JPS63126157A - Lithium cell - Google Patents

Lithium cell

Info

Publication number
JPS63126157A
JPS63126157A JP61272400A JP27240086A JPS63126157A JP S63126157 A JPS63126157 A JP S63126157A JP 61272400 A JP61272400 A JP 61272400A JP 27240086 A JP27240086 A JP 27240086A JP S63126157 A JPS63126157 A JP S63126157A
Authority
JP
Japan
Prior art keywords
lithium
layer
negative electrode
alloy layer
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61272400A
Other languages
Japanese (ja)
Inventor
Osamu Okamoto
修 岡本
Futayasu Iwamaru
岩丸 二康
Kenichi Yokoyama
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61272400A priority Critical patent/JPS63126157A/en
Publication of JPS63126157A publication Critical patent/JPS63126157A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To expand the effective reaction area of a negative electrode, and to improve the pulse closed-circuit voltage property, by furnishing a lithium alloy layer made by an electrochemical alloying at the side opposing to a separator of a lithium layer, and moreover, making the surface of the lithium layer contacting the lithium alloy layer in an uneven surface. CONSTITUTION:At the side opposing to a separator 3 of a lithium layer 2a of a negative electrode 2, a lithium alloy layer 2b made by an electrochemical alloying from lithium and a metal alloyable electrochemically, and moreover, the surface of the lithium layer 2a contacting the lithium alloy layer 2b is formed into an uneven surface. Therefore, the effective reaction area of the negative electrode 2 is expanded, the current density per unit area is reduced, the inner resistance is also reduced, and the pulse closed-circuit voltage property can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム電池に係わり、さらにa’r: L 
<はその負極の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a lithium battery, and further relates to a'r: L
< relates to improvement of the negative electrode.

〔従来の技術〕[Conventional technology]

リチウム電池では、負極に金属リチウムが用いられてい
るが、リチウムは化学的に非常に活性であり、その化学
的活性の大きいことが電池としての種々の特長を生み出
すものの、その反面では活性が強すぎるために電池の使
用中あるいは貯蔵中に種々の問題を引き起こす0例えば
二次電池では、充電時の電着リチウムが特に活性が強く
電解液中の成分と反応して負極表面に不動!3膜を生成
し、負極を劣化させて充放電サイクル特性の低下を引き
起こすことが報告されている。そのため、リチウムをア
ルミニウムと合金化し、充電時にリチウムとアルミニウ
ムとの電気化学的合金化反応を利用して、活性な電着リ
チウムの状態でとどまるのを極力少なくして、負極の劣
化を防止し、充放電サイクル特性を向上させることが提
案されている(例えば、米国特許第4,002,492
号明細書)。しかし、上記のようなリチウムの合金化は
二次電池では一次電池におけるほど放電容量の低下に対
して考慮を払う必要がなく、合金化による放電容量の低
下よりも充放電サイクル特性の向上の方がより望ましい
ということに立脚しており、合金化の程度もリチウム含
を量がかなり低くなるまで合金化が行われ、例えば特開
昭61−208749号公報ではリチウム含有量が35
〜58原子%(atomic%)で好ましい結果が得ら
れると記載されている。
In lithium batteries, metallic lithium is used for the negative electrode, but lithium is chemically very active, and although its high chemical activity gives it various features as a battery, on the other hand, it is highly active. For example, in secondary batteries, electrodeposited lithium is particularly active during charging and reacts with components in the electrolyte, causing various problems during battery use or storage. It has been reported that this causes the formation of a 3-layer film, which deteriorates the negative electrode and causes a decrease in charge-discharge cycle characteristics. Therefore, by alloying lithium with aluminum and utilizing the electrochemical alloying reaction between lithium and aluminum during charging, we minimize the amount of lithium remaining in the active electrodeposited state and prevent deterioration of the negative electrode. It has been proposed to improve charge-discharge cycle characteristics (e.g., U.S. Pat. No. 4,002,492).
No. Specification). However, when alloying lithium as described above, it is not necessary to pay as much consideration to the decrease in discharge capacity in secondary batteries as in primary batteries, and the improvement in charge-discharge cycle characteristics is more important than the decrease in discharge capacity due to alloying. This is based on the fact that lithium is more desirable, and alloying is performed until the lithium content is considerably low. For example, in JP-A-61-208749, the lithium content is 35
It is stated that favorable results can be obtained at atomic% of 58 to 58 atomic%.

また、−次電池においても、リチウム板のセパレータと
対向する側の面に、アルミニウム、鉛、亜鉛、錫、ビス
マス、インジウム、ガリウム、マグネシウムなどのリチ
ウムと電気化学的に合金化する金属の薄い板を配置して
、電解液の存在下にリチウムと上記金属とを電気化学的
に合金化させ、リチウム表面の活性を低下させて、電解
液との反応を抑制し、負極表面への不働態膜の生成を防
止して、負極の界面抵抗の増加を抑制し、貯蔵特性や閉
路電圧特性を向上させることが研究され、既に特許出願
がなされている(特開昭61−74264号公報)。
Also, in secondary batteries, a thin plate of a metal that electrochemically alloys with lithium, such as aluminum, lead, zinc, tin, bismuth, indium, gallium, or magnesium, is placed on the side of the lithium plate facing the separator. , electrochemically alloys lithium with the above metals in the presence of an electrolyte, reduces the activity of the lithium surface, suppresses reaction with the electrolyte, and forms a passive film on the negative electrode surface. Research has been conducted on preventing the formation of , suppressing the increase in interfacial resistance of the negative electrode, and improving storage characteristics and closed circuit voltage characteristics, and a patent application has already been filed (Japanese Patent Application Laid-Open No. 74264/1983).

ところで、この種の電池では時計や電子体温計などに応
用された場合、間欠的にステップモーターを動かしたり
、ライトをつけたり、アラームを鳴らすことなどが必要
とされ、そのためには軽負荷放電中での重負荷パルス閉
路電圧が高いことが要求されるが、これまでに提案され
た電池では、そのような要求に対して必ずしも充分に応
え得るほどの性能を備えるまでにはいたっていない。
By the way, when this type of battery is applied to watches, electronic thermometers, etc., it is necessary to intermittently operate a step motor, turn on a light, sound an alarm, etc. Although a high heavy-load pulse closing voltage is required, the batteries proposed so far do not necessarily have sufficient performance to meet such requirements.

すなわち、上記先願発明には、リチウム板のセパレータ
と対向する側の負極表面の形状については何ら言及がな
(、リチウム板のセパレータと対向する側の面は平面状
に形成され、アルミニウム板などのリチウムと合金化さ
せる金属の板も平面状に形成されている。それ故、パル
ス閉路電圧特性が向上するというものの、それはリチウ
ムとアルミニウムなどとの合金化によってのみもたらさ
れるものであり、電池需要者からの電池性能の向上に対
する要求は増々厳しくなっていくことから、パルス閉路
電圧特性に関しても、それのみでは充分に満足すべきも
のとはいえず、さらにパルス閉路電圧特性を向上させる
ことが望まれる。
That is, the above-mentioned prior invention does not mention anything about the shape of the surface of the negative electrode on the side of the lithium plate facing the separator (the surface of the lithium plate facing the separator is formed into a flat shape; The metal plate to be alloyed with lithium is also formed in a flat shape.Therefore, although the pulsed circuit voltage characteristics are improved, this can only be achieved by alloying lithium with aluminum, etc. As the demands for improved battery performance from consumers are becoming more and more severe, it cannot be said that the pulse closing voltage characteristics alone are sufficiently satisfactory, and it is desirable to further improve the pulse closing voltage characteristics. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は従来のリチウム電池が持っていたパルス閉路
電圧特性が必ずしも充分でなかったという問題点を解決
し、さらにパルス閉路電圧特性を高めたリチウム電池を
提供することを目的とする。
The object of the present invention is to solve the problem that conventional lithium batteries had insufficient pulse closing voltage characteristics, and to provide a lithium battery with further improved pulse closing voltage characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、負極のリチウム層のセパレータと対向する側
に、リチウムと該リチウムに電気化学的に合金化する金
属との電気化学的合金化によるリチウム合金層を設ける
とともに、上記リチウム層のリチウム合金層に接する面
が凹凸化しているようにすることによって、負極の実効
反応面積を増加させ、単位面積あたりの電流密度を小さ
くし、内部抵抗を小さくして、パルス閉路電圧特性を向
上させたものである。
The present invention provides a lithium alloy layer formed by electrochemical alloying of lithium and a metal that electrochemically alloys with the lithium on the side of the lithium layer of the negative electrode facing the separator, and a lithium alloy layer of the lithium layer. By making the surface in contact with the layer uneven, the effective reaction area of the negative electrode is increased, the current density per unit area is reduced, the internal resistance is reduced, and the pulsed circuit voltage characteristics are improved. It is.

すなわち、リチウムと該リチウムに電気化学的に合金化
する金属との電気化学的合金化により形成されたリチウ
ム合金層は微粉末化しており、この微粉末化したリチウ
ム合金層が反応面積を広げ、かつ電解液を保持してパル
ス閉路電圧特性の向上に寄与するが、電池の放電反応に
際して、リチウムはこのリチウム合金層を介してリチウ
ム層のセパレータに対向する側の面からイオン化するも
のと考えられる。それ故、リチウム層自身も広い表面積
を有していることが好ましいと考えられる。
That is, the lithium alloy layer formed by electrochemical alloying of lithium and a metal that electrochemically alloys with the lithium is pulverized, and this pulverized lithium alloy layer expands the reaction area. It also holds the electrolyte and contributes to improving the pulse closing voltage characteristics, but during the battery discharge reaction, lithium is thought to be ionized from the side of the lithium layer facing the separator via this lithium alloy layer. . Therefore, it is considered preferable that the lithium layer itself has a large surface area.

そこで、本発明では、このリチウム層のリチウム合金層
に接する側の面が凹凸化しているようにして、リチウム
層自身の表面積を広げ、前述のリチウム合金層の形成に
よるパルス閉路電圧特性の向上効果とこのリチウム層自
身の表面積の増加による実効反応面積の増加とによって
パルス閉路電圧特性を大幅に向上させたのである。
Therefore, in the present invention, the surface of the lithium layer in contact with the lithium alloy layer is made uneven to increase the surface area of the lithium layer itself, thereby improving the pulse circuit voltage characteristics due to the formation of the lithium alloy layer described above. This increase in the effective reaction area due to the increase in the surface area of the lithium layer itself significantly improved the pulsed circuit voltage characteristics.

リチウム層のリチウム合金層に接する側の面が凹凸化し
ているようにするには、電池組立にあたって、リチウム
板を所望の形状に打抜く前に、リチウム板にアルミニウ
ム板などのリチウムと電気化学的に合金化させる金属(
以下、簡略化のためアルミニウムを代表的に例をあげて
説明する)の板を重ね合わせ、そのリチウム板とアルミ
ニウム板との積層板に押圧面が凹凸化した押圧治具をア
ルミニウム板から押圧し、アルミニウム板と該アルミニ
ウム板に接する側のリチウム板表面とが凹凸化するよう
に行うのが好ましい。このようにすることによって、前
述したパルス閉路電圧の向上に加えて、リチウム板とア
ルミニウム板とがリチウムの粘着力によって相互に固着
し、打法いた時、あるいはそれらを負極缶に挿入した時
に、リチウム板とアルミニウム板とのはがれやズレが生
しないし、またリチウム板とアルミニウム板とが平面で
接するより接触面積が広くなるため、合金化が促進され
、合金化のためのエージング時間が短縮され、電池製造
に際しての生産性も向上する。
In order to make the surface of the lithium layer in contact with the lithium alloy layer uneven, the lithium plate should be electrochemically coated with lithium such as an aluminum plate before punching the lithium plate into the desired shape during battery assembly. metal to be alloyed with (
In the following, for the sake of simplicity, aluminum plates are used as a representative example) are stacked together, and a pressing jig with an uneven pressing surface is pressed from the aluminum plate onto the laminated plate of the lithium plate and the aluminum plate. It is preferable to perform this so that the aluminum plate and the surface of the lithium plate in contact with the aluminum plate are made uneven. By doing this, in addition to improving the pulse closing voltage mentioned above, the lithium plate and the aluminum plate are fixed to each other by the adhesive force of lithium, so that when the lithium plate and the aluminum plate are bonded to each other, or when they are inserted into the negative electrode can, There is no peeling or misalignment between the lithium plate and the aluminum plate, and the contact area is wider than when the lithium plate and aluminum plate are in contact with each other on a flat surface, so alloying is promoted and the aging time for alloying is shortened. This also improves productivity in battery manufacturing.

本発明において、リチウム合金層を形成するために用い
られるリチウムと電気化学的に合金化する金属としては
、例えばアルミニウム、錫、亜鉛、鉛、ビスマス、ケイ
素、アンチモン、マグネシウム、インジウム、ガリウム
、ゲルマニウムなどがあげられる。特にアルミニウム、
錫、亜鉛、鉛、ビスマス、ケイ素、アンチモン、マグネ
シウムなどはパルス閉路電圧特性を向上させる効果が太
きく、本発明において好用される。
In the present invention, metals that are electrochemically alloyed with lithium and used to form the lithium alloy layer include, for example, aluminum, tin, zinc, lead, bismuth, silicon, antimony, magnesium, indium, gallium, germanium, etc. can be given. Especially aluminum,
Tin, zinc, lead, bismuth, silicon, antimony, magnesium, etc. have a strong effect of improving the pulse closed circuit voltage characteristics and are preferably used in the present invention.

リチウム合金層の形成は、通常、負極缶にリチウム板と
アルミニウム板などのリチウムと電気化学的に合金化す
る金属(以下、簡略化のためアルミニウムを代表的に例
にあげて説明する)の板を挿入し、電池組立をして、電
池内で電解液の存在下に上記リチウム板のアルミニウム
板近傍のリチウムとアルミニウムとを電気化学的に合金
化させることによって形成される。
The formation of a lithium alloy layer is usually done by adding a lithium plate and a metal plate such as an aluminum plate (hereinafter, aluminum will be used as a representative example for simplicity) to form a negative electrode can. is inserted, the battery is assembled, and the lithium and aluminum near the aluminum plate of the lithium plate are electrochemically alloyed in the presence of an electrolyte within the battery.

そして、上記のような負極缶への挿入にあたって、リチ
ウム板とアルミニウム板は前述したように前もって重ね
合わせ、その状態でアルミニウム板側から凹凸をつけて
リチウム板の表面が凹凸面になるようにしておくのが好
ましい。
Then, when inserting the lithium plate into the negative electrode can as described above, the lithium plate and the aluminum plate are overlapped in advance as described above, and in that state, the lithium plate is roughened from the aluminum plate side so that the surface of the lithium plate becomes an uneven surface. It is preferable to leave it there.

上記のようにして、リチウム板の表面を凹凸化しておく
と、アルミニウムとその近傍のリチウムとが電解液の存
在下で電気化学的に合金化した後もリチウム層の表面が
凹凸状態に保たれる。
By making the surface of the lithium plate uneven as described above, the surface of the lithium layer will remain uneven even after the aluminum and the lithium in its vicinity are electrochemically alloyed in the presence of an electrolyte. It will be done.

リチウム合金層の厚さは、非常に薄いものでよく、微粉
末化しているため正確な測定は困難であるが、5μm程
度以上あれば、貯蔵中におけるリチウムと水分や電解液
中の不純物との反応を抑制することができ、またリチウ
ム合金の微粉末化による負極の反応面積増加とリチウム
合金微粉末の電解液保持作用とにより、パルス閉路電圧
特性などの電池性能を向上させる効果を発揮し得る。一
方、リチウム合金層が厚くなると、パルス閉路電圧特性
などを向上させる上からは好都合であるが、リチウム合
金を構成するアルミニウムなどの合金元素が増えたぶん
負極の電気容量が低下するので、アルミニウムなどの合
金元素は負極全体中、つまりリチウムとアルミニウムな
どの合金元素との総量中0.5〜10原子%(atom
ic%)、特に1〜7原子%、より望ましくは2〜4原
子%にするのが好ましい。
The thickness of the lithium alloy layer needs to be very thin, and accurate measurement is difficult because it is finely powdered, but if it is about 5 μm or more, it is possible to prevent the lithium from interfering with water and impurities in the electrolyte during storage. The reaction can be suppressed, and due to the increased reaction area of the negative electrode due to the pulverization of the lithium alloy and the electrolyte retention effect of the lithium alloy fine powder, it can be effective in improving battery performance such as pulsed closed circuit voltage characteristics. . On the other hand, if the lithium alloy layer becomes thicker, it is advantageous in terms of improving the pulse closing voltage characteristics, etc., but the amount of alloying elements such as aluminum that make up the lithium alloy increases, and the electrical capacity of the negative electrode probably decreases. The alloying element accounts for 0.5 to 10 atomic% (atom
ic%), particularly from 1 to 7 atom%, more preferably from 2 to 4 atom%.

電解液や正極活物質には、この種の電池に通常用いられ
るものを何ら特別な制約を受けることなく使用すること
ができる。電解液についてその具体例をあげると、例え
ば1.2−ジメトキシエタン、1,2−ジェトキシエタ
ン、エチレンカーボぶ−ト、プロピレンカーボネート、
T−ブチロラクトン、テトラヒドロフラン、1.3−ジ
オキソラン、4−メチル−1,3−ジオキソランなどの
単独または2種以上の混合溶媒に、例えばLiClO4
、LiPF6、LiAsF6、LiSbF6、LiBF
4、L iB (C6Hs) 4などの電解質の1種ま
たは2種以上を溶解させることによって調製したものを
使用することができる。また、正極活物質としては、例
えば二酸化マンガン、硫化鉄、酸化銅、硫化鉄と酸化銅
との混合物、二硫化チタンなどを用いることができる。
As the electrolyte and the positive electrode active material, those commonly used in this type of battery can be used without any special restrictions. Specific examples of electrolytes include 1,2-dimethoxyethane, 1,2-jethoxyethane, ethylene carbonate, propylene carbonate,
For example, LiClO
, LiPF6, LiAsF6, LiSbF6, LiBF
4. Those prepared by dissolving one or more electrolytes such as LiB (C6Hs) 4 can be used. Further, as the positive electrode active material, for example, manganese dioxide, iron sulfide, copper oxide, a mixture of iron sulfide and copper oxide, titanium disulfide, etc. can be used.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 厚さ0.72+uwのリチウム板と厚さ0.01mmの
アルミニウム板とを重ね合わせ、押圧面に市松模様状に
凹凸が形成された押圧治具で上記リチウム板とアルミニ
ウム板との禎屓板をアルミニウム板側から押圧し、リチ
ウム板のアルミニウム板に接する側の表面に市松模様状
に凹凸を形成したのち、直径6.2mmの円板状に打抜
き、それをリチウム板側から負極缶に挿入した。なお、
押圧治具の各凹部の面積は0,2−である。また、各凸
部の面積も同様に0.2−である。正極には二硫化鉄(
F e S2 )と酸化第二銅(Cub)の混合物を活
物質とする成形合剤を用い、電解液にはプロピレンカー
ボネートと1,2−ジメトキシエタンとの容量比2:1
の混合溶媒に過塩素酸リチウム(LiCIO4)を1モ
ル/l/8解させた有機電解液を用いて、第1図に示す
ような構造で直径9.51、高さ2.05mmのリチウ
ム電池を作製した。
Example 1 A lithium plate with a thickness of 0.72+uw and an aluminum plate with a thickness of 0.01 mm were stacked together, and the lithium plate and aluminum plate were pressed together using a pressing jig with a checkered pattern of irregularities formed on the pressing surface. After pressing the base plate from the aluminum plate side and forming irregularities in a checkered pattern on the surface of the lithium plate in contact with the aluminum plate, a disk shape with a diameter of 6.2 mm is punched out, and the negative electrode can is inserted from the lithium plate side. inserted into. In addition,
The area of each recess of the pressing jig is 0.2-. Further, the area of each convex portion is also 0.2-. The positive electrode contains iron disulfide (
A molding mixture containing a mixture of F e S2 ) and cupric oxide (Cub) as an active material was used, and the electrolyte had a volume ratio of propylene carbonate and 1,2-dimethoxyethane of 2:1.
A lithium battery with a diameter of 9.51 mm and a height of 2.05 mm was prepared using an organic electrolyte containing 1 mol/l/8 of lithium perchlorate (LiCIO4) dissolved in a mixed solvent of was created.

第1図において、1はステンレス鋼製で外面にニッケル
メッキを施してなる負極缶である。2は魚種で、この負
極2はリチウム層2aとリチウム合金層2bとからなる
0本実施例において、上記リチウム合金i2bは前述の
ように負極缶1に挿入したリチウム板のアルミニウム坂
近傍のリチウムとアルミニウムとが電池内で電解液の存
在下に電気化学的に合金化することによって形成された
ものであり、このリチウム合金lft2bはセパレータ
3と対向する側に配置している。リチウム層2aは前記
リチウム板のアルミニウムと合金化しなかった部分で構
成されるものであり、負極中のアルミニウムの量は2原
子%に相当する。そして、リチウム層2aのリチウム合
金1if2bに接する側の面は凹凸化しており、凸部2
a1と凹部2a2とが市松模様状に形成されている。ま
た、リチウム合金Fi2bのセパレータ3に対向する側
の面は、上記リチウムff12aの凹凸にそって凹凸化
している。
In FIG. 1, reference numeral 1 denotes a negative electrode can made of stainless steel and having its outer surface plated with nickel. 2 is a type of fish, and this negative electrode 2 is composed of a lithium layer 2a and a lithium alloy layer 2b. and aluminum are electrochemically alloyed in the presence of an electrolyte in a battery, and this lithium alloy lft2b is placed on the side facing the separator 3. The lithium layer 2a is composed of a portion of the lithium plate that is not alloyed with aluminum, and the amount of aluminum in the negative electrode corresponds to 2 atomic %. The surface of the lithium layer 2a that is in contact with the lithium alloy 1if2b is uneven, and the convex portions 2
a1 and the recessed portion 2a2 are formed in a checkered pattern. Further, the surface of the lithium alloy Fi2b facing the separator 3 is uneven along the unevenness of the lithium ff12a.

セパレータ3は微孔性ポリプロピレンフィルムからなり
、4は正極で、この正極4は二硫化鉄44重量部、酸化
第二銅44重量部、導電助剤としてアセチレンブランク
1ON量部および結着剤としてのポリテトラフルオロエ
チレン2重量部からなる組成の合剤をステンレス鋼製の
環状台座5が配置された金型に充填して加圧成形したも
のである。6はステンレス鋼製で外面にニッケルメンキ
を施してなる正極缶で、7はポリプロピレン製の環状ガ
スケットである。
The separator 3 is made of a microporous polypropylene film, and 4 is a positive electrode. A mixture having a composition of 2 parts by weight of polytetrafluoroethylene was filled into a mold in which an annular pedestal 5 made of stainless steel was arranged, and the mixture was press-molded. 6 is a positive electrode can made of stainless steel with a nickel coating on its outer surface, and 7 is an annular gasket made of polypropylene.

比較例1 負極構成を表面が凹凸化していないリチウム板およびア
ルミニウム板を電池内に挿入することにより行ったほか
は実施例1と同様の構成からなるリチウム電池を作製し
た。この電池では、実施例1の電池と異なり、第2図に
示すようにリチウム層2aのリチウム合金層2bに接す
る側の面は平面状であり、またリチウム合金層2bのセ
パレータ3と対向する側の面も平面状である。
Comparative Example 1 A lithium battery having the same configuration as Example 1 was produced, except that the negative electrode was constructed by inserting a lithium plate and an aluminum plate whose surfaces were not roughened into the battery. In this battery, unlike the battery of Example 1, as shown in FIG. 2, the surface of the lithium layer 2a that is in contact with the lithium alloy layer 2b is planar, and the surface of the lithium alloy layer 2b that is opposite to the separator 3. The surface of is also planar.

上記実施例1の電池および比較例1の電池の25℃、交
流1kllzでの内部抵抗を測定した結果および上記電
池の一1O℃、2にΩ負荷、7.3m5ecのパルス閉
路電圧を測定した結果を第1表に示す。
The results of measuring the internal resistance of the battery of Example 1 and the battery of Comparative Example 1 at 25°C and 1 kllz AC, and the results of measuring the pulsed closed circuit voltage of the above batteries at 10°C, Ω load on 2, and 7.3 m5ec. are shown in Table 1.

試験に供した電池は、両電池とも50個ずつであり、第
1表には測定値を最小値から最大値までの範囲で示して
いる。
Fifty batteries were tested for each type of battery, and Table 1 shows the measured values in the range from the minimum value to the maximum value.

第      1     表 第1表に示すように、実施例1の電池は、比較例1の電
池に比べて、内部抵抗が小さく、パルス閉路電圧が高か
った。これは、本発明では負極のリチウム層のリチウム
合金層に接する側の面を凹凸化させて表面積を大きくし
ているため、負極の実効反応面積が広(なり、単位面積
あたりの電流密度が低下して、内部抵抗が小さくなった
ことによるものと考えられる。
Table 1 As shown in Table 1, the battery of Example 1 had lower internal resistance and higher pulsed closed circuit voltage than the battery of Comparative Example 1. This is because in the present invention, the surface of the lithium layer of the negative electrode in contact with the lithium alloy layer is made uneven to increase the surface area, so the effective reaction area of the negative electrode is widened, and the current density per unit area is reduced. This is thought to be due to the fact that the internal resistance has become smaller.

また、合金化するまでの時間についても、X線回折分析
により(i′1認したところ、実施例1の電池は電池組
立より24時間でほぼ完全に合金化していたが、比較例
1の電池では電池組立より48時間経過した後もアルミ
ニウムが合金化せずに残っているものが6%程度あった
Regarding the time required for alloying, X-ray diffraction analysis (i'1) confirmed that the battery of Example 1 was almost completely alloyed within 24 hours from battery assembly, but the battery of Comparative Example 1 Even after 48 hours had passed since the battery was assembled, about 6% of the aluminum remained unalloyed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、リチウム層のセパレ
ータと対向する側に電気化学的合金化によるリチウム合
金層を設け、かつリチウム層のリチウム合金層に接する
側の面を凹凸化しておくことにより、負極の実効反応面
積を広(させ、パルス閉路電圧特性を向上させることが
できた。
As explained above, in the present invention, a lithium alloy layer is provided by electrochemical alloying on the side of the lithium layer facing the separator, and the surface of the lithium layer on the side in contact with the lithium alloy layer is made uneven. We were able to expand the effective reaction area of the negative electrode and improve the pulse closing voltage characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るリチウム電池の一例を示す断面図
であり、第2図は本発明とは構成が異なるリチウム電池
の断面図である。 2・・・負極、 2a・・・リチウム層、 2a1・・
・凸部、2a2・・・凹部、 2b・・・リチウム合金
層、3・・・セパレータ、  4・・・正極印t−武士
FIG. 1 is a sectional view showing an example of a lithium battery according to the present invention, and FIG. 2 is a sectional view of a lithium battery having a different configuration from that of the present invention. 2... Negative electrode, 2a... Lithium layer, 2a1...
・Convex part, 2a2... Concave part, 2b... Lithium alloy layer, 3... Separator, 4... Positive electrode mark t-Samurai

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムを負極活物質とするリチウム電池におい
て、リチウム層のセパレータと対向する側に、リチウム
と該リチウムに電気化学的に合金化する金属との電気化
学的合金化によるリチウム合金層を設け、かつリチウム
層のリチウム合金層に接する側の面を凹凸面にしている
ことを特徴とするリチウム電池。
(1) In a lithium battery using lithium as a negative electrode active material, a lithium alloy layer is provided on the side of the lithium layer facing the separator by electrochemical alloying of lithium and a metal that electrochemically alloys with the lithium. , and the surface of the lithium layer in contact with the lithium alloy layer is an uneven surface.
(2)リチウムと電気化学的に合金化する金属がアルミ
ニウム、錫、亜鉛、鉛、ビスマス、ケイ素、アンチモン
およびマグネシウムよりなる群から選ばれた少なくとも
1種であることを特徴とする特許請求の範囲第1項記載
のリチウム電池。
(2) Claims characterized in that the metal electrochemically alloyed with lithium is at least one selected from the group consisting of aluminum, tin, zinc, lead, bismuth, silicon, antimony, and magnesium. The lithium battery according to item 1.
JP61272400A 1986-11-15 1986-11-15 Lithium cell Pending JPS63126157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61272400A JPS63126157A (en) 1986-11-15 1986-11-15 Lithium cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61272400A JPS63126157A (en) 1986-11-15 1986-11-15 Lithium cell

Publications (1)

Publication Number Publication Date
JPS63126157A true JPS63126157A (en) 1988-05-30

Family

ID=17513369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61272400A Pending JPS63126157A (en) 1986-11-15 1986-11-15 Lithium cell

Country Status (1)

Country Link
JP (1) JPS63126157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166149A (en) * 1986-12-26 1988-07-09 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2012014840A (en) * 2010-06-29 2012-01-19 Panasonic Corp Coin cell and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614167A (en) * 1984-06-18 1986-01-10 Fuji Elelctrochem Co Ltd Flat-type nonaqueous electrolyte cell
JPS6174264A (en) * 1984-09-17 1986-04-16 Hitachi Maxell Ltd Lithium cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614167A (en) * 1984-06-18 1986-01-10 Fuji Elelctrochem Co Ltd Flat-type nonaqueous electrolyte cell
JPS6174264A (en) * 1984-09-17 1986-04-16 Hitachi Maxell Ltd Lithium cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166149A (en) * 1986-12-26 1988-07-09 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07118315B2 (en) * 1986-12-26 1995-12-18 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JP2012014840A (en) * 2010-06-29 2012-01-19 Panasonic Corp Coin cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4820599A (en) Non-aqueous electrolyte type secondary cell
JP4491208B2 (en) Battery can, manufacturing method thereof, and battery
JP4184927B2 (en) Secondary battery and manufacturing method thereof
JP3669646B2 (en) Nonaqueous electrolyte secondary battery
JPS61208750A (en) Lithium organic secondary battery
JP2002237295A (en) Lithium secondary battery and its manufacturing method
JPS63126156A (en) Lithium cell
JPS63213264A (en) Lead storage battery
JPS60175375A (en) Lithium organic secondary cell
JPH0665044B2 (en) Lithium organic primary battery
JPS63126157A (en) Lithium cell
EP1009047B1 (en) Battery plate and battery
JPH0425676B2 (en)
JPS61208748A (en) Lithium organic secondary battery
JPS63143744A (en) Lithium battery
JPS63126159A (en) Lithium cell
JPS63126158A (en) Lithium cell
JPS62226563A (en) Nonaqueous electrolyte secondary battery
JPS61163564A (en) Nonaqueous electrolytic solution
JP4151825B2 (en) Negative electrode current collector for Li secondary battery
JPS63175348A (en) Lithium cell
JPH09320634A (en) Organic electrolyte secondary battery
JPH01239761A (en) Thin lithium battery
JP2563409B2 (en) Organic electrolyte battery
JPH0588506B2 (en)