JPH01239761A - Thin lithium battery - Google Patents

Thin lithium battery

Info

Publication number
JPH01239761A
JPH01239761A JP63066077A JP6607788A JPH01239761A JP H01239761 A JPH01239761 A JP H01239761A JP 63066077 A JP63066077 A JP 63066077A JP 6607788 A JP6607788 A JP 6607788A JP H01239761 A JPH01239761 A JP H01239761A
Authority
JP
Japan
Prior art keywords
lithium
separator
battery
negative electrode
lithium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066077A
Other languages
Japanese (ja)
Inventor
Hiroshi Horiie
堀家 浩
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63066077A priority Critical patent/JPH01239761A/en
Publication of JPH01239761A publication Critical patent/JPH01239761A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the performance of a battery and to prevent the battery from short circuit by forming a negative electrode with two layers of lithium and a specified lithium alloy and using a nonwoven fabric having a specified pore size and METSUKE weight as a separator. CONSTITUTION:A negative electrode 2 of a thin lithium battery consists of two layers of a lithium layer 2a and a lithium alloy layer 2b. The lithium alloy layer 2b is prepared by electrochemically alloying lithium with a metal capable of electrochemically alloying with lithium such as aluminum. The activity of the lithium layer 2a is optimized, and storage life and closed circuit voltage are improved, but the fine powder of lithium alloy is generated. As a separator 3, nonwoven fabric made of polypropylene having a maximum pore size of 5mum or less and a METSUKE weight of 30-70g/cm<2> is used. The separator 3 efficiently retains an electrolyte, and retards the transfer of the fine powder of lithium alloy by entangling fibers. The short circuit of a battery is thereby prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄形リチウム電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a thin lithium battery.

〔従来の技術〕[Conventional technology]

リチウム電池では、負極にリチウムが用いられているが
、リチウムは化学的に非常に活性であり、その化学的活
性の大きいことが電池としての種々の特長を生み出すも
のの、その反面では活性が強すぎるために電池の使用中
あるいは貯蔵中に種々の問題を引き起こす0例えば、二
次電池では、充電時の電着リチウムが特に活性が強く電
解液中の成分と反応して負極表面に不働態膜を生成し、
負極を劣化させて充放電サイクル特性の低下を引き起こ
すことが報告されている。そのため、リチウムをアルミ
ニウムと合金化し、充電時にリチウムとアルミニウムと
の電気化学的合金化反応を利用して、活性な電着リチウ
ムの状態でとどまるのを極力少なくして、負極の劣化を
防止し、充放電サイクル特性を向上させることが提案さ
れている(例えば、米国特許第4,002,492号明
細書)。
In lithium batteries, lithium is used for the negative electrode, but lithium is chemically very active, and although its high chemical activity gives it various features as a battery, on the other hand, it is too active. For example, in secondary batteries, electrodeposited lithium during charging is particularly active and reacts with components in the electrolyte, causing various problems during battery use or storage. generate,
It has been reported that it deteriorates the negative electrode and causes a decrease in charge/discharge cycle characteristics. Therefore, by alloying lithium with aluminum and utilizing the electrochemical alloying reaction between lithium and aluminum during charging, we minimize the amount of lithium remaining in the active electrodeposited state and prevent deterioration of the negative electrode. It has been proposed to improve charge/discharge cycle characteristics (eg, US Pat. No. 4,002,492).

また、−次電池においても、リチウム板のセパレータと
対向する側の面に、アルミニウム、鉛、亜鉛、錫、ビス
マス、インジウム、ガリウム、マグネシウムなどのリチ
ウムと電気化学的に合金化する金属の薄板を配置して、
電解液の存在下にリチウムと上記金属とを電気化学的に
合金化させ、リチウム表面の活性を低下させて、電解液
との反応を抑制し、負極表面への不働態膜の生成を防止
して、負極の界面抵抗の増加を即制し、貯蔵特性や閉路
電圧特性を向上させることが促案されている(例えば、
特開昭61−74269号公報)。
Furthermore, in secondary batteries, a thin plate of a metal that electrochemically alloys with lithium, such as aluminum, lead, zinc, tin, bismuth, indium, gallium, or magnesium, is placed on the side of the lithium plate facing the separator. Place it and
Lithium and the above metals are electrochemically alloyed in the presence of an electrolyte to reduce the activity of the lithium surface, suppress the reaction with the electrolyte, and prevent the formation of a passive film on the negative electrode surface. Therefore, it is recommended to immediately control the increase in the interfacial resistance of the negative electrode and improve the storage characteristics and closed circuit voltage characteristics (for example,
(Japanese Patent Application Laid-Open No. 61-74269).

しかし、上記のようにリチウムと他の金属とを電解液の
存在下で電気化学的に合金化させた場合、合金が微粉末
化し、それが負極の反応面積を増加させ、電解液を保持
して、パルス閉路電圧を高めるなど、電池性能を向上さ
せる要因となるが、その反面では、微粉末化したリチウ
ム合金がセパレータを通り抜け、正極に達して短絡を引
き起こすという問題があった。
However, when lithium and other metals are electrochemically alloyed in the presence of an electrolyte as described above, the alloy becomes a fine powder, which increases the reaction area of the negative electrode and retains the electrolyte. This is a factor that improves battery performance by increasing the pulse closing voltage, but on the other hand, there is a problem in that the finely powdered lithium alloy passes through the separator and reaches the positive electrode, causing a short circuit.

特に、二酸化マンガンを正極活物質とする薄形リチウム
電池では、正極活物質の充填量を高め、かつ厚みの薄い
正極でも適当な強度が保ち得るように、正極の空隙率は
比較的小さく成形される。
In particular, in thin lithium batteries that use manganese dioxide as the positive electrode active material, the porosity of the positive electrode is molded to be relatively small in order to increase the filling amount of the positive electrode active material and maintain appropriate strength even with a thin positive electrode. Ru.

そのため、正極内に充分な電解液を吸蔵することができ
ないので、セパレータにはポリプロピレン不織布などの
電解液保持能力が高い不織布が用いられているが、従来
使用の不織布は電解液の保持性などに対して注意が払わ
れているだけで、空孔の孔径に対して特に注意が払われ
ていなかったので、空孔の孔径が約40μmと大きく、
そのため、リチウム合金層をセパレータと対向する側に
設けると、微粉末化したリチウム合金がセパレータを通
り抜けて短絡が非常に生じやすい状況にあった。
For this reason, it is not possible to store sufficient electrolyte in the positive electrode, so a nonwoven fabric with a high electrolyte retention capacity, such as a polypropylene nonwoven fabric, is used for the separator.However, conventional nonwoven fabrics have poor electrolyte retention properties. However, the pore diameter was as large as approximately 40 μm, and no particular attention was paid to the pore diameter.
Therefore, when the lithium alloy layer is provided on the side facing the separator, the finely powdered lithium alloy passes through the separator and short circuits are very likely to occur.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記のように従来の薄形リチウム電池では、
リチウム合金粉末がセパレータを通り抜けて内部短絡を
引き起こしやすかったという問題点を解決し、短絡発生
がなく、かつ電池性能の優れた薄形リチウム電池を提供
することを目的とす〔課題を解決するための手段〕 本発明は、負極のリチウム層のセパレータと対向する側
に電気化学的合金化によるリチウム合金層を設けること
によって、パルス閉路電圧特性などの電池性能を向上さ
せるとともに、セパレータとして孔径が5μm以下で、
日付型fi30〜70g/rdの不織布を用いることに
よって、リチウム合金の微粉末化によるセパレータの通
り抜けを防止して、短絡発生がな(、かつ電池性能の優
れた薄形リチウム電池を提供したものである。
As described above, the present invention provides that conventional thin lithium batteries
The purpose is to solve the problem that lithium alloy powder easily passes through the separator and cause internal short circuits, and to provide a thin lithium battery that does not have short circuits and has excellent battery performance. ] The present invention improves battery performance such as pulse-circuit voltage characteristics by providing a lithium alloy layer by electrochemical alloying on the side of the lithium layer of the negative electrode opposite to the separator. Below,
By using a non-woven fabric with a date type fi of 30 to 70 g/rd, it is possible to prevent the lithium alloy from passing through the separator due to the pulverization of the lithium alloy, thereby providing a thin lithium battery that does not cause short circuits and has excellent battery performance. be.

すなわち、リチウムをアルミニウムなどと電解液の存在
下に電気化学的に合金化させると、リチウム合金が微粉
末化する。この微粉末化の程度は、合金化する金属の種
類、リチウムに対する他の金属の合金化比率、合金化時
の温度などによって異なるが、最も小さい粒子は0.4
μm程度のものがあり、使用するセパレータについて考
慮を払うことなく、従来使用のポリプロピレン不織布な
どをそのままセパレータとして使用すると、リチウム合
金粉末がセパレータを通り抜けて正極に達して内部短絡
を引き起こす。そこで、本発明では、セパレータとして
孔径が5μm以下で、日付mN30〜70 g / r
dの不織布を用いることによって、リチウム合金粉末が
セパレータを通り抜けるのを防止し、短絡発生がな(、
かつ電池性能の優れたリチウム電池を提供したものであ
る。
That is, when lithium is electrochemically alloyed with aluminum or the like in the presence of an electrolyte, the lithium alloy becomes fine powder. The degree of this pulverization varies depending on the type of metal to be alloyed, the alloying ratio of other metals to lithium, the temperature during alloying, etc., but the smallest particle is 0.4
If a conventionally used polypropylene nonwoven fabric or the like is used as a separator without paying any consideration to the separator used, the lithium alloy powder will pass through the separator and reach the positive electrode, causing an internal short circuit. Therefore, in the present invention, the separator has a pore diameter of 5 μm or less and a date mN of 30 to 70 g/r.
By using the nonwoven fabric of d, the lithium alloy powder is prevented from passing through the separator, and short circuits do not occur (
The present invention also provides a lithium battery with excellent battery performance.

本発明においては、セパレータとして孔径が5μm以下
で、目付重量30〜70g/nfの不織布を用いるが、
このようにリチウム合金粉末の粒径より大きな空孔を有
する不織布で、リチウム合金粉末の通り抜けが防止でき
るというのは、理解しがたいかも知れないが、不織布は
繊維を絡み合わせて形成されたものであり、その空孔は
まっすぐではなく、曲折しているので、厚みの割にリチ
ウム合金粉末の通過距離が長くなり、この方向性のない
繊維の絡み合いによる移動防止効果によって、後記実施
例で示すように、リチウム合金粉末の通り抜けを充分に
防止できるのである。
In the present invention, a nonwoven fabric with a pore size of 5 μm or less and a basis weight of 30 to 70 g/nf is used as a separator.
It may be difficult to understand that a nonwoven fabric with pores larger than the particle size of lithium alloy powder can prevent lithium alloy powder from passing through, but nonwoven fabric is made by intertwining fibers. Since the pores are not straight but curved, the distance through which the lithium alloy powder passes is long compared to the thickness, and due to the movement prevention effect due to the entanglement of these non-directional fibers, as shown in the examples below. As such, the passage of lithium alloy powder can be sufficiently prevented.

本発明において、材質的に適合する不織布は、例えばポ
リプロピレン不織布、ポリエチレン不織布、ナイロン不
織布、ポリエステル不織布などである。これはそれらが
有機溶媒に対して耐性を有するからである。
In the present invention, suitable nonwoven fabrics include, for example, polypropylene nonwoven fabrics, polyethylene nonwoven fabrics, nylon nonwoven fabrics, polyester nonwoven fabrics, and the like. This is because they are resistant to organic solvents.

本発明においては、前述のように用いる不織布の孔径の
上限を5μmにするが、一方、不織布の孔径は小さくな
るほどリチウム合金粉末の通り抜けを防止することがで
き、短絡を防止するという観点からは好ましいが、孔径
が小さくなるとそれに伴って空隙率が小さくなり、セパ
レータの電解液の保持能力が小さくなるおそれがあるの
で、孔径が5μm以下の範囲で、最大孔径が1μm以上
のものを用いることが好ましい。
In the present invention, the upper limit of the pore diameter of the nonwoven fabric used is 5 μm as described above, but on the other hand, the smaller the pore diameter of the nonwoven fabric is, the more preferable it is from the viewpoint of preventing lithium alloy powder from passing through. However, as the pore size decreases, the porosity decreases accordingly, and there is a risk that the electrolyte retention capacity of the separator will decrease. Therefore, it is preferable to use a material with a pore size of 5 μm or less and a maximum pore size of 1 μm or more. .

また、リチウム合金粉末の接しているセパレータの面の
みでなく、奥行き方向、すなわちセパレータの厚さも、
薄すぎると電解液の保持能力が低下して電池性能が充分
に発揮できなくなり、またリチウム合金粉末の通り抜け
を防止する能力も低くなるので、本発明においては、厚
さ方向の密度、すなわち目付重量が30〜70g/rr
rの不織布を用いる。これは、不織布の目付重量が30
g/r+?より少ない場合は、上記からも明らかなよう
に、電解液の保持能力が低いため電池性能が充分に発揮
できず、またリチウム合金粉末がセパレータを通り抜け
て短絡を生じるおそれがあり、一方、不織布の日付重量
が708/rrfより大きくなると、セパレークの厚み
増加により正極と負極との極間距離が長くなって内部抵
抗増加が生じるからである。
In addition, not only the surface of the separator that is in contact with the lithium alloy powder, but also the depth direction, that is, the thickness of the separator,
If it is too thin, the electrolyte retention capacity will decrease, making it impossible to fully demonstrate battery performance, and the ability to prevent lithium alloy powder from passing through will also decrease. Therefore, in the present invention, the density in the thickness direction, that is, the basis weight is 30~70g/rr
r nonwoven fabric is used. This means that the basis weight of the nonwoven fabric is 30
g/r+? If the amount is less, as is clear from the above, the battery performance will not be fully demonstrated due to the low electrolyte retention capacity, and there is a risk that the lithium alloy powder will pass through the separator and cause a short circuit. This is because when the date weight is larger than 708/rrf, the distance between the positive electrode and the negative electrode becomes longer due to the increase in the thickness of the separator lake, resulting in an increase in internal resistance.

リチウム合金層を形成するために用いられるリチウムと
電気化学的に合金化する金属としては、例えばアルミニ
ウム、錫、亜鉛、鉛、ビスマス、ケイ素、アンチモン、
マグネシウム、インジウム、ガリウム、ゲルマニウムな
どがあげられる。特にアルミニウム、錫、亜鉛、鉛、ビ
スマス、ケイ素、アンチモン、マグネシウムなどはパル
ス閉路電圧特性を向上させる効果が大きく、本発明にお
いて好用される。
Examples of metals that electrochemically alloy with lithium used to form the lithium alloy layer include aluminum, tin, zinc, lead, bismuth, silicon, antimony,
Examples include magnesium, indium, gallium, and germanium. In particular, aluminum, tin, zinc, lead, bismuth, silicon, antimony, magnesium, etc. have a great effect on improving the pulse closed circuit voltage characteristics and are preferably used in the present invention.

リチウム合金層の形成は、通常、負極集電体にリチウム
板を圧着し、該リチウム板上にアルミニウム板などのリ
チウムと電気化学的に合金化する金属(以下、簡略化の
ためアルミニウムを代表的に例をあげて説明する)の板
を重ねるようにして圧着し、電池組立をして、電池内で
電解液の存在□  下にリチウム板のアルミニウム板近
傍のリチウムとアルミニウムとを電気化学的に合金化さ
せることによって形成される。
The formation of a lithium alloy layer is usually done by pressing a lithium plate onto a negative electrode current collector, and applying a metal such as an aluminum plate (hereinafter, aluminum is representatively used) to be electrochemically alloyed with lithium, such as an aluminum plate, onto the lithium plate. (explained using an example), the plates are stacked and crimped together, the battery is assembled, and the presence of an electrolyte in the battery. Formed by alloying.

リチウム合金層の厚さは、薄いものでよく、微粉末化し
ているため正確な測定は困難であるが、5μm程度以上
あれば、貯蔵中におけるリチウムと水分や電解液中の不
純物との反応を抑制することができ、かつリチウム合金
の微粉末化による負極の反応面積増加とリチウム合金粉
末の電解液保持作用とによりパルス閉路電圧特性などの
電池性能を向上させる効果を発揮し得る。一方、リチウ
ム合金層が厚くなるとパルス閉路電圧特性などを向上さ
せる効果上からは好都合であるが、リチウム合金を構成
するアルミニウムなどの合金元素が増えたぶん負極の電
気容量が低下するので、アルミニウムなどの合金元素は
頁捲全体中、つまりリチウムとアルミニウムなどの合金
元素との総量中0.5〜10原子%(aLomic%)
、特に1〜7原子%にするのが好ましい。
The thickness of the lithium alloy layer can be thin, and accurate measurement is difficult because it is finely powdered, but if it is about 5 μm or more, it will prevent the reaction of lithium with moisture and impurities in the electrolyte during storage. Furthermore, the increase in the reaction area of the negative electrode due to the pulverization of the lithium alloy and the electrolyte retaining effect of the lithium alloy powder can have the effect of improving battery performance such as pulsed closed circuit voltage characteristics. On the other hand, a thicker lithium alloy layer is advantageous in terms of improving pulse-circuit voltage characteristics, etc., but since the amount of alloying elements such as aluminum that make up the lithium alloy increases and the electrical capacity of the negative electrode decreases, The alloying element is 0.5 to 10 atomic% (aLomic%) of the entire page, that is, the total amount of alloying elements such as lithium and aluminum.
, especially preferably from 1 to 7 atom %.

電解液や正極活物質には、この種の電池に通常用いられ
るものをそのまま使用することができる。
As the electrolytic solution and the positive electrode active material, those commonly used in this type of battery can be used as they are.

電解液についてその具体例をあげると、例えば1゜2−
ジメトキシエタン、 1.2−ジェトキシエタン、エチ
レンカーボネート、プロピレンカーボネート、T−ブチ
ロラクトン、テトラヒドロフラン、1,3−ジオキソラ
ン、4−メチル−1,3−ジオキソランなどの有機溶媒
の単独または2種以上の混合溶媒に、例えばLLCIO
,、LiPFi、LiAsF4、LiBFn、L + 
B(C*Hs)aなどの電解質の1種または2種以上を
溶解させることによって調製したものを使用することが
できる。また、正極活物質としては、例えば二酸化マン
ガン、硫化鉄、酸化銅、二硫化チタンなどを用いること
ができる。
To give a specific example of an electrolytic solution, for example, 1°2-
Dimethoxyethane, 1,2-jethoxyethane, ethylene carbonate, propylene carbonate, T-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, etc. alone or in a mixture of two or more organic solvents. , for example LLCIO
,, LiPFi, LiAsF4, LiBFn, L +
Those prepared by dissolving one or more types of electrolytes such as B(C*Hs)a can be used. Further, as the positive electrode active material, for example, manganese dioxide, iron sulfide, copper oxide, titanium disulfide, etc. can be used.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving examples.

実施例1 負掻集電板に[7mm、横251、厚さO,1mmのリ
チウム板を圧若し、さらにそのリチウム板上に縫71I
I11、横25ma+、 I!Jさ0 、005■のア
ルミニウム板を重ね合わせるようにして圧着し、正損に
は二酸化マンガンを活物質とする成形合剤を用い、電解
液にはプロピレンカーボネートに過塩素酸リチウム(L
iCIO=)を1wol/n溶解させた有機電解液を用
い、セパレータには最大孔径3μmで目付型130 g
 / rdのポリプロピレン不織布を用い、第1図に示
すような構造で外径寸法が縦16.5mm、横34、5
mm、)γさ0.5■の薄形リチウム電池を作製した。
Example 1 A lithium plate of [7 mm, width 251, thickness O, 1 mm] was pressed onto a negative current collector plate, and further 71 I of stitches were placed on the lithium plate.
I11, width 25m+, I! Aluminum plates of Jsa0 and 005■ are overlapped and crimped together, a molding mixture containing manganese dioxide as an active material is used for the positive and negative parts, and propylene carbonate and lithium perchlorate (L) are used for the electrolytic solution.
Using an organic electrolyte in which 1 wol/n of iCIO=) was dissolved, the separator had a maximum pore diameter of 3 μm and a fabric weight type of 130 g.
/rd polypropylene non-woven fabric, the structure is as shown in Figure 1, and the outer diameter is 16.5 mm long and 34.5 mm wide.
A thin lithium battery with a gamma thickness of 0.5 mm and 0.5 cm was fabricated.

第1図において、■は負掻集電板で、厚さ0.03mm
のニッケル板からなり、平板状でその平面形状は117
16m+w、横34IIIffiの長方形に形成されて
いる。2はリチウム!!2aとリチウム合金[2bとか
らなる負極であり、3は不織布からなるセパレータであ
る。
In Figure 1, ■ is a negative current collector plate with a thickness of 0.03 mm.
It is made of nickel plate, and its planar shape is 117 mm.
It is formed into a rectangle with a length of 16m+w and a width of 34IIIffi. 2 is lithium! ! 2a and a lithium alloy [2b], and 3 is a separator made of nonwoven fabric.

本実施例において、上記負極2のリチウム合金層2bは
、前記のように負掻集電板1の一方の面に前記リチウム
板を圧着し、さらにそのリチウム板上に前記のアルミニ
ウム板を重ね合わせるようにして圧着し、電池組立を行
って電池内でリチウム板のアルミニウム板近傍のリチウ
ムとアルミニウムとを電解液の存在下で電気化学的に合
金化させて形成したものであり、このリチウム合金Ji
2bはセパレータ3側に配置している。リチウム層2a
は前記リチウム板のアルミニウムと合金化しなかった部
分で構成されるものであり、負極2中のアルミニウム量
は6原子%に相当する。このように、負極2はセパレー
タ3と対°向する側にリチウム合金層2bが形成されて
いるが、放電に際しては、リチウム12aのリチウムが
リチウム合金112bを介して電解液中にリチウムイオ
ンとして溶出し、リチウムが負極活物質として作用する
。そして、前記セパレータ3を構成する不織布は、前記
のように最大孔径3μmで目付型130g/rrfのポ
リプロピレン不織布である。
In this example, the lithium alloy layer 2b of the negative electrode 2 is formed by pressing the lithium plate onto one surface of the negative current collector plate 1 as described above, and then superimposing the aluminum plate on the lithium plate. The lithium alloy is formed by crimping and assembling the battery, and electrochemically alloying the lithium and aluminum near the aluminum plate of the lithium plate in the presence of an electrolyte within the battery.
2b is arranged on the separator 3 side. Lithium layer 2a
is composed of a portion of the lithium plate that is not alloyed with aluminum, and the amount of aluminum in the negative electrode 2 corresponds to 6 at %. In this way, the negative electrode 2 has the lithium alloy layer 2b formed on the side facing the separator 3, but during discharge, lithium in the lithium 12a is eluted into the electrolytic solution as lithium ions through the lithium alloy 112b. However, lithium acts as a negative electrode active material. As described above, the nonwoven fabric constituting the separator 3 is a polypropylene nonwoven fabric with a maximum pore diameter of 3 μm and a basis weight of 130 g/rrf.

4は正極で、この正極4は二酸化マンガン100重量部
、りん状黒鉛lO重量部およびポリテトラフルオロエチ
レン1重量部からなる合剤粉末を加圧成形して作製した
縦7mm、横25a+Im、厚さ0.21の成形体から
なり、その加圧成形時に一方の側にステンレス鋼製網を
正極集電体5として配置している。6は正極!i電板で
、厚さ0.0511111のステンレス鋼板を用いて深
さの浅い容器状に成形したものであり、その周縁部6a
は平坦な鍔状に形成されていて、その幅は21111で
、中央の凹部の潔さは0.3n+mであり、平面形状は
縦16.5mm、横34.5m+wの長方形に形成され
ている。そして、7はホントメルト接着剤であり、負掻
集電板lの周縁部1aと正極集電板6の平坦な鍔状周縁
部6aとを接着して、正極集電板6と負極集T1.板l
とを絶縁しつつ、両者の間の間隙を封止している。
4 is a positive electrode, and this positive electrode 4 is made by pressure-molding a mixture powder consisting of 100 parts by weight of manganese dioxide, 1 part by weight of phosphorous graphite 1O, and 1 part by weight of polytetrafluoroethylene, and has a length of 7 mm, a width of 25 a + Im, and a thickness. 0.21, and a stainless steel mesh is placed on one side as the positive electrode current collector 5 during pressure molding. 6 is positive! This is an i-electronic plate, which is formed into a shallow container shape using a stainless steel plate with a thickness of 0.0511111, and its peripheral edge 6a
is formed in the shape of a flat brim, its width is 21111 mm, the width of the central recess is 0.3 n+m, and the planar shape is a rectangle with a length of 16.5 mm and a width of 34.5 m+w. Reference numeral 7 denotes a true-melt adhesive, which adheres the peripheral edge 1a of the negative current collector plate l and the flat flange-shaped peripheral edge 6a of the positive electrode current collector plate 6. .. board l
While insulating the two, the gap between the two is sealed.

実施例2 セパレーク3を構成する不織布として、最大孔径5μm
で目付ffl M 70 g / o(のポリプロピレ
ン不織布を用いたほかは実施例1と同様の構成からなる
)1形リチウム電池を作製した。
Example 2 The maximum pore diameter of the nonwoven fabric constituting the separator lake 3 was 5 μm.
A type 1 lithium battery having a fabric weight ffl M of 70 g/o (having the same structure as in Example 1 except for using a polypropylene nonwoven fabric) was prepared.

比較例1 セパレータ3を構成する不織布として、最大孔径40u
mで目付型1100g/rrfのポリプロピレン不織布
を用いたほかは実施例1と同様の構成からなる薄形リチ
ウム電池を作製した。
Comparative Example 1 The maximum pore diameter of the nonwoven fabric constituting the separator 3 was 40u.
A thin lithium battery having the same structure as in Example 1 was produced except that a polypropylene nonwoven fabric with a fabric weight of 1100 g/rrf was used.

比較例2 セパレータ3を構成する不織布として、最大孔径lOμ
mで目付型150g/rrrのポリプロピレン不織布を
用いたほかは実施例1と同様の構成からなる薄形リチウ
ム電池に作製した。
Comparative Example 2 As a nonwoven fabric constituting the separator 3, the maximum pore diameter lOμ
A thin lithium battery was fabricated with the same structure as in Example 1 except that a polypropylene nonwoven fabric with a fabric weight of 150 g/rrr was used.

比較例3 セパレータ3を構成する不織布として、最大孔径3μm
で目付重量10g/rdのポリプロピレン不織布を用い
たほかは実施例1と同様の構成からなる薄形リチウム電
池を作製した。
Comparative Example 3 The maximum pore diameter of the nonwoven fabric constituting the separator 3 was 3 μm.
A thin lithium battery having the same structure as in Example 1 was produced except that a polypropylene nonwoven fabric having a basis weight of 10 g/rd was used.

上記実施例1〜2の電池および比較例1〜3の電池をJ
IS C5025に規定される電子部品振動試験A法に
従って振動周波数10〜55Hz、全振幅1.5mm、
振動時間6時間の条件下で振動させた後、短絡発生の有
無を調べた結果を第1表に示す。試験に供した電池個数
は各電池とも1,000個ずつである。
The batteries of Examples 1 and 2 and the batteries of Comparative Examples 1 and 3 were
Vibration frequency 10-55Hz, total amplitude 1.5mm, according to electronic component vibration test method A specified in IS C5025.
Table 1 shows the results of examining the occurrence of short circuits after vibration for 6 hours. The number of batteries tested was 1,000 for each battery.

第    1    表 第1表に示すように、実施例1〜2の電池は振動試験後
も短絡発生がまったくなかったが、従来使用のポリプロ
ピレン不織布をセパレータに用いた比較例1の電池では
、試験に供した1 、 000個の電池のうち280個
に短絡が発生した。また、セパレータの孔径が比較的小
さい比較例2の電池では、従来品に相当する比較例1の
電池より短絡発生電池個数が少ないが、それでも試験に
供した1 、 000個の電池のうち50個に短絡が発
生した。そして、セパレータの最大孔径が3μmと小さ
い比較例3の電池では、短絡発生電池個数がさらに減少
したが、目付重量が少ないために、試験に供した1、0
00個の電池のうら、25個に短絡が発生した。
Table 1 As shown in Table 1, the batteries of Examples 1 and 2 had no short circuits at all even after the vibration test, but the battery of Comparative Example 1, in which the conventionally used polypropylene nonwoven fabric was used for the separator, failed to pass the test. Short circuits occurred in 280 of the 1,000 batteries provided. In addition, in the battery of Comparative Example 2, in which the pore diameter of the separator is relatively small, the number of short-circuited batteries is lower than that of the battery of Comparative Example 1, which corresponds to the conventional product, but still, 50 of the 1,000 batteries subjected to the test were short-circuited. A short circuit occurred. In the battery of Comparative Example 3, where the maximum pore diameter of the separator was as small as 3 μm, the number of short-circuited batteries was further reduced, but because the basis weight was small, the 1,0
A short circuit occurred in 25 of the 00 batteries.

つぎに、上記実施例1〜2の電池と、比較のため目付重
量の大きいポリプロピレン不織布をセパレータに用いて
作製した比較例4の電池の内部抵抗を測定した結果を第
2表に示す。
Next, Table 2 shows the results of measuring the internal resistance of the batteries of Examples 1 and 2 above and the battery of Comparative Example 4, which was fabricated using a polypropylene nonwoven fabric with a large basis weight as a separator for comparison.

第    2    表 第2表に示すように、実施例1〜2の電池は、内部抵抗
が30〜35Ωであって可使範囲内であるが、目付重量
の大きいポリプロピレン不織布をセパレータとして用い
た比較例4の電池では、内部抵抗が80Ωであり、実用
電池としては内部抵抗が高ずぎ、−船釣用途には使いが
たかった。
Table 2 As shown in Table 2, the batteries of Examples 1 and 2 have an internal resistance of 30 to 35 Ω, which is within the usable range, but a comparative example using a polypropylene nonwoven fabric with a large basis weight as a separator The battery No. 4 had an internal resistance of 80Ω, which was too high for a practical battery, making it difficult to use for boat fishing.

また、実施例1〜2の電池は、両者とも20°C115
にΩで放電深度80%まで放電させた後の一10゛C1
5にΩ、7.8m5ecのパルス閉路電圧が2.8V以
上あったが、負極を縦7mm、横25+u+、厚さ0.
1m+wのリチウム板のみで構成した電池では、同条件
下でのパルス閉路電圧が2.5VLかでなかった。
In addition, both of the batteries of Examples 1 and 2 were heated at 20°C115
-10゛C1 after discharging to 80% depth of discharge at Ω
5, the pulse closing voltage of 7.8m5ec was 2.8V or more, but the negative electrode was 7mm long, 25+u+ wide, and 0.5mm thick.
In a battery composed only of 1 m+w lithium plates, the pulse closing voltage under the same conditions was 2.5 VL.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、負極のリチウム層の
セパレータと対向する側に電気化学的合金化によるリチ
ウム合金層を設け、かつセパレータとして孔径が5μm
以下で、目付重量が30〜70g/rdの不織布を用い
ることによって、短絡発生がなく、かつ電池性能の優れ
た薄形リチウム電池を提供することができた。
As explained above, in the present invention, a lithium alloy layer formed by electrochemical alloying is provided on the side facing the separator of the lithium layer of the negative electrode, and the pore size of the separator is 5 μm.
In the following, by using a nonwoven fabric having a basis weight of 30 to 70 g/rd, it was possible to provide a thin lithium battery that does not cause short circuits and has excellent battery performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る薄形リチウム電池の一例を示す断
面図である。 1・・・負極集電板、 1a・・・周縁部、 2・・・
負極、28・・・リチウム層、 2b・・・リチウム合
金層、3・・・セパレータ、  4・・・王権、 6・
・・正掻集電板、 6a・・・周縁部、 7・・・ホッ
トメルト接着剤駐pユパミ
FIG. 1 is a sectional view showing an example of a thin lithium battery according to the present invention. DESCRIPTION OF SYMBOLS 1... Negative electrode current collector plate, 1a... Peripheral part, 2...
Negative electrode, 28... Lithium layer, 2b... Lithium alloy layer, 3... Separator, 4... Kingship, 6.
... Positive current collector plate, 6a... Peripheral part, 7... Hot melt adhesive parking pupami

Claims (2)

【特許請求の範囲】[Claims] (1)負極集電板1と正極集電板6との間に、リチウム
を活物質とする負極2と正極4と両極間に介在するセパ
レータ3とを含む電池要素が配置され、両極集電板1、
6の対向する平坦状の周縁部1a、6aで接着封止され
た構造の薄形リチウム電池において、上記負極2はリチ
ウム層2aのセパレータ3と対向する側にリチウムと該
リチウムに電気化学的に合金化する金属との電気化学的
合金化によるリチウム合金層2bを設けてなり、セパレ
ータ3として最大孔径5μm以下、目付重量30〜70
g/m^2の不織布を用いたことを特徴とする薄形リチ
ウム電池。
(1) A battery element including a negative electrode 2 containing lithium as an active material, a positive electrode 4, and a separator 3 interposed between the two electrodes is arranged between the negative electrode current collector plate 1 and the positive electrode current collector plate 6, and the battery element is arranged between the negative electrode current collector plate 1 and the positive electrode current collector plate 6. Board 1,
In the thin lithium battery having a structure in which the flat peripheral edges 1a and 6a of the lithium layer 2a are adhesively sealed, the negative electrode 2 has lithium on the side of the lithium layer 2a facing the separator 3, and the lithium is electrochemically bonded to the lithium layer 2a. A lithium alloy layer 2b is provided by electrochemical alloying with the metal to be alloyed, and the separator 3 has a maximum pore diameter of 5 μm or less and a basis weight of 30 to 70.
A thin lithium battery characterized by using a non-woven fabric of g/m^2.
(2)リチウムと電気化学的に合金化する金属がアルミ
ニウム、錫、亜鉛、鉛、ビスマス、ケイ素、アンチモン
およびマグネシウムよりなる群から選ばれた少なくとも
1種である請求項1記載の薄形リチウム電池。
(2) The thin lithium battery according to claim 1, wherein the metal electrochemically alloyed with lithium is at least one selected from the group consisting of aluminum, tin, zinc, lead, bismuth, silicon, antimony, and magnesium. .
JP63066077A 1988-03-18 1988-03-18 Thin lithium battery Pending JPH01239761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066077A JPH01239761A (en) 1988-03-18 1988-03-18 Thin lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066077A JPH01239761A (en) 1988-03-18 1988-03-18 Thin lithium battery

Publications (1)

Publication Number Publication Date
JPH01239761A true JPH01239761A (en) 1989-09-25

Family

ID=13305424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066077A Pending JPH01239761A (en) 1988-03-18 1988-03-18 Thin lithium battery

Country Status (1)

Country Link
JP (1) JPH01239761A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159634A (en) * 1998-04-15 2000-12-12 Duracell Inc. Battery separator
KR20150013249A (en) * 2012-05-08 2015-02-04 바텔리 메모리얼 인스티튜트 Multifunctional cell for structural applications
WO2019044771A1 (en) * 2017-08-28 2019-03-07 株式会社村田製作所 Nonaqueous electrolyte battery and communication equipment
US10784503B2 (en) 2017-03-01 2020-09-22 Suzuki Motor Corporation Protected lithium electrode structure for lithium-air battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159634A (en) * 1998-04-15 2000-12-12 Duracell Inc. Battery separator
KR20150013249A (en) * 2012-05-08 2015-02-04 바텔리 메모리얼 인스티튜트 Multifunctional cell for structural applications
JP2015520923A (en) * 2012-05-08 2015-07-23 バテル・メモリアル・インスティテュートBattelle Memorial Institute Multifunctional cell for structural applications
US10784503B2 (en) 2017-03-01 2020-09-22 Suzuki Motor Corporation Protected lithium electrode structure for lithium-air battery
WO2019044771A1 (en) * 2017-08-28 2019-03-07 株式会社村田製作所 Nonaqueous electrolyte battery and communication equipment
JPWO2019044771A1 (en) * 2017-08-28 2020-08-27 株式会社村田製作所 Non-aqueous electrolyte battery and communication equipment
US11811048B2 (en) 2017-08-28 2023-11-07 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte solution battery and communication device

Similar Documents

Publication Publication Date Title
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
US5262255A (en) Negative electrode for non-aqueous electrolyte secondary battery
US4658498A (en) Process for producing rechargeable electrochemical device
EP3070767B1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
KR20130041231A (en) Bipolar battery
JPH0428172A (en) Secondary battery
WO2007004703A1 (en) Nickel-hydrogen battery
US6440607B1 (en) Nickel-hydrogen secondary cell
JPH01239761A (en) Thin lithium battery
JPH0425676B2 (en)
US7524585B2 (en) Anode and battery using it
JP6783504B2 (en) Non-aqueous electrolyte secondary battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JPS63126159A (en) Lithium cell
JP3049854B2 (en) Sealed battery
JPS63175348A (en) Lithium cell
JP2966697B2 (en) Alkaline secondary battery
JPS63143744A (en) Lithium battery
JPS63175350A (en) Lithium cell
JPH07105952A (en) Lithium secondary battery and its current collecting body
JP7466112B2 (en) Non-aqueous electrolyte secondary battery
JPH10189037A (en) Nonaqueous electrolytic secondary battery
JPS63133448A (en) Lithium battery
JPS63175349A (en) Lithium-manganese dioxide cell
JPS62140358A (en) Nonaqueous electrolyte secondary cell