JPH07118315B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH07118315B2
JPH07118315B2 JP61312208A JP31220886A JPH07118315B2 JP H07118315 B2 JPH07118315 B2 JP H07118315B2 JP 61312208 A JP61312208 A JP 61312208A JP 31220886 A JP31220886 A JP 31220886A JP H07118315 B2 JPH07118315 B2 JP H07118315B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
lithium
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61312208A
Other languages
Japanese (ja)
Other versions
JPS63166149A (en
Inventor
秀 越名
徹 松井
信夫 江田
彰克 守田
幸雄 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61312208A priority Critical patent/JPH07118315B2/en
Publication of JPS63166149A publication Critical patent/JPS63166149A/en
Publication of JPH07118315B2 publication Critical patent/JPH07118315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非水電解液二次電池に関わり、特にその負極材
料の改良に関するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a negative electrode material thereof.

従来の技術 従来よりこの種の非水電解液二次電池には負極活物質と
して、リチウム,ナトリウム,アルミニウムなどを用い
ることが知られている。またこのような負極活物質にデ
ンドライトが生じないようにするため負極材料にCd,Al,
Bi,Pb,Sn,Inなどが成分である可融合金を使うことが知
られている。
2. Description of the Related Art Conventionally, it has been known to use lithium, sodium, aluminum or the like as a negative electrode active material in this type of non-aqueous electrolyte secondary battery. Moreover, in order to prevent dendrites from being generated in such a negative electrode active material, Cd, Al,
It is known to use fusible alloys containing Bi, Pb, Sn, In, etc.

リチウム,ナトリウム,アルミニウムなどの金属単体で
負極を形成する場合、電解液の種類によりデンドライト
が生じ、サイクル寿命が低下することがある。このデン
ドライトはリチウムが負極の場合、リチウム粒子界面の
活性な点から生じており、デンドライトはまた活性なた
めすぐ電解液と反応し、不活性化してしまう。このた
め、単金属を用いる負極はデンドライトの発生と不活性
化による活物質の余分な消費のため、サイクル寿命が短
い。
When forming a negative electrode with a metal simple substance such as lithium, sodium, and aluminum, dendrite may be generated depending on the type of electrolyte, and the cycle life may be shortened. In the case where lithium is the negative electrode, this dendrite is generated from the active point of the lithium particle interface, and the dendrite is also active and immediately reacts with the electrolytic solution to be inactivated. Therefore, the negative electrode using a single metal has a short cycle life due to the generation of dendrite and the extra consumption of the active material due to inactivation.

負極に可融合金などを用いた場合、負極活物質は合金中
に吸蔵されるためデンドライトは生じない。また電解液
の種類にあまり依存しない特性を示すことがわかってい
る。しかしながら、負極活物質をリチウムとした場合リ
チウム単金属で2062mAh/cm3の容量密度に対し、合金の
飽和吸蔵量はリチウムも含めてその1/3ぐらいにしかな
らない。また負極に合金を用いた時、リチウム金属単体
と比べ電位が0.2〜0.8V程度高くなるため、電池電圧は
逆に低下し、エネルギー密度が小さくなる。
When fusible gold or the like is used for the negative electrode, the negative electrode active material is occluded in the alloy and dendrite does not occur. It is also known that it exhibits characteristics that do not depend much on the type of electrolyte. However, when lithium is used as the negative electrode active material, the saturated storage amount of the alloy, including lithium, is only about 1/3 of the capacity density of 2062 mAh / cm 3 for the lithium single metal. In addition, when an alloy is used for the negative electrode, the electric potential is higher by about 0.2 to 0.8 V than that of the lithium metal alone, so that the battery voltage decreases conversely and the energy density decreases.

発明が解決しようとする問題点 このような従来の構成、すなわち負極にLi,Na,Alなどの
単体金属を用い充放電させた場合、デンドライトが電解
液の種類に依存し発生し正極と短絡したり、かつデンド
ライト表面が非常に活性なため電解液と反応し、不活性
化が急速に進むため電池のサイクル寿命が短くなる。
Problems to be Solved by the Invention When such a conventional configuration is used, that is, when the negative electrode is charged and discharged using a single metal such as Li, Na, Al, dendrite is generated depending on the type of the electrolytic solution and short-circuited with the positive electrode. In addition, the surface of the dendrite is so active that it reacts with the electrolytic solution, and the deactivation proceeds rapidly, which shortens the cycle life of the battery.

また負極に合金を使用し、負極活物質であるLi+,Na+,Al
+などを吸蔵,放出させる場合、電解液の種類によるサ
イクル寿命はあまり変化しないが、合金中に保有できる
活物質量は単位体積換算で単金属の場合より1/3倍とな
る。
In addition, an alloy is used for the negative electrode, and Li + , Na + , Al
When occluding and releasing + etc., the cycle life does not change much depending on the type of electrolyte, but the amount of active material that can be held in the alloy is 1/3 times that of a single metal in unit volume conversion.

同時に負極活物質を保有した合金は単金属の場合より0.
2〜0.8V程度電位が高く、電池としては電圧がその分低
下するため、エネルギー密度が小さくなる。
At the same time, the alloy holding the negative electrode active material is 0 compared to the case of a single metal.
The potential is high at about 2 to 0.8 V, and the voltage of the battery drops accordingly, resulting in a smaller energy density.

以上のような問題点があげられる。The above problems can be raised.

本発明はこのような問題点を解決するもので、電池のサ
イクル寿命と容量を増大することによりエネルギー密度
を向上させることを目的とするものである。
The present invention solves such problems, and an object thereof is to improve the energy density by increasing the cycle life and capacity of the battery.

問題点を解決するための手段 負極活物質であるアルカリ金属に1重量パーセント以下
の濃度で、Pb,Bi,Sn,In,As,Sb,Alからなる群より選んだ
少くとも1種の金属を添加したものを負極材料として用
いるものである。
Means for Solving the Problems At least one metal selected from the group consisting of Pb, Bi, Sn, In, As, Sb, and Al at a concentration of 1% by weight or less is added to the alkali metal as the negative electrode active material. The added one is used as a negative electrode material.

作用 本発明の範囲内にある負極材料を用いた負極はその添加
濃度により負極が活物質単金属の場合と同様な電位と容
量密度を示すため、電池電圧は合金を用いた時よりも高
くかつ容量も大きいためエネルギー密度の高い電池とな
る。
Action Since the negative electrode using the negative electrode material within the scope of the present invention shows the same potential and capacity density as in the case where the negative electrode is the active material single metal depending on the concentration added, the battery voltage is higher than when the alloy is used and Since the capacity is large, the battery has a high energy density.

また添加物のため活性なポイントが粒子界面に集中せ
ず、負極表面全体に均一な活性なポイントを生じ、同じ
電流密度では単金属で形成した負極と異なりデンドライ
トは発生しない。そのためサイクル寿命の長い電池の作
成が可能となる。
In addition, active points do not concentrate on the particle interface due to the additive, and uniform active points are generated on the entire surface of the negative electrode. At the same current density, dendrite does not occur unlike the negative electrode formed of a single metal. Therefore, it becomes possible to manufacture a battery having a long cycle life.

実施例 本発明は負極アルカリ金属たとえばリチウム金属を融点
以上沸点以下にし、その中にPb,Bi,Sn,In,As,Sb,Alのう
ちの少なくとも1種以上のものを1重量%以下混入し、
分散するように溶融した後、冷却したものである。本実
施例においては添加物の中からPbを用いた場合について
第1〜第3図を用いて説明する。
Example The present invention is to make a negative electrode alkali metal such as lithium metal not less than the melting point and not more than the boiling point, in which 1% by weight or less of at least one of Pb, Bi, Sn, In, As, Sb, Al is mixed. ,
After melting so as to be dispersed, it is cooled. In this embodiment, the case where Pb is used among the additives will be described with reference to FIGS.

第1図は本発明を実施するために用いた径が20mm、総高
が1.6mmの電池の一部断面図を示す。図中1は本発明の
負極であり、ステンレス製封口板3の内面に形成したス
テンレス製負極集電体2に圧着固定している。4はステ
ンレス製ケース、5はチタン製正極集電体、6は三酸化
モリブデンを正極活物質とした正極合剤、7は微細孔を
もつポリプロピレン(以下PPと略す)製セパレータ、8
はPP製含浸材、9はPP製ガスケットである。
FIG. 1 shows a partial cross-sectional view of a battery having a diameter of 20 mm and a total height of 1.6 mm used for implementing the present invention. In the figure, reference numeral 1 denotes the negative electrode of the present invention, which is fixed by pressure to a stainless steel negative electrode current collector 2 formed on the inner surface of a stainless steel sealing plate 3. 4 is a stainless steel case, 5 is a titanium positive electrode current collector, 6 is a positive electrode mixture using molybdenum trioxide as a positive electrode active material, 7 is a polypropylene (hereinafter abbreviated as PP) separator having fine pores, 8
Is a PP impregnation material, and 9 is a PP gasket.

正極は組成が重量部でM0O3100に対し、カーボンブラッ
ク15、フッ素樹脂系結着剤15とし、容量が20mmAhとなる
ように秤量し、ケース4の内面に形成した正極集電体5
にケース内成型したものを用いた。
The composition of the positive electrode is, by weight, M 0 O 3 100, carbon black 15, fluororesin binder 15, and is weighed to have a capacity of 20 mmAh. The positive electrode current collector 5 formed on the inner surface of the case 4
The one molded in the case was used.

電解液は1モル/lの過塩素酸リチウム(LiClO4)を溶解
した炭酸プロピレン(Pc)を用いた。
The electrolyte used was propylene carbonate (Pc) in which 1 mol / l lithium perchlorate (LiClO 4 ) was dissolved.

負極は種々の添加物濃度のリチウムを厚さ200μm、径1
5mmφに加工したものを用いた。
The negative electrode is made of various additive concentrations of lithium with a thickness of 200 μm and a diameter of 1
The one processed to 5 mmφ was used.

電池の封口後24時間経過した電池の電圧はリチウム単金
属を負極として組込んだ電池と変化はなかった。また添
加剤として本発明にあげた金属による差もなかった。
The voltage of the battery 24 hours after the sealing of the battery was the same as that of the battery in which lithium single metal was incorporated as the negative electrode. Further, there was no difference due to the metals listed in the present invention as additives.

しかし、添加物濃度が本発明の範囲を超えたところでは
電池電圧は低下し、合金を使用したものに近づいていっ
た。
However, when the additive concentration exceeded the range of the present invention, the battery voltage dropped and approached that using the alloy.

第2図は本発明の負極を第1図に示した電池で実施した
時のサイクル特性である。充放電々流はともに1mAと
し、充電時のカット電圧を3.0V、放電時のカット電圧を
1.0Vとした。
FIG. 2 shows the cycle characteristics when the negative electrode of the present invention was applied to the battery shown in FIG. Charge / discharge current is both 1mA, cut voltage at charge is 3.0V, cut voltage at discharge is
It was set to 1.0V.

図中Aが添加物濃度1重量%、Bが0.5重量%、Cが0.1
重量%のものであり、Dがリチウム単金属使用のもので
ある。
In the figure, A is an additive concentration of 1% by weight, B is 0.5% by weight, and C is 0.1%.
% By weight, and D is the one using a lithium single metal.

第2図より電池のサイクル寿命がDのリチウム単金属使
用のものより長いことがわかる。また添加物の濃度によ
りサイクル寿命が若干異なっているのは添加物濃度によ
る活性はポイントの存在率が異なるためである。
It can be seen from FIG. 2 that the cycle life of the battery is longer than that of D using the lithium single metal. The reason why the cycle life is slightly different depending on the concentration of the additive is that the abundance of points is different in the activity depending on the concentration of the additive.

第3図は第1図に示した電池の10サイクル目の充放電曲
線である。充放電条件は上記と同一のものである。
FIG. 3 is a charge / discharge curve at the 10th cycle of the battery shown in FIG. The charge / discharge conditions are the same as above.

図中Eが添加物濃度1重量%のもの、FがLi-Al(組成L
i:Al50:50atomic%)合金で同サイズに加工したもの、
Gがリチウム単金属のものである。この図より本発明の
EがGのリチウム単金属使用のものと比較し放電々圧に
差がないことがわかる。またFの合金を使用したものは
E,Gより電圧が低く、従ってエネルギー密度の小さなも
のとなっていることがわかる。
In the figure, E is the additive concentration of 1% by weight, F is Li-Al (composition L
i: Al50: 50atomic%) alloy processed to the same size,
G is a single lithium metal. From this figure, it can be seen that there is no difference in the discharge pressure as compared with the case where E of the present invention G using lithium single metal. Moreover, the one using the alloy of F
It can be seen that the voltage is lower than E and G, and therefore the energy density is small.

発明の効果 以上の説明から明らかのように本発明によれば、従来の
ものと比較し、高エネルギー密度でかつサイクル寿命が
長いという特性を有する工業的価値の高い非水電解液二
次電池を提供できるものである。
EFFECTS OF THE INVENTION As is apparent from the above description, according to the present invention, a non-aqueous electrolyte secondary battery of high industrial value having characteristics of higher energy density and longer cycle life than conventional ones is provided. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における電池の一部断面図、
第2図は同電池のサイクル特性を示す図、第3図は同電
池の充放電曲線を示す図である。 1……負極、2……負極集電体、3……封口板。
FIG. 1 is a partial sectional view of a battery according to an embodiment of the present invention,
FIG. 2 is a diagram showing cycle characteristics of the battery, and FIG. 3 is a diagram showing charge / discharge curves of the battery. 1 ... Negative electrode, 2 ... Negative electrode current collector, 3 ... Sealing plate.

フロントページの続き (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西川 幸雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Akikatsu Morita 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yukio Nishikawa, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルカリ金属イオンを含む非水電解液と、
充放電可能な正極と、アルカリ金属を負極とする電池に
おいて、負極アルカリ金属中に鉛(Pb),ビスマス(B
i),スズ(Sn),インジウム(In),ヒ素(As),ア
ンチモン(Sb),アルミニウム(Al)からなる群より選
んだ少なくとも1種類の金属を1重量パーセント以下混
入することを特徴とする非水電解液二次電池。
1. A non-aqueous electrolytic solution containing an alkali metal ion,
In a battery with a chargeable / dischargeable positive electrode and an alkali metal negative electrode, lead (Pb), bismuth (B
i), tin (Sn), indium (In), arsenic (As), antimony (Sb), aluminum (Al) at least one metal selected from the group is characterized by mixing less than 1 wt% Non-aqueous electrolyte secondary battery.
JP61312208A 1986-12-26 1986-12-26 Non-aqueous electrolyte secondary battery Expired - Lifetime JPH07118315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61312208A JPH07118315B2 (en) 1986-12-26 1986-12-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61312208A JPH07118315B2 (en) 1986-12-26 1986-12-26 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS63166149A JPS63166149A (en) 1988-07-09
JPH07118315B2 true JPH07118315B2 (en) 1995-12-18

Family

ID=18026499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61312208A Expired - Lifetime JPH07118315B2 (en) 1986-12-26 1986-12-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07118315B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126159A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell
JPS63126157A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell
JPS63126158A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126159A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell
JPS63126157A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell
JPS63126158A (en) * 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell

Also Published As

Publication number Publication date
JPS63166149A (en) 1988-07-09

Similar Documents

Publication Publication Date Title
JP4049811B2 (en) Primary electrochemical cell
GB2060242A (en) Rechargeable nonaqueous silver alloy anode cell
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
EP0139756A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH07118315B2 (en) Non-aqueous electrolyte secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPH0831317B2 (en) Non-aqueous electrolyte secondary battery
JPH028420B2 (en)
JP2708884B2 (en) Non-aqueous electrolyte battery
JPH0582128A (en) Lithium secondary battery
JPS61179063A (en) Lithium secondary battery
JPS6188466A (en) Nonaqueous electrolyte secondary battery
JPH0542114B2 (en)
JP2598919B2 (en) Non-aqueous electrolyte secondary battery
JPH0746606B2 (en) Non-aqueous electrolyte secondary battery
JP2639935B2 (en) Non-aqueous electrolyte secondary battery
JPS62140358A (en) Nonaqueous electrolyte secondary cell
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JP2518090B2 (en) Lead acid battery
JPH0711957B2 (en) Non-aqueous secondary battery
EP0144429A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPS63166166A (en) Lithium secondary cell
JPH0364987B2 (en)
JPH02281572A (en) Electrolyte for lithium secondary battery
JPS6161376A (en) Rechargeable electrochemical device