JPS6161376A - Rechargeable electrochemical device - Google Patents

Rechargeable electrochemical device

Info

Publication number
JPS6161376A
JPS6161376A JP59181355A JP18135584A JPS6161376A JP S6161376 A JPS6161376 A JP S6161376A JP 59181355 A JP59181355 A JP 59181355A JP 18135584 A JP18135584 A JP 18135584A JP S6161376 A JPS6161376 A JP S6161376A
Authority
JP
Japan
Prior art keywords
alloy
negative electrode
lead
weight
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59181355A
Other languages
Japanese (ja)
Other versions
JPH0626137B2 (en
Inventor
Yoshinori Toyoguchi
▲吉▼徳 豊口
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59181355A priority Critical patent/JPH0626137B2/en
Publication of JPS6161376A publication Critical patent/JPS6161376A/en
Publication of JPH0626137B2 publication Critical patent/JPH0626137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an alloy negative electrode having good cycle life in overdischarge by using an alloy selected from a group comprising a specified wt% of bismuth, cadmium, tin, and lead as a negative electrode. CONSTITUTION:In a rechargeable electrochemical device having a negative electrode comprising an alloy which reversibly absorbs and desorbs alkali metal ion, a negative electrode alloy is selected from a group comprising 20-75wt% bismuth, 15-80wt% cadmium, an the balance tin and lead. The alloy comprising a specified composition of tin, lead, bismuth, and cadmium is melted, and a nickel expanded metal current collector is immersed in the melted alloy, then taken out, and dried. The current collector is rolled to the thickness of 0.2mm, and a part of expanded metal is exposed and a lead 6 comprising nickel ribbon is welded thereon. Thereby, an alloy negative electrode having good cycle life in overdischarge is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質を用いる二次電池などの再充電可
能な電気化学装置、特に、その負極の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to rechargeable electrochemical devices such as secondary batteries using non-aqueous electrolytes, and in particular to improvements in their negative electrodes.

従来例め構成とその問題点 従来より、リチウムなどのアルカリ金属を負極“に用い
る種々の二次電池が研究されて来たが、負極を充電する
際に発生するデンドライトの問題があった。この課題を
解決するために、本発明者らは、ビスマス、スズ、鉛、
カドミウムなどの合金を負極に使用することを提案した
Conventional configurations and their problems Various secondary batteries that use alkali metals such as lithium as negative electrodes have been researched in the past, but there was a problem with dendrites that occur when charging the negative electrode. In order to solve the problem, the present inventors developed bismuth, tin, lead,
They proposed using alloys such as cadmium for the negative electrode.

これらの合金を負極に用いることにより、充電時には、
電解質中のリチウムイオンをデンドライトを発生させる
ことなく吸蔵できる。これは、合金中の、スズ、鉛2ビ
スマスとリチウムとの間の金属間化合物の生成によるも
のである。さらに、この負極を放電すると、スズ、鉛、
ビヒマストリチウムの金属間化合物より、リチウムがリ
チウムイオンとして電解質中に放出される。以上の機構
により充放電を行うことができるのである。
By using these alloys for the negative electrode, during charging,
Lithium ions in the electrolyte can be occluded without generating dendrites. This is due to the formation of intermetallic compounds between tin, lead 2 bismuth and lithium in the alloy. Furthermore, when this negative electrode is discharged, tin, lead,
Lithium is released into the electrolyte as lithium ions from the intermetallic compound of bihimastrilithium. Charging and discharging can be performed by the above mechanism.

合金中のカドミウムは、合金がリチウムを吸蔵する際の
負極の微粉化を防ぐ結着剤の役割を果たしている。すな
わち、スズ、鉛、ビスマスなどの単体金属や合金は、リ
チウムを吸蔵して金属間化合物を作る際に微粉化してし
まい、負極の形状を保てなくなるが、カドミウムを含ん
だ合金を用いることによって、負極の形状を保持するこ
とができる。
Cadmium in the alloy acts as a binder to prevent the negative electrode from becoming pulverized when the alloy absorbs lithium. In other words, single metals and alloys such as tin, lead, and bismuth become pulverized when they absorb lithium and create intermetallic compounds, making it impossible to maintain the shape of the negative electrode, but by using an alloy containing cadmium, , the shape of the negative electrode can be maintained.

きる。Wear.

しかし、以上のようなカドミウムを含んだスズ。However, tin containing cadmium as mentioned above.

鉛、ビスマスの合金を用いた場合にも、充電に伴う負極
の微粉化を防ぐことはできるが、過放電を行うと、負極
のサイクル特性が低下するという問題が生じた。特に二
次電池を構成する際に、正極の電気容量より、負極の電
気容量を小さくする場合には、負極は常に過放電状態と
なる。負極の電気容量の方を小さくする理由としては、
正極の導電剤に使用する炭素材料が、卑な電位領域で電
解質に使用している溶媒の分解に触媒作用を有している
ため、正極の電位があまり卑な状態にならないようにす
る必要があるためである。
Even when an alloy of lead and bismuth is used, it is possible to prevent the negative electrode from becoming pulverized during charging, but there is a problem in that the cycle characteristics of the negative electrode deteriorate when overdischarged. In particular, when constructing a secondary battery, when the capacitance of the negative electrode is made smaller than the capacitance of the positive electrode, the negative electrode is always in an overdischarge state. The reason for reducing the capacitance of the negative electrode is as follows:
Since the carbon material used as the conductive agent in the positive electrode has a catalytic effect on the decomposition of the solvent used in the electrolyte in a base potential range, it is necessary to prevent the potential of the positive electrode from becoming too base. This is because there is.

発明の目的 本発明の目的は、再充電可能な電気化学装置の負極とし
て、過放電に対して良好なサイクル寿命を示す優れた合
金負極を提供することである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a superior alloy negative electrode that exhibits good cycle life against over-discharge as a negative electrode for rechargeable electrochemical devices.

発明の構成 本発明は、充放電によシ可逆的にアルカリ金属イオンを
吸蔵・放出する合金からなる負極を備えた再充電可能な
電気化学装置において、前記合金が、20重量%を超え
75重量%未滴のビスマス、15〜80重量%のカドミ
ウム、残部がスズ及び鉛よりなる群から選んだ少なくと
も1種からなるものである。
Structure of the Invention The present invention provides a rechargeable electrochemical device including a negative electrode made of an alloy that reversibly occludes and releases alkali metal ions upon charging and discharging, wherein the alloy is more than 20% by weight and 75% by weight. % undropped bismuth, 15 to 80% by weight of cadmium, and the balance is at least one member selected from the group consisting of tin and lead.

実施例の説明 まず、負極の製法を説明すると、所定の組成になるよう
に、スズ、鉛、ビスマス、カドミウムよりなる合金を溶
融し、その中に集電体としてのニッケルエキスバンドメ
タルを浸漬し、引き上げて冷却し、その後0.2flの
厚さに圧延した。ニッケルエキスバンドメタルの一部を
露出させ、これにリードとしてのニッケルリボンをスポ
ット溶接した後、大きさ1cIItXIGIに切り出し
、負極の試験極とした。
Explanation of Examples First, to explain the method for manufacturing the negative electrode, an alloy consisting of tin, lead, bismuth, and cadmium is melted to have a predetermined composition, and a nickel extracted band metal as a current collector is immersed in the melt. , pulled up, cooled, and then rolled to a thickness of 0.2 fl. A part of the nickel expanded band metal was exposed, and a nickel ribbon as a lead was spot-welded thereto, and then cut into a size of 1cIItXIGI, which was used as a negative test electrode.

正極活物質としては、充放電に対して、可逆性を有する
ものであれば良い。本実施例では、MoO。
The positive electrode active material may be any material as long as it has reversibility with respect to charging and discharging. In this example, MoO.

を用いた。MOo、100重量部、導電剤としてのアセ
チレンブラック20重量部及び結着剤としての四7ツ化
エチレン樹脂15重量部よりなる合剤を大きさ10×1
α、厚さく34311にプレス成形した。なお、集電体
にはチタンのエキスバンドメタルを用い、集電体を埋め
込むように合剤を成形した。チタンエキスバンドメタル
の一部を露出させて、リードとしてのチタンリボンをス
ポット溶接した。その後真空乾燥を行い、1モル/βの
LiCl0a ヲs解したプロピレンカーボネート中で
30 mAhカソード方向に通電したものを正極として
用いた。
was used. A mixture consisting of 100 parts by weight of MOo, 20 parts by weight of acetylene black as a conductive agent, and 15 parts by weight of tetra7ethylene resin as a binder was prepared in a size 10×1.
α, press molded to a thickness of 34311 mm. Note that titanium expanded metal was used as the current collector, and the mixture was molded so as to embed the current collector. A part of the titanium extracted band metal was exposed and a titanium ribbon as a lead was spot welded. Thereafter, vacuum drying was performed, and a 30 mAh current was applied in the cathode direction in propylene carbonate in which 1 mol/β of LiCl0a had been dissolved and used as a positive electrode.

上記の電極を用いて第1図に示すようなセルを構成し、
負極の特性を調べた。図において、1は試験用負極、2
は正極、3は試験極の電位を測定するだめのリチウム照
合電極、4はニッケルリード、6はチタンリード、6は
ニッケルリボンよりなるリード、7は1モル/4のLi
CIO4を溶解したプロピレンカーボネートよりなる非
水電解質、8は液絡橋である。
Construct a cell as shown in Figure 1 using the above electrodes,
The characteristics of the negative electrode were investigated. In the figure, 1 is the test negative electrode, 2
is a positive electrode, 3 is a lithium reference electrode for measuring the potential of the test electrode, 4 is a nickel lead, 6 is a titanium lead, 6 is a lead made of nickel ribbon, 7 is 1 mol/4 Li
A nonaqueous electrolyte made of propylene carbonate in which CIO4 is dissolved, and 8 is a liquid junction bridge.

試験極のサイクル特性の測定は次のようにして行った。The cycle characteristics of the test electrode were measured as follows.

まず、各種の合金よりなる試験極1の電で1m人の定電
流でカンード方向に充電した。この条件では試験極上に
リチウムは析出せず、合金中に吸蔵される。その後、照
合電極3に対して2Vになるまでアノード方向に放電し
、その後充放電をくり返した。  。
First, the test electrode 1 made of various alloys was charged with a constant current of 1 m in the direction of the cand. Under these conditions, lithium does not precipitate on the test electrode, but is occluded in the alloy. Thereafter, the battery was discharged toward the anode until the voltage reached 2V with respect to the reference electrode 3, and then charging and discharging were repeated. .

実施例1 ビスマス(Bi)、鉛(pb)、カドミウム(Cd)よ
シなる合金について、負極としてのサイクル特性を検討
した。
Example 1 The cycle characteristics of alloys such as bismuth (Bi), lead (pb), and cadmium (Cd) as negative electrodes were investigated.

第2図は、次表に示す各種合金を用いた時の充放電サイ
クルに伴う放電電気量の変化を示す。
FIG. 2 shows changes in the amount of discharged electricity during charge and discharge cycles when using the various alloys shown in the following table.

第2図より、合金人が優れていることがわかる。From Figure 2, it can be seen that Alloy Man is superior.

人とBは、B1とpbの比をほぼ等しくし、Cd含量を
異ならせた関係にあるが、Cd含量の少な蒔 いBではサイクル特性が悪い。これは充電ζ電極の微粉
化が起こシやすいためである。
People and B have a relationship in which the ratio of B1 and Pb is approximately equal and the Cd content is different, but sowing B with a low Cd content has poor cycle characteristics. This is because the charging ζ electrode is likely to become pulverized.

また、Cd含量を同じにした人とCを比較すると、゛B
i含量の多い人の方がサイクル特性は良好である。この
ことは、Cと比較するとさらによくわかる。しかしなが
ら、人とDの比較から明らかなように、単にBtが多い
方がサイクル特性が良行好になるのではないことがわか
る。
In addition, when comparing C with people with the same Cd content, ゛B
People with higher i content have better cycle characteristics. This becomes even clearer when compared with C. However, as is clear from the comparison between humans and D, it is clear that simply having more Bt does not result in better cycle characteristics.

そこで、各合金のサイクル特性を評価するために第3サ
イクル目の放電容量を基準にとシ、その半分の放電容量
になるまでのサイクル数をサイクル特性として検討した
。第3図には、Cd量を一定とし、横軸にBi量をとっ
たときのサイクル特性を示している。第3図よシ、Ca
は15重量%以上、Biが20重量%を超え70重量%
未満の組成の時に良好なサイ、クル特性が得られること
がわかる。また図の曲線が中央付近で凸状になっている
ことによシ、サイクル特性に対して、合金中のBiとp
bの間に何らかの相互作用があると思われる。
Therefore, in order to evaluate the cycle characteristics of each alloy, the discharge capacity at the third cycle was used as a reference, and the number of cycles until the discharge capacity reached half of that was considered as the cycle characteristics. FIG. 3 shows the cycle characteristics when the amount of Cd is constant and the amount of Bi is plotted on the horizontal axis. Figure 3, Ca
is 15% by weight or more, Bi is more than 20% by weight and 70% by weight
It can be seen that good cycle characteristics can be obtained when the composition is less than 10%. Also, since the curve in the figure is convex near the center, the cycle characteristics are affected by Bi and P in the alloy.
It seems that there is some kind of interaction between b.

CaO量については、先に述べたように、15重量%未
満のときには、充電中に負極の微粉化が一部起こシ始め
ることより、少なくとも15重量%が必要である。しか
し、結着剤として働(CaO量を大きくすると、実用的
な放電電気量を得ることができない。この点からCdの
適切な上限値は80重量%であり、これを超えると、放
電容量にかかわるPb、Biの量が少なくなる。
Regarding the amount of CaO, as mentioned above, if it is less than 15% by weight, part of the negative electrode starts to be pulverized during charging, so at least 15% by weight is required. However, if the amount of CaO is increased, a practical amount of discharge electricity cannot be obtained.From this point of view, the appropriate upper limit for Cd is 80% by weight, and if it exceeds this, the discharge capacity will decrease. The amounts of Pb and Bi involved are reduced.

次に、pbの量については、1重量%程度の添加でサイ
クル特性を改善することができる。すなわち、第3図に
おいて、各曲線の右端はCd−B1合金の特性を示して
おυ、これにpbを添加することは各曲線をBi量量減
力方向たどることであり、わずかのpbの添加でサイク
ル特性が向上することがわかる。
Next, regarding the amount of Pb, the cycle characteristics can be improved by adding about 1% by weight. That is, in Fig. 3, the right end of each curve shows the characteristics of the Cd-B1 alloy υ, and adding PB to this means tracing each curve in the direction of Bi amount reduction, and a small amount of PB. It can be seen that the addition improves cycle characteristics.

以上よシ、Pb−B1−Cd合金テは、Cdは15重量
%以上、Biは2o重量%を超え75重量%未満の場合
にサイクル特性は良好となる。
In conclusion, the Pb-B1-Cd alloy has good cycle characteristics when Cd is 15% by weight or more and Bi is more than 20% by weight and less than 75% by weight.

実施例2 pbのかわりにスズ(Sn)を用いた合金について、実
施例1と同様にして検討した。第4図は、第3図と同様
にCaO量を一定として、合金中のB1の量を変えた時
のサイクル特性を示した。
Example 2 An alloy using tin (Sn) instead of pb was studied in the same manner as in Example 1. FIG. 4, like FIG. 3, shows the cycle characteristics when the amount of B1 in the alloy was varied while keeping the amount of CaO constant.

この合金の場合にも、実施例1で述べたのと同様に、s
nとBiの相互作用によシ、Cdは15重量%以上、B
1は20重量%を超え75重量%未満の場合にサイクル
特性は良好となる。Sn。
In the case of this alloy as well, s
Due to the interaction between n and Bi, Cd is 15% by weight or more, B
When 1 is more than 20% by weight and less than 75% by weight, the cycle characteristics are good. Sn.

量については、pbの場合と同様サイクル特性は1重量
%程度の添加で改善できる。実用的な放電電気量を得る
にはQd量は80重量%以内にする必要がある。
Regarding the amount, the cycle characteristics can be improved by adding about 1% by weight, as in the case of pb. In order to obtain a practical amount of discharged electricity, the amount of Qd needs to be within 80% by weight.

実施例3 Sn−Pb−Bi−Cdの4太合金について実施例1と
同様の試験をした。この場合、各サイクルの充放電の電
気量は、実施例1や2に比べ大きくなった。そして、実
施例1,2と同様に、Qdは15重盆形以上、ビスマス
Biは2o重量%を超えて75重量%未満の場合に良好
であった。
Example 3 The same test as in Example 1 was conducted on a four-thick alloy of Sn-Pb-Bi-Cd. In this case, the amount of electricity for charging and discharging each cycle was larger than in Examples 1 and 2. As in Examples 1 and 2, good results were obtained when Qd was 15 double trays or more and bismuth Bi was more than 20% by weight and less than 75% by weight.

以上の結果は、正極にM2O3を用いた場合であるが、
Mob、以外にも、MnO□やTiS2、あるいはキャ
パシターなどに用いられている炭素材料など可逆性を有
する正極ならば適用可能である。また電解質としても、
実施例に示した以外に、溶質にLiBF4.LiAs7
5などのアルカリ金属塩、溶媒にγ−ブチロラクトン、
ジメトキシエタン、テトラヒドロ7ランなどの非プロト
ン性溶媒を用いた電解質でも有効である。
The above results are for the case where M2O3 is used as the positive electrode,
In addition to Mob, other reversible positive electrodes such as MnO□, TiS2, or carbon materials used in capacitors can be used. Also as an electrolyte,
In addition to those shown in the examples, LiBF4. LiAs7
5 and other alkali metal salts, γ-butyrolactone as a solvent,
Electrolytes using aprotic solvents such as dimethoxyethane and tetrahydro7ran are also effective.

発明の効果 以上のように、本発明によれば、過放電に対しても安定
なサイクル特性の電気化学装置を得ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain an electrochemical device with stable cycle characteristics even against overdischarge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いた試験用セルの構成を示す縦断面
略図、第2図は各種合金負極を過放電した場合の放電電
気量をサイクル数に対してプロットした図、第3図及び
第4図はそれぞれBi−Fb−Cd合金及びBニーS 
n−Cd合金においてCd含量を一定としてBiO含盆
を変えたときのサイクル特性を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 分食−fのBi會薫(宣!2)
Figure 1 is a schematic vertical cross-sectional view showing the configuration of the test cell used in the examples, Figure 2 is a diagram plotting the amount of discharged electricity against the number of cycles when various alloy negative electrodes are over-discharged, Figure 3 and Figure 4 shows Bi-Fb-Cd alloy and B knee S, respectively.
FIG. 3 is a diagram showing cycle characteristics when the BiO content is changed while keeping the Cd content constant in an n-Cd alloy. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3: Eclipse-f Bi Kaoru (Senior! 2)

Claims (1)

【特許請求の範囲】[Claims] アルカリ金属イオンを含む非水電解質と、可逆性正極と
、充放電により可逆的にアルカリ金属イオンを吸蔵・放
出する合金よりなる負極を備え、前記合金が、20重量
%を超え75重量%未満のビスマス、15〜80重量%
のカドミウム、残部がスズ及び鉛よりなる群から選んだ
少なくとも1種からなる再充電可能な電気化学装置。
A non-aqueous electrolyte containing alkali metal ions, a reversible positive electrode, and a negative electrode made of an alloy that reversibly occludes and releases alkali metal ions upon charging and discharging, wherein the alloy contains more than 20% by weight and less than 75% by weight. Bismuth, 15-80% by weight
cadmium, the balance being tin and lead.
JP59181355A 1984-08-30 1984-08-30 Rechargeable electrochemical device Expired - Lifetime JPH0626137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59181355A JPH0626137B2 (en) 1984-08-30 1984-08-30 Rechargeable electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59181355A JPH0626137B2 (en) 1984-08-30 1984-08-30 Rechargeable electrochemical device

Publications (2)

Publication Number Publication Date
JPS6161376A true JPS6161376A (en) 1986-03-29
JPH0626137B2 JPH0626137B2 (en) 1994-04-06

Family

ID=16099263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59181355A Expired - Lifetime JPH0626137B2 (en) 1984-08-30 1984-08-30 Rechargeable electrochemical device

Country Status (1)

Country Link
JP (1) JPH0626137B2 (en)

Also Published As

Publication number Publication date
JPH0626137B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
US4956247A (en) Nonaqueous electrolyte secondary cell
JPS63102173A (en) Lithium secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
US4844994A (en) Chargeable electrochemical device
JP3336672B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH01124969A (en) Lithium secondary battery
JP2621182B2 (en) Non-aqueous electrolyte lithium secondary battery
JPS6161376A (en) Rechargeable electrochemical device
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPS6158177A (en) Rechargeable electrochemical device
JPS62140358A (en) Nonaqueous electrolyte secondary cell
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JP2656305B2 (en) Organic electrolyte secondary battery
JPH0523016B2 (en)
JPH0412586B2 (en)
JPS63166166A (en) Lithium secondary cell
JPH02281572A (en) Electrolyte for lithium secondary battery
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JPS62123651A (en) Lithium secondary battery
JPH0773050B2 (en) Organic electrolyte secondary battery
JPS62290073A (en) Organic electrolyte secondary battery
JPS63228573A (en) Nonaqueous electrolytic lithium secondary cell
JPS6220248A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term