウム、ガリウムの
1種または2種以上とを合金化させて板状にしたものが
用いられる。合金化に際しては、通常、リチウムと前記
アルミニウムなどの合金元素とを熔融、混合して合金化
させる、いわゆる冶金学的合金化が採用される。
A lithium alloy plate is a plate made by alloying lithium with one or more of aluminum, tin, magnesium, lead, bismuth, zinc, germanium, silicon, antimony, indium, and gallium. used. For alloying, so-called metallurgical alloying is usually employed, in which lithium and an alloying element such as aluminum are melted and mixed to form an alloy.

リチウム合金中におけるリチウム含量は70〜95原子
%(atomic%)にするのが好ましい。これはリチ
ウム含量が上記範囲より多くなると、合金化による水分
や電解液溶媒などとの反応を抑制する効果が充分に発揮
されなくなり、またリチウム含量が前記範囲より少なく
なると、硬くなり脆性が増して電池内に収容するのに通
した薄板状に成形するのが困難になるからである。
The lithium content in the lithium alloy is preferably 70 to 95 atomic %. This is because if the lithium content exceeds the above range, the effect of suppressing reactions with moisture and electrolyte solvent due to alloying will not be sufficiently exhibited, and if the lithium content falls below the above range, it will become hard and brittle. This is because it becomes difficult to form a sheet into a thin plate that can be accommodated in a battery.

そして、上記リチウム合金板の厚さは、薄いものでよく
、5 μ(1)  (0,00!lusm)程度以上あ
れば、負極表面での水分や電解液溶媒などとの反応を抑
制することができる。ただし、リチウム合金板の厚さが
大きくなると、それによって負極の電気量が減少するの
で、電気容量面を考えると、厚(でも20μ−以下にす
るのが好ましい。
The thickness of the lithium alloy plate may be thin, and if it is about 5 μ(1) (0,00!lusm) or more, it can suppress reactions with moisture, electrolyte solvent, etc. on the surface of the negative electrode. I can do it. However, as the thickness of the lithium alloy plate increases, the amount of electricity in the negative electrode decreases, so in terms of electrical capacity, it is preferable that the thickness be 20 μm or less.

リチウムイオン伝導性有機電解液としては、この種の電
池に通常用いられるものを何ら特別な制約を受けること
なくそのまま使用することができる。その具体例をあげ
ると、例えば1.2−ジメトキシエタン、112−ジェ
トキシエタン、エチレンカーボネート、プロピレンカー
ボネート、T−ブチロラクトン、テトラヒドロフラン、
1.3−ジオキソラン、4−メチル−1,3−ジオキソ
ランなどの有機溶媒の単独または2種以上の混合溶媒に
、例えばL i Cl 04、LiPF6、LiAsF
5、LiSbF6、LiBFa、L tB (Cs H
c、) 4などの電解質の1種または2種以上を熔解さ
せることによって調製したものを使用することができる
As the lithium ion conductive organic electrolyte, those normally used in this type of battery can be used as they are without any special restrictions. Specific examples include 1,2-dimethoxyethane, 112-jethoxyethane, ethylene carbonate, propylene carbonate, T-butyrolactone, tetrahydrofuran,
For example, LiCl 04, LiPF6, LiAsF can be added to an organic solvent such as 1.3-dioxolane or 4-methyl-1,3-dioxolane alone or in a mixture of two or more.
5, LiSbF6, LiBFa, L tB (Cs H
c.) Those prepared by melting one or more types of electrolytes such as 4 can be used.

正極活物質としては、例えば二酸化マンガン、硫化鉄、
酸化銅、硫化鉄と酸化銅との混合物、二硫化チタン、二
硫化モリブデン、五酸化バナジウム、フン化カーボンな
ど、この種の電池に通常用いられるものを何ら特別な制
約を受けることなく使用することができる。そして、正
極の作製にあたっては、上記活物質に、要すれば、例え
ば黒鉛やアセチレンブラックなどの導電助剤、例えばポ
リテトラフルオロエチレンなどの結着剤などを加え、電
池内に収容するのに通した形状に成形される。
Examples of positive electrode active materials include manganese dioxide, iron sulfide,
Copper oxide, a mixture of iron sulfide and copper oxide, titanium disulfide, molybdenum disulfide, vanadium pentoxide, carbon fluoride, and other materials commonly used in this type of battery may be used without any special restrictions. I can do it. In producing the positive electrode, if necessary, a conductive agent such as graphite or acetylene black, a binder such as polytetrafluoroethylene, etc. are added to the active material, and the material is then placed in a battery. It is molded into a shape.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving examples.

実施例1 負極缶に厚さ0.39mm、直径8■のリチウム板と、
厚さ0.01mm、直径8III11で冶金学的に合金
化したリチウム含量80原子%のリチウム−アルミニウ
ム合金板を挿入し、正極には二酸化マンガンを活物質と
するベレット状成形合剤を用い、電解液にはプロピレン
カーボネートと1.2−ジメトキシエタンとの容量比2
:1の混合溶媒にL i Cl 04をO08モル/l
溶解した有機電解液を用い、第1図に示す構造のボタン
形リチウム電池を作製した。
Example 1 A lithium plate with a thickness of 0.39 mm and a diameter of 8 cm was placed in the negative electrode can.
A metallurgically alloyed lithium-aluminum alloy plate with a lithium content of 80 atom % with a thickness of 0.01 mm and a diameter of 8III11 is inserted, and a pellet-shaped mixture containing manganese dioxide as an active material is used as the positive electrode. The liquid contains propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 2.
:L i Cl 04 in a mixed solvent of 1 O08 mol/l
A button-shaped lithium battery having the structure shown in FIG. 1 was manufactured using the dissolved organic electrolyte.

第1図において、1は負極缶で、この負極缶1はステン
レス鋼板で形成されており、その表面にはニッケルメッ
キが施されている。2は負極であり、この負極2はリチ
ウム板2aとリチウム合金板2bからなり、リチウム板
2aは負極缶1と対向する側に配置され、リチウム合金
板2bはセパレータ3と対向する側に配置されている。
In FIG. 1, 1 is a negative electrode can, and this negative electrode can 1 is made of a stainless steel plate, and its surface is nickel plated. 2 is a negative electrode, and this negative electrode 2 consists of a lithium plate 2a and a lithium alloy plate 2b, the lithium plate 2a is placed on the side facing the negative electrode can 1, and the lithium alloy plate 2b is placed on the side facing the separator 3. ing.

そして、本実施例において、上記リチウム合金板2bは
前述のようにリチウム含量80原子%のリチウム−アル
ミニウム合金板からなるものである。
In this embodiment, the lithium alloy plate 2b is made of a lithium-aluminum alloy plate with a lithium content of 80 atomic %, as described above.

セパレータ3はポリプロピレン不織布がらなり、4は正
極で、この正極4は二酸化マンガン100重量部、りん
状黒鉛10重量部およびポリテトラフルオロエチレン1
重量部からなる合剤をペレ・7ト状に加圧成形したもの
であり、5は上記正極4の加圧成形時にその一方の側に
配設したステンレスswi網からなる正極側集電体であ
る。6は正極缶で、この正極缶6はステンレス!il@
で形成されており、その表面にはニッケルメッキが施さ
れている。そして、7はポリプロピレン製のガスケット
である。
The separator 3 is made of polypropylene nonwoven fabric, and 4 is a positive electrode.
5 is a positive electrode side current collector made of a stainless steel wire mesh placed on one side of the positive electrode 4 during pressure molding. be. 6 is a positive electrode can, and this positive electrode can 6 is made of stainless steel! il@
The surface is nickel plated. And 7 is a gasket made of polypropylene.

実施例2 負極を厚さ0.39mm、直径8mmのリチウム板と厚
さO8O1mlls直径8II11でリチウム含量80
原子%のリチウム−錫合金板を重ね合わせて構成したほ
かは実施例1と同様の構成からなるリチウム電池を作製
した。もとより、リチウム−錫合金板はセパレータと対
向する側に配置されており、かつ該リチウム−錫合金は
冶金学的に合金化されたものである。
Example 2 The negative electrode was made of a lithium plate with a thickness of 0.39 mm and a diameter of 8 mm, a thickness of O8O1mls, a diameter of 8II11, and a lithium content of 80.
A lithium battery was produced having the same structure as in Example 1 except that atomic percent lithium-tin alloy plates were stacked one on top of the other. Naturally, the lithium-tin alloy plate is disposed on the side facing the separator, and the lithium-tin alloy is metallurgically alloyed.

実施例3 負極を厚さ0.395mm、直径8m+wのリチウム板
と厚さ0.005m+*、直径8Il111でリチウム
含量75原子%のリチウム−鉛合金板を重ね合わせて構
成したほかは実施例1と同様の構成からなるリチウム電
池を作製した。もとより、リチウム−鉛合金板はセパレ
ータと対向する側に配置されており、かつ該リチウム−
鉛合金は冶金学的に合金化されたちのである。
Example 3 Same as Example 1 except that the negative electrode was constructed by stacking a lithium plate with a thickness of 0.395 mm and a diameter of 8 m+w and a lithium-lead alloy plate with a thickness of 0.005 m+*, a diameter of 8Il111, and a lithium content of 75 at%. A lithium battery with a similar configuration was fabricated. Naturally, the lithium-lead alloy plate is placed on the side facing the separator, and the lithium-lead alloy plate is placed on the side facing the separator.
Lead alloys are metallurgically alloyed.

実施例4 負極を厚さ0.39n+a+、直径8IIlfflのリ
チウム板と厚さ0.01mm、直径8m+m”i”リチ
ウム含量8o原子% (7) ’Jチウムービスマス合
金板を重ね合わせて構成したほかは実施例1と同様の構
成からなるリチウム電池を作製した。もとより、リチウ
ム−ビスマス合金板はセパレータと対向する側に配置さ
れており、かつ該リチウム−ビスマス合金は冶金学的に
合金化されたものである。
Example 4 The negative electrode was constructed by stacking a lithium plate with a thickness of 0.39n+a+ and a diameter of 8IIffl and a lithium plate with a thickness of 0.01mm and a diameter of 8m+m"i" with a lithium content of 8o at% (7) 'J thiium-bismuth alloy. A lithium battery having the same configuration as in Example 1 was manufactured. Naturally, the lithium-bismuth alloy plate is disposed on the side facing the separator, and the lithium-bismuth alloy is metallurgically alloyed.

実施例5 負極を厚さ0.385mm、直径8III11のリチウ
ム板と厚さ0.015a+m、直径8■でリチウム含量
9o原子%のリチウム−マグネシウム合金板を重ね合わ
せて構成したほかは実施例1と同様の構成からなるリチ
ウム電池を作製した。もとより、リチウム−マグネシウ
ム合金板はセパレータと対向する側に配置されており、
かつ該リチウム−マグネシウム合金は冶金学的に合金化
されたものである。
Example 5 Same as Example 1 except that the negative electrode was constructed by stacking a lithium plate with a thickness of 0.385 mm and a diameter of 8III11 and a lithium-magnesium alloy plate with a thickness of 0.015 a+m and a diameter of 8 cm and a lithium content of 90 at%. A lithium battery with a similar configuration was fabricated. Originally, the lithium-magnesium alloy plate was placed on the side facing the separator,
And the lithium-magnesium alloy is metallurgically alloyed.

実施例6 負極を厚さ0.3h+m、直径8Il111のリチウム
板と厚さ0.01+lIm、直径8IllImでリチウ
ム含量85原子%のリチウム−亜鉛合金板を重ね合わせ
て構成したほかは実施例1と同様の構成からなるリチウ
ム電池を作製した。もとより、リチウム−亜鉛合金板は
セパレータと対向する側に配置されており、かつ該リチ
ウム−亜鉛合金は冶金学的に合金化されたものである。
Example 6 Same as Example 1 except that the negative electrode was constructed by stacking a lithium plate with a thickness of 0.3h+m and a diameter of 8Il111 and a lithium-zinc alloy plate with a thickness of 0.01+lIm and a diameter of 8IllIm with a lithium content of 85 at%. A lithium battery with the following configuration was fabricated. Naturally, the lithium-zinc alloy plate is disposed on the side facing the separator, and the lithium-zinc alloy is metallurgically alloyed.

実施例7 負極を厚さ0.385mm、直径8++nのリチウム板
と厚さ0.015+v+、直径8mmでリチウム含量9
0原子%のリチウム−ゲルマニウム合金板を重ね合わせ
て構成したほかは実施例1と同様の構成からなるリチウ
ム電池を作製した。もとより、リチウム−ゲルマニウム
合金板はセパレータと対向する側に配置されており、か
つ該リチウム−ゲルマニウム合金は冶金学的に合金化さ
れたものである。
Example 7 The negative electrode was a lithium plate with a thickness of 0.385 mm and a diameter of 8++n and a lithium plate with a thickness of 0.015+v+ and a diameter of 8 mm with a lithium content of 9.
A lithium battery was produced having the same structure as in Example 1 except that 0 atomic % lithium-germanium alloy plates were stacked one on top of the other. Naturally, the lithium-germanium alloy plate is disposed on the side facing the separator, and the lithium-germanium alloy is metallurgically alloyed.

実施例8 負極を厚さ0.385mm、直径8II11のリチウム
板と厚さ0.015s+s、直径8+wmでリチウム含
量90原子%のリチウム−ケイ素合金板を重ね合わせて
構成したほかは実施例1と同様の構成からなるリチウム
電池を作製した。もとより、リチウム−ケイ素合金板は
セパレータと対向する側に配置されており、かつ該リチ
ウム−ケイ素合金は冶金学的に合金化されたものである
Example 8 Same as Example 1 except that the negative electrode was constructed by stacking a lithium plate with a thickness of 0.385 mm and a diameter of 8II11 and a lithium-silicon alloy plate with a thickness of 0.015s+s and a diameter of 8+wm and a lithium content of 90 at%. A lithium battery with the following configuration was fabricated. Naturally, the lithium-silicon alloy plate is disposed on the side facing the separator, and the lithium-silicon alloy is metallurgically alloyed.

実施例9 負極を厚さ0.39mm、直径8mmのリチウム板と厚
さ0.01o+m、直径8mmでリチウム含量80原子
%のリチウム−アンチモン合金板を重ね合わせて構成し
たほかは実施例1と同様の構成からなるリチウム電池を
作製した。もとより、リチウム−アンチモン合金板はセ
パレータと対向する側に配置されており、かつ該リチウ
ム−アンチモン合金は冶金学的に合金化されたものであ
る。
Example 9 Same as Example 1 except that the negative electrode was constructed by stacking a lithium plate with a thickness of 0.39 mm and a diameter of 8 mm and a lithium-antimony alloy plate with a thickness of 0.01 o+m and a diameter of 8 mm with a lithium content of 80 at%. A lithium battery with the following configuration was fabricated. Naturally, the lithium-antimony alloy plate is disposed on the side facing the separator, and the lithium-antimony alloy is metallurgically alloyed.

実施例10 負極を厚さ0.381m11.直径8mmのリチウム板
と厚さ0.02s+m、直径8−一でリチウム含量85
原子%のリチウム−インジウム合金板を重ね合わせて構
成したほかは実施例1と同様の構成からなるリチウム電
池を作製した。もとより、リチウム−インジウム合金板
はセパレータと対向する側に配置されており、かつ該リ
チウム−インジウム合金は冶金学的に合金化されたもの
である。
Example 10 The negative electrode had a thickness of 0.381 m11. Lithium plate with diameter 8mm and thickness 0.02s+m, lithium content 85 with diameter 8-1
A lithium battery was produced having the same structure as in Example 1 except that atomic percent lithium-indium alloy plates were stacked one on top of the other. Naturally, the lithium-indium alloy plate is placed on the side facing the separator, and the lithium-indium alloy is metallurgically alloyed.

実施例11 負極を厚さ0.38m+m、直径811Imのリチウム
板と厚さ0.02m5、直径8(1)11でリチウム含
量85原子%のリチウム−ガリウム合金板を重ね合わせ
て構成したほかは実施例1と同様の構成からなるリチウ
ム電池を作製した。もとより、リチウム−ガリウム合金
板はセパレータと対向する側に配置されており、かつ該
リチウム−ガリウム合金は冶金学的に合金化されたもの
である。
Example 11 The negative electrode was constructed by stacking a lithium plate with a thickness of 0.38 m + m and a diameter of 811 Im and a lithium-gallium alloy plate with a thickness of 0.02 m and a diameter of 8 (1) 11 and a lithium content of 85 atomic %. A lithium battery having the same configuration as Example 1 was produced. Naturally, the lithium-gallium alloy plate is disposed on the side facing the separator, and the lithium-gallium alloy is metallurgically alloyed.

比較例1 負極を厚さ0.4mm、直径81Illのリチウム板だ
けで構成したほかは実施例1と同様の構成からなるリチ
ウム電池を作製した。
Comparative Example 1 A lithium battery was produced having the same structure as in Example 1, except that the negative electrode was made of only a lithium plate with a thickness of 0.4 mm and a diameter of 81 Ill.

比較例2 負橿缶に厚さ0.39+w+、直径8mmのリチウム板
と厚さ0.01mm、直径8++nのアルミニウム板と
を挿入し、リチウムとアルミニウムとを電池内で電解液
の存在下で電気化学的に合金化させて負極を構成したほ
かは実施例1と同様の構成からなるリチウム電池を作製
した。
Comparative Example 2 A lithium plate with a thickness of 0.39+w+ and a diameter of 8 mm and an aluminum plate with a thickness of 0.01 mm and a diameter of 8++n were inserted into a negative can, and the lithium and aluminum were heated in the battery in the presence of an electrolyte. A lithium battery having the same structure as in Example 1 was produced except that the negative electrode was formed by chemical alloying.

上記実施例1〜11の電池および比較例1〜2の電池を
JIS C5025に規定される電子部品振動試験法に
準じ振動周波数範囲10〜55Hz 、全振幅1.61
1II11で6時間振動試験を行い、短絡発生の有無を
開路電圧の低下により調べた結果を第1表に示す。
The batteries of Examples 1 to 11 and the batteries of Comparative Examples 1 to 2 were tested in accordance with the electronic component vibration test method specified in JIS C5025, with a vibration frequency range of 10 to 55 Hz, and a total amplitude of 1.61.
1II11 was subjected to a vibration test for 6 hours, and the presence or absence of short circuit was investigated by decreasing the open circuit voltage. The results are shown in Table 1.

つまり、第1表に示す短絡発生の有無は、開路電圧(通
常約3.2V)が3.0v以下に低下したものについて
は短絡が発生したという判断により短絡発生の有無を調
べた結果を示したものである。また上記実施例1〜11
の電池および比較例1〜2の電池を60℃で貯蔵し、貯
蔵に伴う内部抵抗(lk11zインピーダンス)の増加
率を開べた結果を第1表に示す。
In other words, the presence or absence of a short circuit shown in Table 1 indicates the result of examining the presence or absence of a short circuit by determining that a short circuit has occurred if the open circuit voltage (usually about 3.2V) has decreased to 3.0V or less. It is something that In addition, the above Examples 1 to 11
Table 1 shows the results of storing the batteries and the batteries of Comparative Examples 1 and 2 at 60° C. and calculating the rate of increase in internal resistance (lk11z impedance) with storage.

第1表に示すように、リチウムだけで負極を構成した比
較例1の電池は、リチウムの反応性が高いために貯蔵に
伴う内部抵抗増加が大きかったが、本発明の実施例1〜
11の電池は、リチウム合金板の1類によって多少の差
はあるものの、比較例1の電池に比べて貯蔵に伴う内部
抵抗増加が小さかった。これは、セパレータと対向する
側に配置したリチウム合金板により、貯蔵中の水分や電
解液溶媒との反応が抑制された結果によるものと考えら
れる。また、リチウムとアルミニウムを電池内で電解液
の存在下に電気化学的に合金化させた比較例2の電池は
、リチウム−アルミニウム合金がセパレータと対向する
側に配置することによって、貯蔵に伴う内部抵抗増加は
抑制されたが、リチウム−アルミニウム合金の微粉末化
により振動試験で短絡が多数発生した。
As shown in Table 1, the battery of Comparative Example 1 in which the negative electrode was composed of only lithium had a large increase in internal resistance during storage due to the high reactivity of lithium, but the battery of Examples 1 to 1 of the present invention had a large increase in internal resistance due to storage.
In the battery No. 11, although there were some differences depending on the type 1 lithium alloy plate, the internal resistance increase due to storage was smaller than the battery of Comparative Example 1. This is thought to be due to the fact that the lithium alloy plate placed on the side facing the separator suppresses reactions with moisture and electrolyte solvent during storage. In addition, in the battery of Comparative Example 2, in which lithium and aluminum were electrochemically alloyed in the presence of an electrolyte within the battery, by placing the lithium-aluminum alloy on the side facing the separator, the internal Although the increase in resistance was suppressed, many short circuits occurred in vibration tests due to the pulverization of the lithium-aluminum alloy.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、負極のセパレータと
対向する側にリチウム含量の高いリチウム合金板を配置
することにより、短絡を発生することなく、貯蔵に伴う
内部抵抗の増加を抑制することができた。
As explained above, in the present invention, by arranging a lithium alloy plate with a high lithium content on the side of the negative electrode facing the separator, it is possible to suppress the increase in internal resistance due to storage without causing short circuits. did it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るリチウム電池の一例を示す断面図
である。
FIG. 1 is a sectional view showing an example of a lithium battery according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)負極、リチウムイオン伝導性有機電解液および正
極を備えてなるリチウム電池であって、上記負極がリチ
ウム板とリチウム含量の高いリチウム合金板とを重ね合
わせてなり、上記リチウム板が負極缶と対向する側に配
置し、リチウム合金板がセパレータと対向する側に配置
していることを特徴とするリチウム電池。
(1) A lithium battery comprising a negative electrode, a lithium ion conductive organic electrolyte, and a positive electrode, wherein the negative electrode is formed by stacking a lithium plate and a lithium alloy plate with a high lithium content, and the lithium plate is a negative electrode case. and a lithium alloy plate is arranged on a side facing the separator.
(2)リチウム合金板が、リチウムと、アルミニウム、
錫、マグネシウム、鉛、ビスマス、亜鉛、ゲルマニウム
、ケイ素、アンチモン、インジウムおよびガリウムより
なる群から選ばれた少なくとも1種とを冶金学的に合金
化して板状にしたものである特許請求の範囲第1項記載
のリチウム電池。
(2) The lithium alloy plate contains lithium, aluminum,
Claim No. 1, which is made into a plate shape by metallurgically alloying with at least one member selected from the group consisting of tin, magnesium, lead, bismuth, zinc, germanium, silicon, antimony, indium, and gallium. The lithium battery according to item 1.
(3)リチウム合金板のリチウム含量を70〜95原子
%とした特許請求の範囲第1項または第2項記載のリチ
ウム電池。
(3) The lithium battery according to claim 1 or 2, wherein the lithium alloy plate has a lithium content of 70 to 95 at%.
JP61279467A 1986-11-21 1986-11-21 Lithium battery Expired - Fee Related JPH084002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61279467A JPH084002B2 (en) 1986-11-21 1986-11-21 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61279467A JPH084002B2 (en) 1986-11-21 1986-11-21 Lithium battery

Publications (2)

Publication Number Publication Date
JPS63133448A true JPS63133448A (en) 1988-06-06
JPH084002B2 JPH084002B2 (en) 1996-01-17

Family

ID=17611467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61279467A Expired - Fee Related JPH084002B2 (en) 1986-11-21 1986-11-21 Lithium battery

Country Status (1)

Country Link
JP (1) JPH084002B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156361A (en) * 2014-01-14 2015-08-27 セイコーインスツル株式会社 Negative electrode for lithium primary battery, manufacturing method thereof, lithium primary battery, and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174264A (en) * 1984-09-17 1986-04-16 Hitachi Maxell Ltd Lithium cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174264A (en) * 1984-09-17 1986-04-16 Hitachi Maxell Ltd Lithium cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156361A (en) * 2014-01-14 2015-08-27 セイコーインスツル株式会社 Negative electrode for lithium primary battery, manufacturing method thereof, lithium primary battery, and method of manufacturing the same

Also Published As

Publication number Publication date
JPH084002B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JPH0428172A (en) Secondary battery
JPH07114124B2 (en) Non-aqueous electrolyte secondary battery
JPS61208750A (en) Lithium organic secondary battery
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JPS63126156A (en) Lithium cell
JPS6166369A (en) Lithium secondary battery
JPS60175375A (en) Lithium organic secondary cell
JPH0665044B2 (en) Lithium organic primary battery
JPH0425676B2 (en)
JPS63133448A (en) Lithium battery
JPH06267542A (en) Nonaqueous electrolyte battery
KR20050008499A (en) Negative electrode and the battery using it
JP2005174847A (en) Electrode and nonaqueous electrolyte secondary battery
JPS63126159A (en) Lithium cell
JPS61208748A (en) Lithium organic secondary battery
JPH01239761A (en) Thin lithium battery
JPS63143744A (en) Lithium battery
JP2844829B2 (en) Organic electrolyte primary battery
JPH0353743B2 (en)
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JP2673836B2 (en) Non-aqueous electrolyte secondary battery
JPS63175348A (en) Lithium cell
JPS63126158A (en) Lithium cell
JP2714078B2 (en) Non-aqueous electrolyte battery
JPH07320723A (en) Lithium secondary battery and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees