JPH07320723A - Lithium secondary battery and manufacture thereof - Google Patents

Lithium secondary battery and manufacture thereof

Info

Publication number
JPH07320723A
JPH07320723A JP6129550A JP12955094A JPH07320723A JP H07320723 A JPH07320723 A JP H07320723A JP 6129550 A JP6129550 A JP 6129550A JP 12955094 A JP12955094 A JP 12955094A JP H07320723 A JPH07320723 A JP H07320723A
Authority
JP
Japan
Prior art keywords
lithium
aluminum
negative electrode
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6129550A
Other languages
Japanese (ja)
Inventor
Tadashi Sakata
匡 阪田
Osamu Okamoto
修 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP6129550A priority Critical patent/JPH07320723A/en
Publication of JPH07320723A publication Critical patent/JPH07320723A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress warp of a negative electrode attendant on charge/ discharge, enhance charge/discharge performance, and prevent deformation of a battery caused by warp of the negative electrode during alloying of lithium with aluminum. CONSTITUTION:A lithium-aluminum alloy which is alloyed by stacking lithium and aluminum is used as a negative electrode 1 of a lithium secondary battery. For alloying, aluminum having a hardness of 40-65Hv is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム−アルミニウ
ム合金を負極に用いるリチウム二次電池に関するもので
あり、さらに詳しくは、充放電に伴う負極の反りを抑制
し、充放電特性を向上させたリチウム二次電池に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using a lithium-aluminum alloy as a negative electrode, and more specifically, it suppresses warping of the negative electrode due to charging / discharging and improves charge / discharge characteristics. The present invention relates to a lithium secondary battery.

【0002】[0002]

【従来の技術】従来、リチウム−アルミニウム合金を負
極に用いるリチウム二次電池では、充放電特性に伴い負
極に反りが発生し、負極の割れや微粉化が生じて、充放
電特性が低下するという問題があった。
2. Description of the Related Art Conventionally, in a lithium secondary battery using a lithium-aluminum alloy as a negative electrode, the negative electrode is warped due to charge / discharge characteristics, and the negative electrode is cracked or pulverized to deteriorate charge / discharge characteristics. There was a problem.

【0003】すなわち、負極のリチウム−アルミニウム
合金は、放電によってリチウムが抜け出ていくと(リチ
ウム−アルミニウム合金のセパレータと対向する側の部
分からリチウムが抜け出ていく)、リチウム−アルミニ
ウム合金のセパレータと対向する側の部分に体積収縮が
生じて、該部分が径方向に収縮する。その結果、図2に
示すように、負極1のリチウム−アルミニウム合金に負
極缶4側を頂点とする三日月状の反りが発生する。
That is, the lithium-aluminum alloy of the negative electrode faces the lithium-aluminum alloy separator as the lithium escapes by discharge (the lithium escapes from the portion on the side facing the separator of the lithium-aluminum alloy). Volume contraction occurs in the part on the side to be compressed, and the part contracts in the radial direction. As a result, as shown in FIG. 2, a crescent-shaped warp with the negative electrode can 4 side as the apex occurs in the lithium-aluminum alloy of the negative electrode 1.

【0004】そして、充電によってリチウムがリチウム
−アルミニウム合金中に戻ってくると上記の反りが解消
されるが、上記のような負極1の反りとその解消が充放
電によって繰り返されると、負極1を構成するリチウム
−アルミニウム合金の割れや微粉化が促進され、その割
れた部分や微粉化した部分は集電ができなくなるため、
充放電に利用できなくなり、充放電特性が低下する。
When lithium returns to the lithium-aluminum alloy due to charging, the above warpage is eliminated. When the above-described warpage of the negative electrode 1 and its elimination are repeated by charging and discharging, the negative electrode 1 is Since the cracking and pulverization of the lithium-aluminum alloy that constitutes it is promoted, and the cracked portion and the pulverized portion cannot collect current,
It cannot be used for charge and discharge, and the charge and discharge characteristics deteriorate.

【0005】[0005]

【発明が解決しようとする課題】上記のように、従来の
リチウム二次電池では、充放電に伴い負極に反りが発生
し、そのため、負極に割れや微粉化が生じて、充放電特
性が低下するという問題があった。
As described above, in the conventional lithium secondary battery, the negative electrode is warped during charging and discharging, which causes cracking and pulverization of the negative electrode, resulting in deterioration of charge and discharge characteristics. There was a problem of doing.

【0006】したがって、本発明は、上記のような従来
のリチウム二次電池が持っていた問題点を解決し、充放
電に伴う負極の反りを抑制し、充放電特性の優れたリチ
ウム二次電池を提供することを目的とする。
Therefore, the present invention solves the problems of the conventional lithium secondary battery as described above, suppresses the warp of the negative electrode due to charge / discharge, and has excellent charge / discharge characteristics. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、リチウム合金
の母材となるアルミニウムとして、ビッカース硬度が4
0Hv以上のアルミニウムを使用することによって、充
放電に伴う負極の反りを抑制し、充放電特性を向上させ
るとともに、アルミニウムをビッカース硬度が65Hv
以下の範囲内で使用することによって、合金化時のリチ
ウム合金の反りも抑制し、該合金化時のリチウム合金の
反りに基づく電池変形をも防止したものである。
According to the present invention, as a base material of a lithium alloy, aluminum having a Vickers hardness of 4 is used.
By using aluminum of 0 Hv or more, it is possible to suppress the warpage of the negative electrode due to charge and discharge, improve the charge and discharge characteristics, and to make aluminum have a Vickers hardness of 65 Hv.
By using within the following range, the warp of the lithium alloy during alloying is also suppressed, and the battery deformation due to the warp of the lithium alloy during alloying is also prevented.

【0008】本発明者らの研究によれば、従来のリチウ
ム二次電池において、充放電に伴い負極に反りが発生
し、充放電特性の低下が大きくなったのは、合金化時の
負極の反りを抑制するために、アルミニウムとして比較
的軟らかいもの、ビッカース硬度でいえば、35Hv以
下のものを用いていたことに基づくことが判明した。
According to the research conducted by the present inventors, in the conventional lithium secondary battery, the negative electrode is warped during charging and discharging, and the charging and discharging characteristics are largely deteriorated. It has been found that this is based on the fact that aluminum that is relatively soft, that is, in terms of Vickers hardness, is 35 Hv or less is used to suppress warpage.

【0009】これを詳しく説明すると、次の通りであ
る。リチウムとアルミニウムとを重ね合わせて電池内で
電解液の存在下に電気化学的に合金化させる場合、リチ
ウムを電解液が豊富にあるセパレータ側に配置して合金
化が行われる。
This will be described in detail as follows. When lithium and aluminum are stacked and electrochemically alloyed in the battery in the presence of an electrolytic solution, the alloying is performed by placing lithium on the side of the separator rich in electrolytic solution.

【0010】合金化はリチウムが電解液中に溶出してイ
オン化し、それが母材となるアルミニウム中に侵入して
いくことによって行われるので、合金化がはじまると、
リチウムと接触する側のアルミニウムが膨張し、図3に
示すように、負極1のリチウム−アルミニウム合金に負
極缶4側を凹面とする(すなわち、セパレータ側を頂点
とする)三日月状の反りが発生する(つまり、放電時と
は逆方向に反りが発生する)。そして、その反りが大き
くなると電池が変形してしまい、電子総高が大きくなり
すぎて寸法不良の原因になったり、負極1と負極缶4と
の接触が点接触になって電圧が不安定になったり、容量
低下を引き起こす原因になる。
Since alloying is carried out by leaching lithium into the electrolytic solution, ionizing it, and invading it into aluminum, which is the base material, when alloying begins,
Aluminum on the side in contact with lithium expands, and as shown in FIG. 3, a crescent-shaped warp occurs in the lithium-aluminum alloy of the negative electrode 1 with the negative electrode can 4 side as a concave surface (that is, with the separator side as the apex). (That is, warpage occurs in the opposite direction to that at the time of discharging). When the warp becomes large, the battery is deformed, and the total electron height becomes too large, which causes a dimension defect, or the contact between the negative electrode 1 and the negative electrode can 4 becomes a point contact and the voltage becomes unstable. It may cause a decrease in capacity.

【0011】そのため、従来は、この合金化時の反りの
抑制を重視して、できるだけ軟らかいアルミニウムを使
用していた。つまり、軟らかいアルミニウムは硬いもの
に比べると伸びが大きいので、この軟らかいアルミニウ
ムを使用していると、負極缶4側にあってまだリチウム
との合金化が進行していないアルミニウムの伸びが大き
く、セパレータ3側の膨張に追随して伸び、図3に示す
ような負極1の反りが少なくなるであろうとの考えによ
るものである。
Therefore, conventionally, aluminum was used as soft as possible with an emphasis on suppressing warpage during alloying. That is, since soft aluminum has a larger elongation than hard one, when this soft aluminum is used, the elongation of the aluminum on the negative electrode can 4 side which has not yet been alloyed with lithium is large and the separator is large. This is based on the idea that the negative electrode 1 is likely to warp as shown in FIG.

【0012】しかしながら、本発明者らは、充放電に伴
う負極の反りに基づく充放電特性の低下を防止するため
に、従来とは発想の転換を行い、硬いアルミニウムを使
用して種々研究を重ねた結果、ビッカース硬度40Hv
以上のアルミニウムを用いるときは充放電に伴う負極の
反りを防止することができるとともに、ビッカース硬度
65Hv以下の範囲では、意外にも、合金化時の反りが
軟らかいものとそれほど変わらず、反りがそれほど大き
くならないことを見出した。
However, in order to prevent the deterioration of charge / discharge characteristics due to the warp of the negative electrode due to charge / discharge, the present inventors changed their idea from the conventional method and conducted various studies using hard aluminum. As a result, Vickers hardness 40Hv
When the above aluminum is used, it is possible to prevent the negative electrode from being warped due to charge / discharge, and, surprisingly, in the range of Vickers hardness of 65 Hv or less, the warping during alloying is not so different from the soft one, and the warping is not so much. I found that it would not grow.

【0013】本発明において、使用するアルミニウムの
硬度としては、上記のように、ビッカース硬度で40〜
65Hvであることが必要である。アルミニウムのビッ
カース硬度が40Hvより小さい場合は、充放電に伴う
負極の反りを充分に抑制することができず、またアルミ
ニウムのビッカース硬度が65Hvより大きくなると、
合金化時の反りが大きくなり、電池の変形が大きくな
る。
In the present invention, the hardness of aluminum used is, as described above, 40 to 50 in Vickers hardness.
It must be 65 Hv. When the Vickers hardness of aluminum is less than 40 Hv, the warp of the negative electrode due to charging / discharging cannot be sufficiently suppressed, and when the Vickers hardness of aluminum is more than 65 Hv,
The warpage during alloying increases and the deformation of the battery increases.

【0014】本発明において、負極には、上記のよう
に、リチウムとビッカース硬度が400〜65Hvのア
ルミニウムとを重ね合わせて合金化したリチウム合金が
用いられるが、上記リチウム合金の母材となるアルミニ
ウムは、マンガンや、マグネシウム、チタンなどが添加
されたものであってもよい。
In the present invention, as the negative electrode, as described above, a lithium alloy in which lithium and aluminum having a Vickers hardness of 400 to 65 Hv are superposed and alloyed with each other is used. Aluminum serving as a base material of the lithium alloy is used. May be added with manganese, magnesium, titanium, or the like.

【0015】上記リチウム−アルミニウム合金における
リチウム含量としては、10〜60原子%が適している
が、リチウム含量が20〜40原子%のものが特に反り
を発生しやすいことから、本発明はリチウム含量が20
〜40原子%のリチウム−アルミニウム合金を負極に用
いる場合に適用することにより、その効果が特に顕著に
発現する。
A suitable lithium content in the lithium-aluminum alloy is 10 to 60 atomic%, but a lithium content of 20 to 40 atomic% is particularly prone to warpage, so the present invention provides a lithium content. Is 20
By applying the lithium-aluminum alloy of up to 40 atomic% to the negative electrode, the effect becomes particularly remarkable.

【0016】正極には、たとえば二酸化マンガンをはじ
め、LiCoO2 、LiNiO2 、TiS2 、V
2 5 、CuS、NiPS3 、FePS3 、NbSe3
などの金属のカルコゲン化合物、酸化物、硫化物、リン
・イオウ化合物、セレン化合物などを活物質とするもの
が用いられる。
The positive electrode includes, for example, manganese dioxide, LiCoO 2 , LiNiO 2 , TiS 2 , and V.
2 O 5 , CuS, NiPS 3 , FePS 3 , NbSe 3
A metal chalcogen compound, an oxide, a sulfide, a phosphorus-sulfur compound, a selenium compound, or the like as an active material is used.

【0017】電解液として、たとえばプロピレンカーボ
ネート、エチレンカーボネート、ブチレンカーボネー
ト、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、γ−ブチロラクトン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,3−ジオキソラン、4
−メチル−1,3−ジオキソラン、ジエチルカーボネー
ト、ジメチルカーボネート、メチルエチルカーボネート
などの有機溶媒の単独または2種以上の混合溶媒に、た
とえばLiPF6 、LiClO4 、LiBF4 、LiA
sF6 、LiCF3 SO3 、LiC4 9 SO3 などの
電解質を単独でまたは2種以上溶解させたものが用いら
れる。
As the electrolytic solution, for example, propylene carbonate, ethylene carbonate, butylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-
Methyl tetrahydrofuran, 1,3-dioxolane, 4
-In an organic solvent such as methyl-1,3-dioxolane, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate, or in a mixed solvent of two or more kinds, for example, LiPF 6 , LiClO 4 , LiBF 4 , LiA.
An electrolyte such as sF 6 , LiCF 3 SO 3 or LiC 4 F 9 SO 3 may be used alone or in combination with two or more dissolved therein.

【0018】セパレータとしては、たとえばポリオレフ
ィン系樹脂製の微孔性フィルムや不織布を単独で使用す
るか、あるいはそれらを組み合わせたものが用いられ
る。
As the separator, for example, a microporous film or non-woven fabric made of polyolefin resin may be used alone, or a combination thereof may be used.

【0019】[0019]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれら実施例に例示のも
のに限られることはない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to those illustrated in these examples.

【0020】実施例1 厚さ0.1mmで直径16mmの円板状のリチウムと、
厚さ0.3mmで直径16mmの円板状でビッカース硬
度45Hvのアルミニウムとを重ね合わせて負極缶に挿
入した。
Example 1 Disk-shaped lithium having a thickness of 0.1 mm and a diameter of 16 mm,
A disc-shaped plate having a thickness of 0.3 mm and a diameter of 16 mm and having a Vickers hardness of 45 Hv were superposed and inserted into a negative electrode can.

【0021】上記リチウムとアルミニウムとの挿入にあ
たっては、アルミニウムが負極缶の缶底内面に接触する
ようにし、また、その挿入に先立って、負極缶の周辺折
り返し部にはポリプロピレン製の環状ガスケットを嵌合
しておいた。
When the lithium and aluminum are inserted, the aluminum is brought into contact with the inner surface of the bottom of the negative electrode can, and prior to the insertion, an annular gasket made of polypropylene is fitted around the folded portion around the negative electrode can. I had it together.

【0022】つぎに、上記リチウム上にセパレータを載
置し、電解液を注入し、その上に正極を配置した。
Next, a separator was placed on the lithium, an electrolytic solution was injected, and a positive electrode was placed thereon.

【0023】上記セパレータは微孔性ポリプロピレンフ
ィルムを中央にしてその両面にポリプロピレン不織布を
配置した三層構造のものであり、電解液はプロピレンカ
ーボネートと1,2−ジメトキシエタンとの体積比1:
1の混合溶媒にLiPF6 を1モル/リットル溶解させ
たものである。
The separator has a three-layer structure in which a polypropylene non-woven fabric is arranged on both sides of the microporous polypropylene film in the center, and the electrolytic solution has a volume ratio of propylene carbonate and 1,2-dimethoxyethane of 1:
1 mol / liter of LiPF 6 was dissolved in the mixed solvent of No. 1.

【0024】正極は、二酸化マンガンと導電材としての
鱗片状黒鉛と結着材としてのポリテトラフルオロエチレ
ンを重量比で100:10:1の割合で混合して調製し
た正極合剤を厚さ0.3mm、直径16mmに加圧成形
したものである。
For the positive electrode, a positive electrode mixture prepared by mixing manganese dioxide, scaly graphite as a conductive material, and polytetrafluoroethylene as a binder in a weight ratio of 100: 10: 1 was prepared. It is pressure-molded to have a diameter of 0.3 mm and a diameter of 16 mm.

【0025】つぎに、正極缶をその上からかぶせ、正極
缶の開口端部を内方に締め付けて電池を組み立てた。
Then, the positive electrode can was covered from above, and the open end of the positive electrode can was tightened inward to assemble the battery.

【0026】電池は設定寸法が高さ1.6mm、外径2
0mmのボタン形リチウム二次電池であり、その構造を
図1に示す。ただし、図1は上記組立後の電池をその組
立時とは上下を反転させた状態で示している。
The battery has a set dimension of height 1.6 mm and outer diameter 2
It is a 0 mm button type lithium secondary battery, and its structure is shown in FIG. However, FIG. 1 shows the assembled battery in a state in which the battery is turned upside down from the assembled state.

【0027】図1において、1は負極、2は正極、3は
セパレータ、4は負極缶、5は正極缶、6は環状ガスケ
ットである。
In FIG. 1, 1 is a negative electrode, 2 is a positive electrode, 3 is a separator, 4 is a negative electrode can, 5 is a positive electrode can, and 6 is an annular gasket.

【0028】負極1は上記のように負極缶4内に挿入し
たリチウムとアルミニウムとを電池内で電解液の存在下
に電気化学的に合金化させたものであり、この負極1の
作製にあたって使用されたアルミニウムは前記のように
ビッカース硬度が45Hvである。そして、負極1のリ
チウム−アルミニウムのリチウム含量は25原子%であ
る。
The negative electrode 1 is obtained by electrochemically alloying lithium and aluminum inserted in the negative electrode can 4 as described above in the battery in the presence of an electrolytic solution. The aluminum thus produced has a Vickers hardness of 45 Hv as described above. The lithium content of lithium-aluminum of the negative electrode 1 is 25 atomic%.

【0029】正極2は前記のように二酸化マンガンを活
物質とする正極合剤を加圧成形したものからなり、セパ
レータ3は微孔性ポリプロピレンフィルムとポリプロピ
レン不織布を併用した三層構造のものである。そして、
負極缶4、正極缶5ともステンレス鋼製で、環状ガスケ
ット6はポリプロピレン製である。
The positive electrode 2 is formed by pressure-molding a positive electrode mixture containing manganese dioxide as an active material as described above, and the separator 3 has a three-layer structure in which a microporous polypropylene film and a polypropylene nonwoven fabric are used in combination. . And
Both the negative electrode can 4 and the positive electrode can 5 are made of stainless steel, and the annular gasket 6 is made of polypropylene.

【0030】実施例2 実施例1におけるビッカース硬度45Hvのアルミニウ
ムに代えて、ビッカース硬度52Hvのアルミニウムを
用いた以外は、実施例1と同様にしてボタン形のリチウ
ム二次電池を製造した。
Example 2 A button-type lithium secondary battery was manufactured in the same manner as in Example 1 except that aluminum having a Vickers hardness of 45 Hv in Example 1 was used instead of aluminum having a Vickers hardness of 52 Hv.

【0031】実施例3 実施例1におけるビッカース硬度45Hvのアルミニウ
ムに代えて、ビッカース硬度60Hvのアルミニウムを
用いた以外は、実施例1と同様にしてボタン形のリチウ
ム二次電池を製造した。
Example 3 A button type lithium secondary battery was manufactured in the same manner as in Example 1 except that aluminum having a Vickers hardness of 60 Hv was used instead of aluminum having a Vickers hardness of 45 Hv.

【0032】比較例1 実施例1におけるビッカース硬度45Hvのアルミニウ
ムに代えて、ビッカース硬度35Hvのアルミニウムを
用いた以外は、実施例1と同様にしてボタン形のリチウ
ム二次電池を製造した。
Comparative Example 1 A button type lithium secondary battery was manufactured in the same manner as in Example 1 except that aluminum having a Vickers hardness of 35 Hv was used in place of the aluminum having a Vickers hardness of 45 Hv.

【0033】比較例2 実施例1におけるビッカース硬度45Hvのアルミニウ
ムに代えて、ビッカース硬度70Hvのアルミニウムを
用いた以外は、実施例1と同様にしてボタン形のリチウ
ム二次電池を製造した。
Comparative Example 2 A button type lithium secondary battery was manufactured in the same manner as in Example 1 except that aluminum having a Vickers hardness of 70 Hv was used in place of the aluminum having a Vickers hardness of 45 Hv.

【0034】上記実施例1〜3および比較例1〜2の電
池を、3.25Vで14時間充電、1.5kΩで10時
間放電という充放電条件下で、充放電させ、放電容量が
第1回目の放電容量の7割以上を保ち得るサイクル数を
調べた。その結果を表1に示す。
The batteries of Examples 1 to 3 and Comparative Examples 1 and 2 were charged and discharged under the charge and discharge conditions of charging at 3.25 V for 14 hours and discharging at 1.5 kΩ for 10 hours, and the discharge capacity was the first. The number of cycles capable of maintaining 70% or more of the discharge capacity at the first time was examined. The results are shown in Table 1.

【0035】また、上記実施例1〜3および比較例1〜
2の電池のリチウムとアルミニウムとの合金化時の電池
の変形についても調べた結果を表1に示す。ただし、こ
の合金化時の電池の変形は、20℃で4日間放置後の電
池総高を測定し、電子総高が1.6mmを超えるものを
変形有り、電池総高が1.6mm以下のものを変形無し
という評価で判定した。
Further, the above Examples 1 to 3 and Comparative Examples 1 to 1
Table 1 shows the results of investigations on the deformation of the battery of Example 2 when alloying lithium and aluminum. However, the deformation of the battery at the time of alloying is measured by measuring the total height of the battery after standing at 20 ° C. for 4 days, and the total electron height exceeds 1.6 mm. The thing was judged by the evaluation that there was no deformation.

【0036】[0036]

【表1】 [Table 1]

【0037】表1に示すように、本発明の実施例1〜3
の電池は、合金化時の電池の変形がなく、かつ従来電池
に相当する比較例1の電池に比べて、充放電サイクル数
が多く、充放電特性が優れていた。
As shown in Table 1, Examples 1 to 3 of the present invention are shown.
The battery of No. 1 had no deformation of the battery at the time of alloying, and had a larger number of charge / discharge cycles and excellent charge / discharge characteristics as compared with the battery of Comparative Example 1 corresponding to the conventional battery.

【0038】これに対して、アルミニウムのビッカース
硬度が低い比較例1は、充放電サイクル数が少なかっ
た。これは、比較例1の電池では充放電中における負極
のリチウム合金の反りに基づいて割れや微粉化が生じた
ためであると考えられる。
On the other hand, in Comparative Example 1 in which the Vickers hardness of aluminum was low, the number of charge / discharge cycles was small. It is considered that this is because in the battery of Comparative Example 1, cracking or pulverization occurred due to the warp of the lithium alloy of the negative electrode during charge / discharge.

【0039】また、アルミニウムのビッカース硬度が高
い比較例2は、充放電サイクル数が多かったものの、合
金化時に電池の変形が認められた。
Further, in Comparative Example 2 in which the Vickers hardness of aluminum was high, although the number of charge / discharge cycles was large, the deformation of the battery was observed during alloying.

【0040】[0040]

【発明の効果】以上説明したように、本発明では、負極
のリチウム合金の母材としてビッカース硬度が40〜6
5Hvのアルミニウムを使用することによって、充放電
に伴う負極の反りを抑制し、充放電特性が優れ、しかも
合金化時の電池の変形がないリチウム二次電池を提供す
ることができた。
As described above, according to the present invention, as the base material of the lithium alloy of the negative electrode, the Vickers hardness is 40 to 6.
By using 5 Hv of aluminum, it was possible to provide a lithium secondary battery in which warpage of the negative electrode due to charge and discharge was suppressed, charge and discharge characteristics were excellent, and there was no deformation of the battery during alloying.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム二次電池の一実施例を示す断
面図である。
FIG. 1 is a sectional view showing an embodiment of a lithium secondary battery of the present invention.

【図2】リチウム二次電池の充放電に伴って負極に発生
する反りを模式的に示す図である。
FIG. 2 is a diagram schematically showing the warpage that occurs in the negative electrode as the lithium secondary battery is charged and discharged.

【図3】リチウム二次電池におけるリチウムとアルミニ
ウムとの合金化時に負極に発生する反りを模式的に示す
図である。
FIG. 3 is a diagram schematically showing a warp that occurs in a negative electrode when alloying lithium and aluminum in a lithium secondary battery.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 3 セパレータ 1 Negative electrode 2 Positive electrode 3 Separator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極1と、正極2と、有機溶媒系の電解
液と、セパレータ3を有し、リチウムとアルミニウムと
を重ね合わせて合金化を行ったリチウム−アルミニウム
合金を上記負極1とするリチウム二次電池において、上
記合金化に使用したアルミニウムのビッカース硬度が4
0〜65Hvであることを特徴とするリチウム二次電
池。
1. A negative electrode 1 is a lithium-aluminum alloy which has a negative electrode 1, a positive electrode 2, an organic solvent-based electrolytic solution, and a separator 3 and which is alloyed by stacking lithium and aluminum. In the lithium secondary battery, the Vickers hardness of the aluminum used for the alloying is 4
A lithium secondary battery, which is 0 to 65 Hv.
【請求項2】 リチウム−アルミニウム合金のリチウム
含量が、20〜40原子%である請求項1記載のリチウ
ム二次電池。
2. The lithium secondary battery according to claim 1, wherein the lithium content of the lithium-aluminum alloy is 20 to 40 atom%.
【請求項3】 リチウムとアルミニウムとを電池内で電
解液の存在下に電気化学的に合金化することを特徴とす
る請求項1記載のリチウム二次電池の製造方法。
3. The method for producing a lithium secondary battery according to claim 1, wherein lithium and aluminum are electrochemically alloyed in the battery in the presence of an electrolytic solution.
JP6129550A 1994-05-18 1994-05-18 Lithium secondary battery and manufacture thereof Pending JPH07320723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6129550A JPH07320723A (en) 1994-05-18 1994-05-18 Lithium secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6129550A JPH07320723A (en) 1994-05-18 1994-05-18 Lithium secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07320723A true JPH07320723A (en) 1995-12-08

Family

ID=15012286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6129550A Pending JPH07320723A (en) 1994-05-18 1994-05-18 Lithium secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07320723A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159596A (en) * 2010-02-03 2011-08-18 Sumitomo Electric Ind Ltd Secondary battery and method of manufacturing the same
WO2019146231A1 (en) 2018-01-24 2019-08-01 住友化学株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, and battery
WO2020054648A1 (en) * 2018-09-14 2020-03-19 マクセルホールディングス株式会社 Nonaqueous electrolyte secondary battery, method of manufacturing same, and nonaqueous electrolyte secondary battery system
WO2021206120A1 (en) * 2020-04-09 2021-10-14 住友化学株式会社 Lithium secondary battery and electrolytic solution for lithium secondary battery
US12034159B2 (en) 2018-09-14 2024-07-09 Maxell, Ltd. Non-aqueous electrolyte secondary battery, method of manufacturing same, and non-aqueous electrolyte secondary battery system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159596A (en) * 2010-02-03 2011-08-18 Sumitomo Electric Ind Ltd Secondary battery and method of manufacturing the same
WO2019146231A1 (en) 2018-01-24 2019-08-01 住友化学株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, and battery
CN111630694A (en) * 2018-01-24 2020-09-04 住友化学株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, and battery
KR20200104883A (en) 2018-01-24 2020-09-04 스미또모 가가꾸 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode and battery
EP3745511A4 (en) * 2018-01-24 2021-10-13 Sumitomo Chemical Company Limited Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, and battery
WO2020054648A1 (en) * 2018-09-14 2020-03-19 マクセルホールディングス株式会社 Nonaqueous electrolyte secondary battery, method of manufacturing same, and nonaqueous electrolyte secondary battery system
JPWO2020054648A1 (en) * 2018-09-14 2021-08-30 マクセルホールディングス株式会社 Non-aqueous electrolyte secondary battery, its manufacturing method and non-aqueous electrolyte secondary battery system
US12034159B2 (en) 2018-09-14 2024-07-09 Maxell, Ltd. Non-aqueous electrolyte secondary battery, method of manufacturing same, and non-aqueous electrolyte secondary battery system
WO2021206120A1 (en) * 2020-04-09 2021-10-14 住友化学株式会社 Lithium secondary battery and electrolytic solution for lithium secondary battery

Similar Documents

Publication Publication Date Title
US7767344B2 (en) Lithium secondary battery
US7416817B2 (en) Battery
US9276259B2 (en) Secondary battery of improved lithium ion mobility and cell capacity
US7556881B2 (en) Lithium secondary battery
US7258951B2 (en) Lithium secondary battery
US4820599A (en) Non-aqueous electrolyte type secondary cell
US6352794B1 (en) Lithium rechargeable battery
JP2597091B2 (en) Lithium secondary battery
US20050100790A1 (en) Lithium secondary battery
US20060083987A1 (en) Battery
EP1022797A1 (en) Polymer electrolyte battery and polymer electrolyte
US7261976B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
US20030054252A1 (en) Lithium secondary battery
US6300009B1 (en) Lithium secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH07320723A (en) Lithium secondary battery and manufacture thereof
JPH0665044B2 (en) Lithium organic primary battery
JP2003132950A (en) Organic electrolytic solution secondary battery
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
KR20010037099A (en) Lithium secondary battery and fabrication method thereof
JPH10112306A (en) Secondary battery
JPH09259866A (en) Lithium secondary battery
US20230299344A1 (en) Lithium metal secondary battery and gel electrolyte
JP3124749B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050120