JPS62290073A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPS62290073A
JPS62290073A JP61133306A JP13330686A JPS62290073A JP S62290073 A JPS62290073 A JP S62290073A JP 61133306 A JP61133306 A JP 61133306A JP 13330686 A JP13330686 A JP 13330686A JP S62290073 A JPS62290073 A JP S62290073A
Authority
JP
Japan
Prior art keywords
butyrolactone
gamma
organic electrolyte
chlorine
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61133306A
Other languages
Japanese (ja)
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61133306A priority Critical patent/JPS62290073A/en
Publication of JPS62290073A publication Critical patent/JPS62290073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase current efficiency in charge-discharge of a negative electrode and cycle life of a battery by using gamma-butyrolactone whose hydrogen in third or fourth position is snbstituted with chlorine or fluorine as a solvent of organic electrolyte. CONSTITUTION:gamma-butyrolactone whose hydrogen in third or fourth position is substituted with chlorine or fluorine is used as a solvent of organic electrolyte. When gamma-butyrolactone(BL) is used as a solvent, by substituting hydrogen in the C position with chlorine or fluorine, C-O bond is difficult to break because of strong electron attraction and current efficiency is increased. For example, 3-chloro-gamma-butyrolactone obtained by substituting hydrogen in third position with chlorine has structural formation shown in the formula I, 4-chloro-gamma- butyrolactone is shown in the formula ll, and 3-chloro-4 fluoro-gamma-butyrolactone is shown in the formula III.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、負極にリチウムなどを用いた有機電解質二次
電池の改良に関するものであり、特に有機電解質の溶媒
を改良し、負極の充放電の電流効率を向上させるもので
ある。
[Detailed Description of the Invention] 3. Detailed Description of the Invention Industrial Field of Application The present invention relates to the improvement of organic electrolyte secondary batteries using lithium or the like in the negative electrode, and in particular to the improvement of organic electrolyte solvents. , which improves the current efficiency of charging and discharging the negative electrode.

従来の技術 リチウムなどのアルカリ金属を負極に用いた有機電解質
電池は、従来の鉛やニカド蓄電池に比べ、高エネルギー
密度になることが期待され、研究が活発に行われている
。その代表的な例として、負極にリチウム金属、正極に
二硫化チタン(TiS2)を用い、有機電解質の溶質と
して、過塩素酸リチウム(LiCjl104 ) ヤ、
ヘキサフロロアルシネート(LiAsF6)、溶媒にγ
−ブチロラクトン(BL )や2−メチルテトラヒドロ
フラン(2−Me −THF)を用いたものがある。
Conventional Technology Organic electrolyte batteries that use alkali metals such as lithium as negative electrodes are expected to have higher energy density than conventional lead or nickel-cadmium storage batteries, and are being actively researched. As a typical example, lithium metal is used as the negative electrode, titanium disulfide (TiS2) is used as the positive electrode, and lithium perchlorate (LiCjl104) is used as the solute of the organic electrolyte.
Hexafluoroarsinate (LiAsF6), γ in the solvent
-Butyrolactone (BL) and 2-methyltetrahydrofuran (2-Me-THF) are used.

発明が解決しようとする問題点 これらの電池では、負極の充放電の電流効率が60〜8
0%と低いために未だに実用化されていない。
Problems to be Solved by the Invention In these batteries, the current efficiency of charging and discharging the negative electrode is 60 to 8.
It has not been put into practical use yet because it is as low as 0%.

問題点を解決するための手段 本発明では、従来の有機電解質の溶媒に代えて、少なく
とも3または4の位置の水素を塩素またはフッ素で置換
したγ−ブチロラクトンを使用することを特徴とする。
Means for Solving the Problems The present invention is characterized by the use of γ-butyrolactone in which hydrogen at at least 3 or 4 positions is replaced with chlorine or fluorine, in place of the conventional organic electrolyte solvent.

作用 従来のプロピレンカーボネー)(PC)や2−Me−T
HF’i溶媒として用いた有機電解質中で負極リチウム
を充電すると、活性なリチウムのため、析出したリチウ
ムの一部が溶媒と反応して、3・・−・ リチウムの塩が生成する。例えばPC中では、次式のよ
うに 析出したリチウムが炭酸リチウムになることが報告され
ている。BLや2−Me −THFの場合にも、この溶
媒がリチウムと反応すると考えられる。
Action Conventional propylene carbonate) (PC) and 2-Me-T
When the negative electrode lithium is charged in the organic electrolyte used as the HF'i solvent, part of the precipitated lithium reacts with the solvent because it is active lithium, and a 3... lithium salt is generated. For example, it has been reported that in PC, the precipitated lithium becomes lithium carbonate as shown in the following formula. It is believed that this solvent also reacts with lithium in the case of BL and 2-Me-THF.

このため負極の電流効率(充電に要した電荷量に対する
放電可能な電荷量)は、60〜80チと低かった。
Therefore, the current efficiency of the negative electrode (the amount of charge that can be discharged relative to the amount of charge required for charging) was as low as 60 to 80 inches.

本発明者は、BLの場合にもC−00結合がLiとの反
応により切れると考えて、このCの位置の水素を、塩素
またはフッ素で置換することにより、これらの強い電子
吸引性のため、C−Oの結合は切れにくくなり、これに
より電流効率は向上するものと考えた。例えば、3の位
置を塩素で置換した3−クロロ−γ−ブチロラクトンは
(1)式のような構造となる。
The inventor thought that the C-00 bond would be broken by the reaction with Li in the case of BL as well, and by replacing the hydrogen at the C position with chlorine or fluorine, the strong electron-withdrawing properties of these , the C--O bond becomes difficult to break, which is thought to improve current efficiency. For example, 3-chloro-γ-butyrolactone in which position 3 is substituted with chlorine has a structure as shown in formula (1).

scH20,、(1) 同様に4−クロロ−γ−ブチロラクトンの構造ヲ(a)
式K、i fv:、 3−りc+ロー470ローγ−ブ
チロラクトンの構造ヲ(3)式に示す。
scH20,, (1) Similarly, the structure of 4-chloro-γ-butyrolactone (a)
Formula K, ifv:, 3-ri c + rho 470 rho The structure of γ-butyrolactone is shown in formula (3).

GHCjl −OH,。GHCjl -OH,.

CH20(2) \ C1 CH−〇HCJJ I    I       (3) CH20 \。1 実施例 次に本発明の詳細な説明する。CH20 (2) \ C1 CH-〇HCJJ I (3) CH20 \. 1 Example Next, the present invention will be explained in detail.

実施例1 ビーカー形セル中で負極リチウムの電流効率を検討した
。大きさ2cmX2cmのニッケル板を負極の集電体と
し、これにリードとしてニッケルリボンを付けた。対極
には白金を用いた。照合電極にはリチウムを用いた。こ
のセル中に各種有機電解質を入れ、4mAで2時間充電
したのち、4mAで負極の電位が照合電極に対して1.
OV Kなるまで放電し、こうして充放電をくり返した
。電流効率は、充電した電荷量に対する放電できた電荷
量で計算した。例えば放電が、1.5時間であるならば
、(1,5hrX 4mA )/ (2hrX 4mA
 )X100=76i%となる。この充放電を50サイ
クルくり返して、平均の電流効率を求めた。この値が大
きい程、析出したリチウムは溶媒と反応していないこと
になる。溶質は全て濃度0.1モル/lのLi(JO4
’を用いた。結果を表に示す。
Example 1 The current efficiency of negative electrode lithium was investigated in a beaker-type cell. A nickel plate measuring 2 cm x 2 cm was used as a negative electrode current collector, and a nickel ribbon was attached as a lead to this. Platinum was used as the counter electrode. Lithium was used as the reference electrode. Various organic electrolytes were placed in this cell, and after charging at 4 mA for 2 hours, the potential of the negative electrode at 4 mA was 1.5 m with respect to the reference electrode.
The battery was discharged until OV K, and charging and discharging were repeated in this manner. Current efficiency was calculated based on the amount of charge that was discharged relative to the amount of charge that was charged. For example, if the discharge is 1.5 hours, (1.5hrX 4mA)/(2hrX 4mA
)X100=76i%. This charge/discharge cycle was repeated 50 times to determine the average current efficiency. The larger this value is, the less the precipitated lithium has reacted with the solvent. All solutes were Li(JO4) at a concentration of 0.1 mol/l.
' was used. The results are shown in the table.

6へ−7 カお表中、本発明の溶媒の種類を次のように略式で示し
た。3の位置の水素を、塩素で置換したものは、3−ク
ロロ−γ−ブチロラクトンであるが、後のγ−ブチロラ
クトンを略し、3−クロロとした。同様に全て後のγ−
ブチロラクトンを略した。
6-7 In the table, the types of solvents used in the present invention are shown in the following abbreviations. 3-chloro-γ-butyrolactone is obtained by replacing hydrogen at position 3 with chlorine, but the latter γ-butyrolactone is abbreviated to 3-chloro. Similarly, all later γ−
Abbreviated for butyrolactone.

これより、少なくとも3または4の位置の水素7ノNノ を塩素、フッ素で置換することにより、充放電の電流効
率は増大することがわかる。また置換の度合は、3と4
の両方を塩素、フッ素で置換したものが良く、次に両方
をフッ化、塩化したものが良好であった。
From this, it can be seen that the current efficiency of charging and discharging is increased by replacing hydrogen at the 3rd or 4th position with chlorine or fluorine. Also, the degree of substitution is 3 and 4.
The best results were those in which both were replaced with chlorine and fluorine, and those in which both were fluorinated and chlorinated were found to be good.

実施例2 負極に直径17.61Wfi、厚さ0.5鼠の円板状リ
チウムを用いた。この時の理論充填容量は、247mA
hである。正極には、TiO21o0重量部に導電剤と
してのアセチレンブラック10重量部、結着剤としてポ
リ47フ化工チレン10重量部を加えた合剤0.4 g
 i直径17.5ffljXの円板状に圧縮成形したも
のを用いた。この時の理論充填容量は80 mAhであ
った。
Example 2 A lithium disk having a diameter of 17.61 Wfi and a thickness of 0.5 mm was used as a negative electrode. The theoretical filling capacity at this time is 247mA
It is h. For the positive electrode, 0.4 g of a mixture of 10 parts by weight of TiO2, 10 parts by weight of acetylene black as a conductive agent, and 10 parts by weight of poly 47-fluorinated ethylene as a binder was added.
A compression molded disc having a diameter of 17.5ffljX was used. The theoretical filling capacity at this time was 80 mAh.

これらの正極、負極より扁平形電池を試作した。A flat battery was prototyped from these positive and negative electrodes.

この電池の構造を第1図に示す。第1図において、1は
電池ケース、2は封口板、3は負極リチウム、4はセパ
レータ、5は正極、6はガスフットである。
The structure of this battery is shown in FIG. In FIG. 1, 1 is a battery case, 2 is a sealing plate, 3 is a negative electrode lithium, 4 is a separator, 5 is a positive electrode, and 6 is a gas foot.

この電池i2m人の定電流で充放電をくり返した。放電
は電池電圧が1.2vになる時点で、また充電は2.8
vになる時点で、それぞれ停止させた。
This battery was repeatedly charged and discharged at a constant current of 2 m. Discharging occurs when the battery voltage reaches 1.2V, and charging occurs when the battery voltage reaches 2.8V.
Each was stopped when reaching v.

有機電解質の溶質には1モル/7!のL工AsF6’?
:用いた。各電池の有機電解質量は全て200μl と
した。有機電解質の溶媒に、本発明の3−クロロ−4−
クロロ−γ−ブチロラクトン、3−クロロ−γ−ブチロ
ラクトン、4−クロロ−γ−ブチロラクトン、3−フロ
ロ−γ−ブチロラクトン、4−フロローγ−ブチロラク
トンを用いた電池ヲ各々A、B、C、D、Eとし、従来
のB L 、 2−Me−THFを用いた電池を各々F
、Gとする。第2図にはこれら電池の各サイクルにおけ
る放電電気量をプロットした。これより本発明の少なく
とも3また(Ii4の位置の水素を、塩素またはフッ素
で置換したγ−ブチロラクトンを用いることにより、電
池のサイクル特性が向上することがわかる。これは、実
施例1に示したように負極の充放電の電流効率が向上し
たためである。
1 mole/7 for solute in organic electrolyte! L engineering AsF6'?
:Using. The amount of organic electrolyte in each battery was 200 μl. The 3-chloro-4- of the present invention is added to the solvent of the organic electrolyte.
Batteries using chloro-γ-butyrolactone, 3-chloro-γ-butyrolactone, 4-chloro-γ-butyrolactone, 3-fluoro-γ-butyrolactone, and 4-fluoro-γ-butyrolactone are A, B, C, D, respectively. E, conventional B L and 2-Me-THF batteries were respectively F
, G. In FIG. 2, the amount of electricity discharged in each cycle of these batteries is plotted. This shows that the cycle characteristics of the battery are improved by using the γ-butyrolactone of the present invention in which hydrogen at the position Ii4 is replaced with chlorine or fluorine. This is because the current efficiency of charging and discharging the negative electrode has improved.

以上は、リチウムを負極として用いた実施例について述
べたが、負極にリチウム−アルミニウム9、−2 合金や、負極に鉛、スズ、ビスマス、カドミウムなどの
合金を用いて、充電により負極中にリチウムを吸蔵させ
、放電で吸蔵したリチウムを放出させる電極に対しても
、本発明の溶媒は大きな効果を有した。
The above has described an example in which lithium was used as the negative electrode. However, when a lithium-aluminum 9,-2 alloy or an alloy of lead, tin, bismuth, cadmium, etc. is used as the negative electrode, lithium is contained in the negative electrode by charging. The solvent of the present invention also had a great effect on electrodes that occlude lithium and release the occluded lithium upon discharge.

また正極については、TiO2の場合のみを示したが、
本発明の溶媒が負極に対して大きな効果を有するのであ
り、他の活物質を正極に用いても、電池の負極の充放電
効率は向上し、それに伴い電池のサイクル特性は向上す
る。
Regarding the positive electrode, only the case of TiO2 is shown, but
The solvent of the present invention has a great effect on the negative electrode, and even if other active materials are used for the positive electrode, the charging and discharging efficiency of the negative electrode of the battery is improved, and the cycle characteristics of the battery are accordingly improved.

発明の効果 以上のように、本発明により、負極の充放電の電流効率
が向上し、電池のサイクル特性が向上する。
Effects of the Invention As described above, according to the present invention, the current efficiency of charging and discharging the negative electrode is improved, and the cycle characteristics of the battery are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた電池の縦断面図、第2
図は各溶媒を用いた電池のサイクル特性の比較を示す図
である。 3・・・・・・負極、4・・・・・・セパレータ、5・
・・・・・正極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名3−
 1種 第2図 すイクル秩
Fig. 1 is a vertical cross-sectional view of a battery used in an example of the present invention;
The figure is a diagram showing a comparison of cycle characteristics of batteries using each solvent. 3... Negative electrode, 4... Separator, 5...
...Positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person3-
1st class 2nd figure Ikuru Chichi

Claims (1)

【特許請求の範囲】[Claims] 負極と正極と有機電解質とからなり、前記有機電解質の
溶媒に、少なくとも3または4の位置の水素を塩素また
はフッ素で置換したγ−ブチロラクトンを用いたことを
特徴とする有機電解質二次電池。
1. An organic electrolyte secondary battery comprising a negative electrode, a positive electrode, and an organic electrolyte, characterized in that γ-butyrolactone in which hydrogen at at least the 3rd or 4th position is replaced with chlorine or fluorine is used as a solvent for the organic electrolyte.
JP61133306A 1986-06-09 1986-06-09 Organic electrolyte secondary battery Pending JPS62290073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133306A JPS62290073A (en) 1986-06-09 1986-06-09 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133306A JPS62290073A (en) 1986-06-09 1986-06-09 Organic electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS62290073A true JPS62290073A (en) 1987-12-16

Family

ID=15101583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133306A Pending JPS62290073A (en) 1986-06-09 1986-06-09 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS62290073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243111A (en) * 2006-03-13 2007-09-20 Daikin Ind Ltd Electrolytic solution
JP2020098739A (en) * 2018-12-19 2020-06-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243111A (en) * 2006-03-13 2007-09-20 Daikin Ind Ltd Electrolytic solution
JP2020098739A (en) * 2018-12-19 2020-06-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JPS62290072A (en) Organic electrolyte secondary battery
JP2000067852A (en) Lithium secondary battery
JPS62290071A (en) Organic electrolyne secondary battery
JPS62290073A (en) Organic electrolyte secondary battery
JPS6259412B2 (en)
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPH09259892A (en) Aluminum nonaqueous electrolyte secondary battery
JPH0770326B2 (en) Organic electrolyte battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JPS62160671A (en) Nonaqueous solvent secondary battery
JPS62290069A (en) Organic electrolyte secondary battery
JPS6191868A (en) Nonaqueous electrolyte secondary battery
JP2991758B2 (en) Non-aqueous electrolyte for lithium secondary batteries
US5024906A (en) Rechargeable electrochemical cell
JPS6332871A (en) Organic electrolyte secondary cell
JPS6158177A (en) Rechargeable electrochemical device
JPH081813B2 (en) Non-aqueous electrolyte secondary battery
JPS6280977A (en) Organic electrolyte battery
JPH0630259B2 (en) Non-aqueous electrolyte battery
JPS6280976A (en) Organic electrolyte battery
JPS62290074A (en) Organic electrolyte secondary battery
JPH01159971A (en) Lithium secondary battery
JPH0760702B2 (en) Organic electrolyte secondary battery
JPH0652670B2 (en) Lithium secondary battery electrolyte
JPH01157066A (en) Lithium secondary battery