JPS60249247A - Battery - Google Patents

Battery

Info

Publication number
JPS60249247A
JPS60249247A JP59105272A JP10527284A JPS60249247A JP S60249247 A JPS60249247 A JP S60249247A JP 59105272 A JP59105272 A JP 59105272A JP 10527284 A JP10527284 A JP 10527284A JP S60249247 A JPS60249247 A JP S60249247A
Authority
JP
Japan
Prior art keywords
battery
oxide
negative electrode
tungsten
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59105272A
Other languages
Japanese (ja)
Other versions
JPH028420B2 (en
Inventor
Yasuo Mizuno
水野 康男
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59105272A priority Critical patent/JPS60249247A/en
Publication of JPS60249247A publication Critical patent/JPS60249247A/en
Publication of JPH028420B2 publication Critical patent/JPH028420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide a battery which has excellent cycle life and in which no liquid leakage or bursting occurs by using a negative electrode base composed of at least one compound selected from among tungsten oxide, tantalum oxide and titanium oxide. CONSTITUTION:A negative electrode is prepared from an electrode base composed of at least one compound selected from among tungsten oxide, tantalum oxide and titanium oxide. These oxides of transition metals are used in the form of a film prepared by electrochemically subjecting the metal to anodic oxidation. A battery is assembled by using the negative electrode, a positive electrode made of carbon and organic electrolyte. In this battery, only slight capacity decrease is caused by repeated charging and discharging and no damage such as liquid leakage or bursting occurs. Therefore this battery has high quality.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電池の負極材料に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to negative electrode materials for batteries.

従来例の構成とその問題点 電解液にリチウム塩を溶解した非プロトン性有機溶媒を
用い、負極にリチウムを用いた電池は単位重量あたりの
出力エネルギーが高いため、高エネルギー密度の電池と
して知られている。
Conventional configuration and problems Batteries that use an aprotic organic solvent with lithium salt dissolved in the electrolyte and lithium as the negative electrode have a high output energy per unit weight, and are known as high energy density batteries. ing.

現在、正極活物質に(CF)n1Mn02.Aq2Cr
O4゜SO2,S■12などを用い開路電圧が約3vを
示す電池、あるいはCuO9CuS、B12Pb2O,
、Bi2O3などを正極活物質として用いた開路電圧が
約1.6Vを示す電池が実用化されている。
Currently, (CF)n1Mn02. Aq2Cr
Batteries with an open circuit voltage of approximately 3 V using O4゜SO2, S■12, etc., or CuO9CuS, B12Pb2O,
, Bi2O3, etc., as a positive electrode active material and have an open circuit voltage of about 1.6V, which has been put into practical use.

一般に、この型の電池は一次電池であり、こうした高エ
ネルギー密度の電池を二次電池とすることが期待されて
いるが、実用化には多くの問題があり、それを解決する
だめの研究が盛んに行なわれて来た。この種二次電池の
開発に当っての大きな問題は負極材料の選択である。負
極活物質とし3 ・\− では従来リチウムが用いられてきたが、充電時における
リチウムの樹枝状析出が原因となり、充放電サイクル寿
命の低下を引き起こしていた。
Generally, this type of battery is a primary battery, and it is expected that these high-energy density batteries can be used as secondary batteries, but there are many problems in practical application, and research is needed to solve them. It has been widely practiced. A major problem in developing this type of secondary battery is the selection of negative electrode material. Lithium has conventionally been used as the negative electrode active material, but dendritic precipitation of lithium during charging has caused a reduction in charge-discharge cycle life.

この解決策として負極にAI 、Au 、 Cd 、M
g 、 Pd。
As a solution to this problem, the negative electrode is made of AI, Au, Cd, M.
g, Pd.

Pt、Sn、Zn、Siなどの金属にリチウムを挿入し
たリチウム合金が用いられているが、充電時に有機電解
液の分解に伴なうガス発生を生じ、その結果電池の液漏
れ、破裂、サイクル寿命の低下などの問題を有していた
。最近、タングステン、チタンなどの遷移金属酸化物と
リチウムとのトポ化学反応を利用した負極が考えられて
いる。これらの酸化物は元来電導性が低いため、該酸化
物にカーボンなどの電導性粉末とバインダーとしてフン
素樹脂粉末を混合し該合材を加圧プレスして負極として
いた。その結果、充電時に電極に含まれるカーボン上で
有機電解液の分解に伴なうガス発生を生じ〔たとえば 
熊谷、丹野゛電気化学′”49゜599(1981)]
 前述と同様の問題を引き起こしていた。
Lithium alloys, in which lithium is inserted into metals such as Pt, Sn, Zn, and Si, are used, but gas generation occurs due to the decomposition of the organic electrolyte during charging, resulting in battery leakage, rupture, and cycling. It had problems such as shortened lifespan. Recently, negative electrodes that utilize a topochemical reaction between oxides of transition metals such as tungsten and titanium and lithium have been considered. Since these oxides originally have low conductivity, the oxides were mixed with conductive powder such as carbon and fluorine resin powder as a binder, and the mixture was pressed under pressure to form a negative electrode. As a result, gas is generated due to the decomposition of the organic electrolyte on the carbon contained in the electrode during charging [e.g.
Kumagai, Tanno "Electrochemistry'" 49°599 (1981)]
It was causing the same problem as mentioned above.

発明の目的 本発明は、サイクル寿命に優れガス発生を抑制し、液漏
れや破裂のない電池を提供するものである0 発明の構成 本発明はこれらの遷移金属酸化物を力〜ボンなどのガス
発生させる材料を含捷ないようにして負極として用いる
ものであり、それぞれの金属表面上に陽極酸化膜を作成
し、たとえば酸化タングステンについては、タングステ
ン板を空気中で酸化して生成させた被膜も同様にガス発
生のない負極として用いるものである。
Purpose of the Invention The present invention provides a battery that has excellent cycle life, suppresses gas generation, and does not leak or explode. It is used as a negative electrode without containing the material generated, and an anodic oxide film is created on the surface of each metal. For example, for tungsten oxide, a film created by oxidizing a tungsten plate in the air is also used. Similarly, it is used as a negative electrode that does not generate gas.

実施例の説明 本発明は酸化タングステン、酸化クンタル、酸化チタン
のうち少なくとも1つ以上の酸化物を負極母体として用
いることを特徴とする。これらの遷移金属酸化物は、そ
れぞれの金属を電気化学的に陽極酸化して得られる被膜
である。また酸化タングステンを母体とした負極につい
ては、タングステンを空気中で酸化して得られる被膜も
用いられることが出来る。
DESCRIPTION OF EMBODIMENTS The present invention is characterized in that an oxide of at least one of tungsten oxide, quintal oxide, and titanium oxide is used as a negative electrode matrix. These transition metal oxides are films obtained by electrochemically anodizing the respective metals. Further, for a negative electrode using tungsten oxide as a base material, a film obtained by oxidizing tungsten in air can also be used.

 1一 本発明によれば電池の充放電時において有機電解液を分
解したりガス発生させたりすることのないサイクル寿命
にすぐれた電池を提供することが出来るものである。
11 According to the present invention, it is possible to provide a battery with excellent cycle life that does not decompose the organic electrolyte or generate gas during charging and discharging of the battery.

〔実施例1〕 図は本発明の一実施例の電池を示している。1は正極側
ケース、3は比表面積が300m2/yのグラファイト
カーボンとフッ素樹脂を1:1の重量比で混合し、ハイ
クロムステンレス集電体2上に加圧成型した正極である
。4は有機電解液(1M L ICIO4を含む炭酸プ
ロピレン溶液)を含浸したポリエチレン不織布からなる
セパレータであり、6は負極でタングステン板上に電解
酸化法により陽極酸化膜(酸化タングステン)6を形成
し、これにLiをインターカレートしたものを用いた。
[Example 1] The figure shows a battery according to an example of the present invention. 1 is a positive electrode side case, and 3 is a positive electrode prepared by mixing graphite carbon with a specific surface area of 300 m2/y and fluororesin at a weight ratio of 1:1 and press-molding the mixture on a high chrome stainless steel current collector 2. 4 is a separator made of polyethylene nonwoven fabric impregnated with an organic electrolyte (a propylene carbonate solution containing 1M L ICIO4), 6 is a negative electrode, and an anodic oxide film (tungsten oxide) 6 is formed on a tungsten plate by electrolytic oxidation, This was intercalated with Li.

陽極酸化膜はタングステン板を3Mの硫酸水溶液中で白
金対極に対し75Vの直流電圧を10分印加することで
作成した。作成した電極は蒸溜水でよく洗浄し、乾燥後
有機電解液中でリチウム(Ll)と短絡し1週間放置し
てLiをインターカレート6 A−′ させた。このとき表面は濃青色となり、リチウムタンク
ステンブロンズが形成されていることが確認できた。こ
の負極を電解液から取9出し、前述の正極、セパレータ
と組合わせて、負極側ケース8に収めガスケット7を介
して封口し電池を構成した。
The anodic oxide film was created by applying a DC voltage of 75 V to a platinum counter electrode for 10 minutes on a tungsten plate in a 3M sulfuric acid aqueous solution. The prepared electrode was thoroughly washed with distilled water, dried, and then short-circuited with lithium (Ll) in an organic electrolyte and left for one week to intercalate 6 A-' of Li. At this time, the surface turned dark blue, and it was confirmed that lithium tank stainless bronze had been formed. This negative electrode was removed from the electrolytic solution, combined with the above-described positive electrode and separator, and placed in a negative electrode case 8 and sealed with a gasket 7 to form a battery.

〔比較例〕[Comparative example]

比較のため次に示す従来例を作成した。 The following conventional example was created for comparison.

負極として酸化タングステン粉末とグラファイトを1=
1の重量比で混合して、集電体上に加圧成型し、これを
有機電解液中で1週間Li金属と短絡させ、Liをイン
ターカレートさせた。このとき負極上からは多量のガス
が発生した。それ以外は実施例1と同様の構成で電池を
構成した。
1 = tungsten oxide powder and graphite as negative electrode
The mixture was mixed at a weight ratio of 1:1, pressure-molded onto a current collector, and short-circuited with Li metal in an organic electrolyte for one week to intercalate Li. At this time, a large amount of gas was generated from above the negative electrode. Other than that, the battery was configured in the same manner as in Example 1.

〔実施例2〕 負極としてタンタル板上に陽極酸化膜(酸化タンタル)
を形成し、該酸化膜に実施例1同様Liをインターカレ
ートさせたものを用いた以外は実施例1と同様にして電
池を構成した。
[Example 2] Anodized film (tantalum oxide) on a tantalum plate as a negative electrode
A battery was constructed in the same manner as in Example 1, except that the oxide film was intercalated with Li as in Example 1.

〔実施例3〕 了 へ− 負極としてチタン板上に陽極酸化膜(酸化チタン)を形
成し、Liをインターカレートさせたものを用いた以外
は実施例1と同様にして電池を構成した。
[Example 3] A battery was constructed in the same manner as in Example 1, except that an anodic oxide film (titanium oxide) was formed on a titanium plate as a negative electrode and an intercalated Li was used.

〔実施例4〕 負極としてタングステン板を空気中酸化して生成させた
被膜にLiをインターカレートさせたものを用いた以外
は実施例1と同様にして電池を構成した。負極はタング
ステン板を750″Cで3゜分間空気中酸化することで
タングステン板表面上に酸化物被膜を形成させ、形成し
た酸化物被膜の片側を負極ケースと電気的接触を得るた
め一部を剥離し、さらに、これを有機電解液中でLiと
短絡し1週間放置してLiをインターカレートさせ電池
負極を構成した。
[Example 4] A battery was constructed in the same manner as in Example 1, except that a film obtained by oxidizing a tungsten plate in air and intercalating Li was used as the negative electrode. The negative electrode is made by oxidizing the tungsten plate in air at 750"C for 3 minutes to form an oxide film on the surface of the tungsten plate. One side of the formed oxide film is partially oxidized to make electrical contact with the negative electrode case. It was peeled off, and further, this was short-circuited with Li in an organic electrolyte and left for one week to intercalate Li to form a battery negative electrode.

〔実施例6〕 有機電解液としてI M L I CI O4を含むガ
ンマブチロラクトンを用いた以外は実施例1と同様にし
て電池を構成した。
[Example 6] A battery was constructed in the same manner as in Example 1 except that gamma-butyrolactone containing IMLICIO4 was used as the organic electrolyte.

〔実施例6〕 正極に用いるカーボン材料として比表面積が1000〜
1500m2/yのファーネスカーボンを用いた以外は
実施例1と同様にして電池を構成した。
[Example 6] Carbon material used for the positive electrode has a specific surface area of 1000~
A battery was constructed in the same manner as in Example 1 except that 1500 m2/y of furnace carbon was used.

表は比較例及び実施例1〜6の電池について、開路電圧
、放電容量、 10 /IA/7の電流密度、76係の
放電深度で充放電をくり返した場合の容量低下度合、液
漏れ・破裂の有無を示したものである。
The table shows the open circuit voltage, discharge capacity, current density of 10/IA/7, degree of capacity decrease when repeatedly charged and discharged at depth of discharge of 76, and leakage/rupture for the batteries of Comparative Examples and Examples 1 to 6. This shows the presence or absence of.

表:比較例及び実施例1〜6の電池の性能9 ゝ− 表より明らかなように比較例の電池は充放電のくり返し
により、60サイクル後の容量低下が80チと著しく、
このときガスケットからは液漏れが見られたのに対して
、実施例1〜6の電池は充放電のくり返しによる容量低
下はきわめて少なく、液漏れ・破裂等の損傷も見られず
、優れた性能を有することが判明した。
Table: Performance of the batteries of Comparative Examples and Examples 1 to 6 9 - As is clear from the table, due to repeated charging and discharging, the capacity of the batteries of Comparative Examples decreased significantly by 80 cm after 60 cycles.
At this time, liquid leakage was observed from the gasket, whereas the batteries of Examples 1 to 6 showed very little loss of capacity due to repeated charging and discharging, and no damage such as liquid leakage or bursting was observed, indicating excellent performance. It was found that the

発明の効果 以上のように本発明によれば優れたサイクル寿命を有し
、液漏れや破裂のない商品価値の高い電池を提供するこ
とが出来る。
Effects of the Invention As described above, according to the present invention, it is possible to provide a battery having an excellent cycle life and having high commercial value without leakage or rupture.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の電池の断面図である03・・・
・・・カーボン正極、6・・・・・・負極金属、6・・
・・・負極金属酸化物、4・・・・・・有機電解液を含
む七ノくレータ〇
The figure is a cross-sectional view of a battery according to an embodiment of the present invention.
...Carbon positive electrode, 6...Negative electrode metal, 6...
... Negative metal oxide, 4... Nanakurator containing organic electrolyte 〇

Claims (1)

【特許請求の範囲】 (1)負極とカーボンからなる正極と有機電解液を構成
要素とし、前記負極として酸化タングステン。 酸化タンタル、酸化チタンから選ばれる少なくとも1つ
を電極母体として用いることを特徴とする電池。 ?)酸化タングステン、酸化タンタル、酸化チタンが、
それぞれタングステン、タンタル、チタンの陽極酸化膜
であることを特徴とする特許請求の範囲第1項記載の電
池。 (3)酸化タングステンが、タングステン板を空気中酸
化して生成させた被膜であることを特徴とする特許請求
の範囲第1項記載の電池。 (4)有機電解液が、支持電解質として過塩素酸リチウ
ムを用い、有機溶媒として炭酸プロピレン。 ガンマブチロラクトンの少なくとも1つを用いたことを
特徴とする特許請求の範囲第1項、第2項2 ・・ ′ または第3項記載の電池。
[Claims] (1) The constituent elements are a negative electrode, a positive electrode made of carbon, and an organic electrolyte, and the negative electrode is tungsten oxide. A battery characterized in that at least one selected from tantalum oxide and titanium oxide is used as an electrode matrix. ? ) Tungsten oxide, tantalum oxide, titanium oxide,
2. The battery according to claim 1, wherein the anodic oxide films are tungsten, tantalum, and titanium, respectively. (3) The battery according to claim 1, wherein the tungsten oxide is a film produced by oxidizing a tungsten plate in the air. (4) The organic electrolyte uses lithium perchlorate as the supporting electrolyte and propylene carbonate as the organic solvent. The battery according to claim 1, 2, 2', or 3, characterized in that at least one of gamma-butyrolactone is used.
JP59105272A 1984-05-24 1984-05-24 Battery Granted JPS60249247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59105272A JPS60249247A (en) 1984-05-24 1984-05-24 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59105272A JPS60249247A (en) 1984-05-24 1984-05-24 Battery

Publications (2)

Publication Number Publication Date
JPS60249247A true JPS60249247A (en) 1985-12-09
JPH028420B2 JPH028420B2 (en) 1990-02-23

Family

ID=14403027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59105272A Granted JPS60249247A (en) 1984-05-24 1984-05-24 Battery

Country Status (1)

Country Link
JP (1) JPS60249247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077544A (en) * 2001-09-06 2003-03-14 Yuasa Corp Secondary battery
JP2006093037A (en) * 2004-09-27 2006-04-06 Nippon Oil Corp Lithium secondary battery
US8724293B2 (en) 2006-10-20 2014-05-13 Ishihara Sangyo Kaisha, Ltd. Storage device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194638A (en) * 1993-12-29 1995-08-01 Hagiya New Techno:Kk Snore suppressor
JP5399623B2 (en) * 2006-10-20 2014-01-29 石原産業株式会社 Power storage device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212773A (en) * 1981-06-24 1982-12-27 Sanyo Electric Co Ltd Rechargeable lithium battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212773A (en) * 1981-06-24 1982-12-27 Sanyo Electric Co Ltd Rechargeable lithium battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077544A (en) * 2001-09-06 2003-03-14 Yuasa Corp Secondary battery
JP4496688B2 (en) * 2001-09-06 2010-07-07 株式会社ジーエス・ユアサコーポレーション Secondary battery
JP2006093037A (en) * 2004-09-27 2006-04-06 Nippon Oil Corp Lithium secondary battery
US8724293B2 (en) 2006-10-20 2014-05-13 Ishihara Sangyo Kaisha, Ltd. Storage device

Also Published As

Publication number Publication date
JPH028420B2 (en) 1990-02-23

Similar Documents

Publication Publication Date Title
US3767466A (en) Electrode structure and battery
JPS61263069A (en) Battery
US4060676A (en) Metal periodate organic electrolyte cells
JPH1131534A (en) Nonaqueous electrolyte secondary battery, and manufacture of electrode plate used for the nonaqueous electrolyte secondary battery
US4016338A (en) Galvanic element
JPS60249247A (en) Battery
US3904432A (en) Metal permanganate and metal periodate organic electrolyte cells
JPS638588B2 (en)
CN113540396A (en) Manganese ion battery
JP2000040499A (en) Nonaqueous electrolyte secondary battery
RU2303841C1 (en) Storage battery and its operating process
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPH11195410A (en) Lithium secondary battery
JPH0355770A (en) Lithium secondary battery
JPS60170172A (en) Rechargeable electrochemical device
JPS59146157A (en) Nonaqueous electrolyte secondary cell
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
JP2562651B2 (en) Non-aqueous electrolyte secondary battery
JPH08185887A (en) Totally solid lithium battery
JP2598919B2 (en) Non-aqueous electrolyte secondary battery
JPS6151749A (en) Nonaqueous electrolyte battery
JPS5920968A (en) Nonaqueous battery
JPH1197005A (en) Alkaline manganese dry battery
JPH0234433B2 (en)