JPH028420B2 - - Google Patents

Info

Publication number
JPH028420B2
JPH028420B2 JP59105272A JP10527284A JPH028420B2 JP H028420 B2 JPH028420 B2 JP H028420B2 JP 59105272 A JP59105272 A JP 59105272A JP 10527284 A JP10527284 A JP 10527284A JP H028420 B2 JPH028420 B2 JP H028420B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
tungsten
lithium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59105272A
Other languages
Japanese (ja)
Other versions
JPS60249247A (en
Inventor
Yasuo Mizuno
Shigeo Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59105272A priority Critical patent/JPS60249247A/en
Publication of JPS60249247A publication Critical patent/JPS60249247A/en
Publication of JPH028420B2 publication Critical patent/JPH028420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は電池の負極材料に関するものである。 従来例の構成とその問題点 電解液にリチウム塩を溶解した非プロトン性有
機溶媒を用い、負極にリチウムを用いた電池は単
位重量あたりの出力エネルギーが高いため、高エ
ネルギー密度の電池として知られている。 現在、正極活物質に(CF)o、MnO2
Ag2CrO4、SO2、SOCl2などを用い開路電圧が約
3Vを示す電池、あるいはCuO、CuS、Bi2Pb2O5
Bi2O3などを正極活物質として用いた開路電圧が
約1.5Vを示す電池が実用化されている。 一般に、この型の電池は一次電池であり、こう
した高エネルギー密度の電池を二次電池とするこ
とが期待されているが、実用化には多くの問題が
あり、それを解決するための研究が盛んに行なわ
れて来た。この種二次電池の開発に当つての大き
な問題は負極材料の選択である。負極活物質とし
ては従来リチウムが用いられてきたが、充電時に
おけるリチウムの樹枝状折出が原因となり、充放
電サイクル寿命の低下を引き起こしていた。 この解決策として負極にAl、Cu、Cd、Mg、
Pd、Pt、Sn、Zn、Siなどの金属にリチウムを挿
入したリチウム合金が用いられているが、充電時
に有機電解液の分解に伴なうガス発生を生じ、そ
の結果電池の液漏れ、破裂、サイクル寿命の低下
などの問題を有していた。最近、タングステン、
チタンなどの遷移金属酸化物とリチウムとのトポ
化学反応を利用した負極が考えられている。これ
らの酸化膜は元来電導性が低いため、該酸化膜に
カーボンなどの電導性粉末とバインダーとしてフ
ツ素樹脂粉末を混合し該合材を加圧プレスして負
極としていた。その結果、充電時に電極に含まれ
るカーボン上で有機電解液の分解に伴なうガス発
生を生じ〔たとえば、熊谷、丹野“電気化学”
49599(1981)〕前述と同様の問題を引き起こして
いた。 発明の目的 本発明は、サイクル寿命に優れガス発生を抑制
し、液漏れや破裂のない電池を提供するものであ
る。 発明の構成 本発明はこれらの遷移金属酸化物をカーボンな
どのガス発生させる材料を含まないようにして負
極として用いるものであり、それぞれの金属表面
上に陽極酸化膜を作成し、たとえば酸化タングス
テンについては、タングステン板を空気中で酸化
して生成させた被膜も同様にガス発生のない負極
として用いるものである。 実施例の説明 本発明は酸化タングステン、酸化タンタル、酸
化チタンのうち少なくとも1つ以上の酸化物を負
極母体として用いることを特徴とする。これらの
遷移金属酸化物は、それぞれの金属を電気化学的
に陽極酸化して得られる被膜である。また酸化タ
ングステンを母体とした負極については、タング
ステンを空気中で酸化して得られる被膜も用いら
れることが出来る。 本発明によれば電池の充放電時において有機電
解液を分解したりガス発生させたりすることのな
いサイクル寿命にすぐれた電池を提供することが
出来るものである。 実施例 1 図は本発明の一実施例の電池を示している。1
は正極側ケース、3は比表面積が300m2/gのグラ
フアイトカーボンとフツ素樹脂を1:1の重量比
で混合し、ハイクロムステンレス集電体2上に加
圧成型した正極である。4は有機電解液
(1MLiClO4を含む炭酸プロピレン溶液)を含浸
したポリエチレン不織布からなるセパレータであ
り、5は負極でタングステン板上に電解酸化法に
より陽極酸化膜(酸化タングステン)6を形成
し、これにLiをインターカレートしたものを用い
た。陽極酸化膜はタングステン板を3Mの硫酸水
溶液中で白金対極に対し75Vの直流電圧を10分印
加することで作成した。作成した電極は蒸溜水で
よく洗浄し、乾燥後有機電解液中でリチウム
(Li)と短絡し1週間放置してLiをインターカレ
ートさせた。このとき表面は濃青色となり、リチ
ウムタングステンブロンズが形成されていること
が確認できた。この負極を電解液から取り出し、
前述の正極、セパレータと組合わせて、負極側ケ
ース8に収めガスケツト7を介して封口し電池を
構成した。 比較例 比較のため次に示す従来例を作成した。 負極として酸化タングステン粉末とグラフアイ
トを1:1の重量比で混合して、集電体上に加圧
成型し、これを有機電解液中で1週間Li金属と短
絡させ、Liをインターカレートさせた。このとき
負極上からは多量のガスが発生した。それ以外は
実施例1と同様の構成で電池を構成した。 実施例 2 負極としてタンタル板上に陽極酸化膜(酸化タ
ンタル)を形成し、該酸化膜に実施例1同様Liを
インターカレートさせたものを用いた以外は実施
例1と同様にして電池を構成した。 実施例 3 負極としてチタン板上に陽極酸化膜(酸化チタ
ン)を形成し、Liをインターカレートさせたもの
を用いた以外は実施例1と同様にして電池を構成
した。 実施例 4 負極としてタングステン板を空気中酸化して生
成させた被膜にLiをインターカレートさせたもの
を用いた以外は実施例1と同様にして電池を構成
した。負極はタングステン板を750℃で30分間空
気中酸化することでタングステン板表面上に酸化
物被膜を形成させ、形成した酸化物被膜の片側を
負極ケースと電気的接触を得るため一部を剥離
し、さらに、これを有機電解液中でLiと短絡し1
週間放置してLiをインターカレートさせ電池負極
を構成した。 実施例 5 有機電解液として1MLiClO4を含むガンマブチ
ロラクトンを用いた以外は実施例1と同様にして
電池を構成した。 実施例 6 正極に用いるカーボン材料として比表面積が
1000〜1500m2/gのフアーネスカーボンを用いた
以外は実施例1と同様にして電池を構成した。 表は比較例及び実施例1〜6の電池について、
開路電圧、放電容量、10μA/cm2の電流密度、75
%の放電深度で充放電をくり返した場合の容量低
下度合、液漏れ・破裂の有無を示したものであ
る。
INDUSTRIAL APPLICATION FIELD The present invention relates to negative electrode materials for batteries. Structure of conventional examples and their problems Batteries that use an aprotic organic solvent in which lithium salt is dissolved in the electrolyte and lithium as the negative electrode have a high output energy per unit weight, so they are known as high energy density batteries. ing. Currently, the positive electrode active materials include (CF) o , MnO 2 ,
Using Ag 2 CrO 4 , SO 2 , SOCl 2 etc., the open circuit voltage is approximately
Batteries exhibiting 3V, or CuO, CuS, Bi 2 Pb 2 O 5 ,
Batteries that use Bi 2 O 3 or the like as a positive electrode active material and exhibit an open circuit voltage of approximately 1.5V have been put into practical use. Generally, this type of battery is a primary battery, and it is expected that these high energy density batteries can be used as secondary batteries, but there are many problems in practical application, and research is needed to solve them. It has been widely practiced. A major problem in developing this type of secondary battery is the selection of negative electrode material. Lithium has conventionally been used as the negative electrode active material, but dendritic precipitation of lithium during charging has caused a reduction in charge-discharge cycle life. As a solution, Al, Cu, Cd, Mg,
Lithium alloys are used, in which lithium is inserted into metals such as Pd, Pt, Sn, Zn, and Si, but when charging, gas is generated due to the decomposition of the organic electrolyte, resulting in battery leakage and rupture. , and had problems such as a decrease in cycle life. Recently, tungsten,
Negative electrodes are being considered that utilize topochemical reactions between transition metal oxides such as titanium and lithium. Since these oxide films originally have low conductivity, the oxide film was mixed with a conductive powder such as carbon and a fluororesin powder as a binder, and the mixture was pressed under pressure to form a negative electrode. As a result, during charging, gas is generated due to the decomposition of the organic electrolyte on the carbon contained in the electrode [for example, Kumagai, Tanno "Electrochemistry"]
49599 (1981)] caused the same problems as mentioned above. OBJECTS OF THE INVENTION The present invention provides a battery that has excellent cycle life, suppresses gas generation, and is free from leakage and rupture. Structure of the Invention The present invention uses these transition metal oxides as negative electrodes without containing gas-generating materials such as carbon, and creates an anodic oxide film on the surface of each metal. In this method, a film produced by oxidizing a tungsten plate in air is also used as a negative electrode that does not generate gas. Description of Examples The present invention is characterized in that an oxide of at least one of tungsten oxide, tantalum oxide, and titanium oxide is used as a negative electrode matrix. These transition metal oxides are films obtained by electrochemically anodizing the respective metals. Further, for a negative electrode using tungsten oxide as a base material, a film obtained by oxidizing tungsten in air can also be used. According to the present invention, it is possible to provide a battery with excellent cycle life that does not decompose the organic electrolyte or generate gas during charging and discharging of the battery. Example 1 The figure shows a battery according to an example of the present invention. 1
3 is a positive electrode side case, and 3 is a positive electrode prepared by mixing graphite carbon with a specific surface area of 300 m 2 /g and fluororesin at a weight ratio of 1:1 and press-molding it on a high chrome stainless steel current collector 2. 4 is a separator made of polyethylene nonwoven fabric impregnated with an organic electrolyte (a propylene carbonate solution containing 1 M LiClO 4 ), and 5 is a negative electrode, and an anodized film (tungsten oxide) 6 is formed on a tungsten plate by electrolytic oxidation. Li intercalated with Li was used. The anodic oxide film was created by applying a DC voltage of 75 V to a platinum counter electrode for 10 minutes on a tungsten plate in a 3M sulfuric acid aqueous solution. The prepared electrode was thoroughly washed with distilled water, dried, and then short-circuited with lithium (Li) in an organic electrolyte and left for one week to intercalate Li. At this time, the surface turned dark blue and it was confirmed that lithium tungsten bronze was formed. Remove this negative electrode from the electrolyte,
In combination with the above-mentioned positive electrode and separator, it was placed in a negative electrode case 8 and sealed with a gasket 7 to form a battery. Comparative Example The following conventional example was created for comparison. As a negative electrode, tungsten oxide powder and graphite were mixed at a weight ratio of 1:1, molded under pressure on a current collector, and short-circuited with Li metal in an organic electrolyte for one week to intercalate Li. I let it happen. At this time, a large amount of gas was generated from above the negative electrode. Other than that, the battery was configured in the same manner as in Example 1. Example 2 A battery was produced in the same manner as in Example 1, except that an anodic oxide film (tantalum oxide) was formed on a tantalum plate as a negative electrode, and Li was intercalated in the oxide film as in Example 1. Configured. Example 3 A battery was constructed in the same manner as in Example 1, except that an anodic oxide film (titanium oxide) was formed on a titanium plate and Li was intercalated as a negative electrode. Example 4 A battery was constructed in the same manner as in Example 1, except that a film obtained by oxidizing a tungsten plate in air and intercalating Li was used as the negative electrode. For the negative electrode, a tungsten plate is oxidized in air at 750°C for 30 minutes to form an oxide film on the surface of the tungsten plate, and one side of the formed oxide film is partially peeled off to make electrical contact with the negative electrode case. , furthermore, this was short-circuited with Li in an organic electrolyte and 1
The battery was left to stand for a week to intercalate Li to form a battery negative electrode. Example 5 A battery was constructed in the same manner as in Example 1, except that gamma-butyrolactone containing 1 M LiClO 4 was used as the organic electrolyte. Example 6 Carbon material used for positive electrode with specific surface area
A battery was constructed in the same manner as in Example 1 except that 1000 to 1500 m 2 /g of furnace carbon was used. The table shows the batteries of Comparative Examples and Examples 1 to 6.
Open circuit voltage, discharge capacity, current density of 10 μA/cm 2 , 75
This shows the degree of capacity reduction and the presence or absence of liquid leakage and rupture when charging and discharging are repeated at a depth of discharge of %.

【表】 表より明らかなように比較例の電池は充放電の
くり返しにより、50サイクル後の容量低下が80%
と著しく、このときガスケツトからは液漏れが見
られたのに対し、実施例1〜6の電池は充放電の
くり返しによる容量低下はきわめて少なく、液漏
れ・破裂等の損傷も見られず、優れた性能を有す
ることが判明した。 発明の効果 以上のように本発明によれば優れたサイクル寿
命を有し、液漏れや破裂のない商品価値の高い電
池を提供することが出来る。
[Table] As is clear from the table, the capacity of the comparative example battery decreased by 80% after 50 cycles due to repeated charging and discharging.
Remarkably, liquid leakage was observed from the gasket at this time, whereas the batteries of Examples 1 to 6 showed very little loss of capacity due to repeated charging and discharging, and showed no damage such as liquid leakage or bursting, making them excellent. It was found that the product had excellent performance. Effects of the Invention As described above, according to the present invention, it is possible to provide a battery with excellent cycle life and high commercial value without leakage or rupture.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の電池の断面図である。 3…カーボン正極、5…負極金属、6…負極金
属酸化物、4…有機電解液を含むセパレータ。
The figure is a sectional view of a battery according to an embodiment of the present invention. 3... carbon positive electrode, 5... negative electrode metal, 6... negative electrode metal oxide, 4... separator containing organic electrolyte.

Claims (1)

【特許請求の範囲】 1 負極とカーボンからなる正極と有機電解液を
構成要素とし、前記負極として、タングステン、
タンタル、チタンの少なくともいずれかの表面に
陽極酸化膜を設けて電極母体とし、これにリチウ
ムをインターカレートしたものであることを特徴
とする電池。 2 電極母体の酸化タングステンが、タングステ
ン板を空気中で酸化して生成させた被膜であるこ
とを特徴とする特許請求の範囲第1項記載の電
池。
[Claims] 1. A negative electrode, a positive electrode made of carbon, and an organic electrolyte are the constituent elements, and the negative electrode includes tungsten,
A battery characterized in that an anodized film is provided on the surface of at least one of tantalum and titanium to serve as an electrode matrix, and lithium is intercalated therein. 2. The battery according to claim 1, wherein the tungsten oxide of the electrode base is a film produced by oxidizing a tungsten plate in air.
JP59105272A 1984-05-24 1984-05-24 Battery Granted JPS60249247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59105272A JPS60249247A (en) 1984-05-24 1984-05-24 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59105272A JPS60249247A (en) 1984-05-24 1984-05-24 Battery

Publications (2)

Publication Number Publication Date
JPS60249247A JPS60249247A (en) 1985-12-09
JPH028420B2 true JPH028420B2 (en) 1990-02-23

Family

ID=14403027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59105272A Granted JPS60249247A (en) 1984-05-24 1984-05-24 Battery

Country Status (1)

Country Link
JP (1) JPS60249247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194638A (en) * 1993-12-29 1995-08-01 Hagiya New Techno:Kk Snore suppressor
WO2008047898A1 (en) * 2006-10-20 2008-04-24 Ishihara Sangyo Kaisha, Ltd. Storage device
JP2008124012A (en) * 2006-10-20 2008-05-29 Ishihara Sangyo Kaisha Ltd Energy storage device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496688B2 (en) * 2001-09-06 2010-07-07 株式会社ジーエス・ユアサコーポレーション Secondary battery
JP5038588B2 (en) * 2004-09-27 2012-10-03 Jx日鉱日石エネルギー株式会社 Lithium secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212773A (en) * 1981-06-24 1982-12-27 Sanyo Electric Co Ltd Rechargeable lithium battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212773A (en) * 1981-06-24 1982-12-27 Sanyo Electric Co Ltd Rechargeable lithium battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194638A (en) * 1993-12-29 1995-08-01 Hagiya New Techno:Kk Snore suppressor
WO2008047898A1 (en) * 2006-10-20 2008-04-24 Ishihara Sangyo Kaisha, Ltd. Storage device
JP2008124012A (en) * 2006-10-20 2008-05-29 Ishihara Sangyo Kaisha Ltd Energy storage device

Also Published As

Publication number Publication date
JPS60249247A (en) 1985-12-09

Similar Documents

Publication Publication Date Title
SU489367A3 (en) Primary element
JPS61263069A (en) Battery
JPS631708B2 (en)
US4016338A (en) Galvanic element
JPH028420B2 (en)
JPH0750606B2 (en) Non-aqueous electrolyte battery and method for producing positive electrode active material thereof
JPS638588B2 (en)
JPH02204976A (en) Electrochenical battery and its manufacture
JPS6259412B2 (en)
EP0070107A1 (en) Anhydrous cells
JPH0795454B2 (en) Non-aqueous secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
PL107460B1 (en) GALVANIC CELL WITH NEGATIVE ELECTRODE OF LIGHT METAL WITH ANHYDROUS ELECTROLYTE AND POSITIVE ELECTRODE OF METAL OXIDE
JPS61179063A (en) Lithium secondary battery
JPH0467302B2 (en)
JP2598919B2 (en) Non-aqueous electrolyte secondary battery
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPH0770315B2 (en) Non-aqueous electrolyte battery
JP2639935B2 (en) Non-aqueous electrolyte secondary battery
US20030211395A1 (en) High capacity alkaline batteries with fluorinated graphite containing cathodes
JP2830479B2 (en) Non-aqueous electrolyte secondary battery
JPS63124358A (en) Battery
JPS59146157A (en) Nonaqueous electrolyte secondary cell
JPH073785B2 (en) Non-aqueous electrolyte battery
JPH04324258A (en) Lithium battery