JPS6280977A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS6280977A
JPS6280977A JP60218648A JP21864885A JPS6280977A JP S6280977 A JPS6280977 A JP S6280977A JP 60218648 A JP60218648 A JP 60218648A JP 21864885 A JP21864885 A JP 21864885A JP S6280977 A JPS6280977 A JP S6280977A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
lewis acid
morpholine
electrolyte solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60218648A
Other languages
Japanese (ja)
Inventor
Satoshi Kitagawa
聡 北川
Kazumi Yoshimitsu
由光 一三
Kozo Kajita
梶田 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60218648A priority Critical patent/JPS6280977A/en
Publication of JPS6280977A publication Critical patent/JPS6280977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase thermostability by constituting with a positive electrode, a negative electrode comprising lithium or lithium alloy, and electrolyte solution, and using organic electrolyte solution prepared by adding morpholine as a stabilizer to a specified lithium salt of Lewis acid and organic solvent as the electrolyte solution. CONSTITUTION:Morpholine whose fourth positive is substituted with alkyl group having the carbon number of 1-4 is added as a stabilizer to electrolyte using lithium salt of Lewis acid indicated in the formula LiMFe as a solute. The morpholine having alkyl group of the carbon number of 1-4 has ether bond tertiary amine in its molecule shown in the formula and stabilizes electrolyte. The adding amount of 4-alkyl morpholine is preferable to be 0.2-2 times mol of the salt of Lewis acid and the amount of lithium salt of Lewis acid is usually 0.1-3mol/dm<3> in the electrolyte. Thereby, thermostability of electrolyte is increased and deterioration in performance during storage is retarded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は有機電解質電池に係わり、さらに詳しくはそ
の電解質溶液(以下、電解液という)の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to organic electrolyte batteries, and more particularly to improvements in their electrolyte solutions (hereinafter referred to as electrolytes).

〔従来の技術〕[Conventional technology]

最近、有機電解質電池の電解液の溶質として、一般式(
1) %式%(1) (式中、MはP、As、SbまたはBで、nはMがP、
AsまたはSbのとき6で、MがBのとき4である)で
示されるルイス酸リチウム塩がf4解度が大きく、高電
導性で、過塩素酸塩系のものより安全性が優れているこ
とから多く用いられるようになってきた(たとえば米国
特許第3,607,020号明細書、米国特許第3,9
07,977号明細書)。
Recently, the general formula (
1) % formula % (1) (wherein M is P, As, Sb or B, n is M is P,
Lewis acid lithium salts (6 when As or Sb, 4 when M is B) have large f4 solubility, high conductivity, and are safer than perchlorate-based ones. Therefore, it has come to be widely used (for example, U.S. Patent No. 3,607,020, U.S. Patent No. 3,9
No. 07,977).

しかしながら、上記一般式(1)で示されるルイス酸リ
チウム塩は、特に高温下での安定性に問題があり、高温
下での貯蔵中に分解して、電解液溶媒の分解や重合を引
き起こし、内部抵抗の増加や閉路電圧の低下を引き起こ
すなど電池性能を著しく低下させるという問題があった
However, the Lewis acid lithium salt represented by the above general formula (1) has a problem with stability, especially at high temperatures, and decomposes during storage at high temperatures, causing decomposition and polymerization of the electrolyte solvent. There was a problem in that the battery performance was significantly degraded, such as by increasing internal resistance and decreasing closed-circuit voltage.

(発明が解決しようとする問題点) この発明は、上記従来電池の電解液が熱安定性に欠ける
という問題点を解決し、電解液の熱安定性を高め、貯蔵
中における電池性能の低下の少ない有機電解質電池を提
供することを目的とする。
(Problems to be Solved by the Invention) This invention solves the problem that the electrolyte of the conventional battery lacks thermal stability, improves the thermal stability of the electrolyte, and prevents the deterioration of battery performance during storage. The purpose is to provide a battery with less organic electrolyte.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記一般式(1)で示されるルイス酸リチ
ウム塩を溶質とする電解液に安定剤として4位を炭素数
1〜4のアルキル基で置換したモルホリンを添加するこ
とにより、電解液の熱安定性を向上させ、貯蔵中におけ
る電池性能の低下を少なくしたものである。
This invention provides an electrolytic solution by adding morpholine substituted at the 4-position with an alkyl group having 1 to 4 carbon atoms as a stabilizer to an electrolytic solution containing a Lewis acid lithium salt represented by the general formula (1) as a solute. This improves the thermal stability of the battery and reduces the deterioration of battery performance during storage.

本発明において、電解液の熱安定性を高めるために安定
剤として電解液中に添加する4位に炭素数1〜4のアル
キル基を有するモルホリン(以下、4−アルキルモルホ
リンという)は、下記の構造式に示すように、 (式中、Rは炭素数1〜4のアルキル基である)分子内
にエーテル結合と第三級アミンを有しており、たとえば
LiPF6が電離して生じるLi+イオンに配位して錯
体を形成し、Li+イオンと、PF5−イオンの分解に
より生じるF−イオンとの反応を抑制して、電解液を安
定化させる。また、1iPF6が分解して生じるHF(
フッ化水素)の酸性度を中和する塩基度を有しており、
少ない使用量でも安定化効果を示す。
In the present invention, the morpholine having an alkyl group having 1 to 4 carbon atoms at the 4-position (hereinafter referred to as 4-alkylmorpholine), which is added as a stabilizer to the electrolytic solution in order to improve the thermal stability of the electrolytic solution, is as follows. As shown in the structural formula, it has an ether bond and a tertiary amine in the molecule (in the formula, R is an alkyl group having 1 to 4 carbon atoms). It coordinates to form a complex, suppresses the reaction between Li+ ions and F- ions generated by decomposition of PF5- ions, and stabilizes the electrolyte. In addition, HF (
It has a basicity that neutralizes the acidity of hydrogen fluoride).
Shows stabilizing effect even in small amounts.

4−アルキルモルホリンは、多ければ多いほど電解液を
安定化させる効果が大きく、その面からは添加量の多い
方が好ましいが、多すぎると低温での電導度や二次電池
にしたときの充放電特性を低下させるので、添加量は一
般式で示されるルイス酸塩の0.2〜2倍モルにするの
が好ましい。
The larger the amount of 4-alkylmorpholine, the greater the effect of stabilizing the electrolyte, and from this point of view, it is preferable to add a large amount, but if it is too large, the conductivity at low temperatures and the charging performance of a secondary battery may be affected. Since the discharge characteristics are deteriorated, the amount added is preferably 0.2 to 2 times the mole of the Lewis acid salt represented by the general formula.

本発明において、電解液の溶質として用いる一般式(I
)で示されるルイス酸リチウム塩の具体例は、MがP(
リン)であるLtPFs(六フッ化リン酸リチウム)、
MがSb(アンチモン)であるLi5bFs  (六フ
ッ化アンチモン酸リチウム)、MがAs(砒素)である
LiAsF5  (六フッ化砒素酸リチウム)、MがB
(ホウ素)であるLiBF4 (四フッ化ホウ酸リチウ
ム)である。
In the present invention, the general formula (I
), M is P(
LtPFs (lithium hexafluorophosphate), which is
Li5bFs (lithium hexafluoroantimonate) where M is Sb (antimony), LiAsF5 (lithium hexafluoroarsenate) where M is As (arsenic), M is B
(boron), LiBF4 (lithium tetrafluoroborate).

そして、電解液はこれら一般式(1)で示されるルイス
酸リチウム塩をたとえばプロピレンカーボネート、T−
ブチロラクトン、テトラヒドロフラン、1.2−ジメト
キシエタン、112−ジェトキシエタン、1.3−ジオ
キソラン、4−メチル−1,3−ジオキソランなどの溶
媒の単独もしくは2ft以上の混合溶媒に熔解し、それ
に前記の4−アルキルモルホリンを添加するか、あるい
は有機溶媒に4−アルキルモルホリンを添加してから、
一般式(1)で示されるルイス酸リチウム塩を溶解する
ことによって開裂される。要するに、本発明においては
、電解液中に前記の4−アルキルモルホリンが含まれて
いればよく、前記4−アルキルモルホリンと一般式(1
)で示されるルイス酸リチウム塩との添加の順序は問わ
ない。また、上記のように安定剤として4−アルキルモ
ルホリンを添加した電解液は、前述のような熱安定性が
良好で貯蔵特性が優れているという特性に加えて、二次
電池にした場合に充放電特性が優れているという特長を
も有している。
The electrolytic solution is a Lewis acid lithium salt represented by the general formula (1), for example, propylene carbonate, T-
Butyrolactone, tetrahydrofuran, 1.2-dimethoxyethane, 112-jethoxyethane, 1.3-dioxolane, 4-methyl-1,3-dioxolane, etc. alone or dissolved in a mixed solvent of 2 ft or more, and the above-mentioned 4- Adding the alkylmorpholine or adding the 4-alkylmorpholine to the organic solvent and then
It is cleaved by dissolving the Lewis acid lithium salt represented by the general formula (1). In short, in the present invention, it is sufficient that the electrolytic solution contains the above-mentioned 4-alkylmorpholine, and the above-mentioned 4-alkylmorpholine and the general formula (1
) The order of addition with the Lewis acid lithium salt shown in ) does not matter. In addition, the electrolytic solution to which 4-alkylmorpholine is added as a stabilizer has good thermal stability and excellent storage characteristics as described above, as well as being difficult to charge when used as a secondary battery. It also has the feature of excellent discharge characteristics.

そして、一般式(1)で示されるルイス酸リチウム塩の
量は電解液中、通常0.1〜3 mol/dm3である
The amount of the Lewis acid lithium salt represented by the general formula (1) in the electrolytic solution is usually 0.1 to 3 mol/dm3.

本発明の電池において、負極にはリチウムまたはリチウ
ム合金が用いられる。リチウム合金としては、たとえぼ
りチウム−アルミニウム、リチウム−鉛、リチウム−ガ
リウム、リチウム−インジウム、リチウム−ガリウム−
インジウム、リチウム−マグネシウム、リチウム−亜鉛
などのリチウム゛合金が用いられる。そして、正極の活
物質としては、たとえば二硫化チタン(TiS2)、二
硫化モリブデン(MoS2)、三硫化モリブデン(Mo
2S)、硫化ジルコニウム(ZrS2)、二硫化ニオブ
(NbS2)、三硫化リンニッケル(NiPS3)、バ
ナジウムセレナイド(VSe2)、硫化鉄、酸化銅、フ
ッ化炭素などが用いられる。特に二次電池化に際しては
、二硫化チタンが層状の結晶構造を有していて、リチウ
ムの拡散定数が大きいことから、好用される。
In the battery of the present invention, lithium or a lithium alloy is used for the negative electrode. Examples of lithium alloys include lithium-aluminum, lithium-lead, lithium-gallium, lithium-indium, and lithium-gallium.
Lithium alloys such as indium, lithium-magnesium, and lithium-zinc are used. Examples of active materials for the positive electrode include titanium disulfide (TiS2), molybdenum disulfide (MoS2), and molybdenum trisulfide (MoS2).
2S), zirconium sulfide (ZrS2), niobium disulfide (NbS2), phosphorous nickel trisulfide (NiPS3), vanadium selenide (VSe2), iron sulfide, copper oxide, carbon fluoride, etc. are used. Particularly in the production of secondary batteries, titanium disulfide is preferably used because it has a layered crystal structure and has a large diffusion constant for lithium.

〔実施例〕〔Example〕

つぎに、実施例をあげて本発明をさらに詳細に説明する
Next, the present invention will be explained in more detail by giving examples.

実施例1 電解液として4−メチル−1,3−ジオキソラン58容
量%、1.2−ジメトキシエタン38.7容量%および
4−メチルモルホリン3.3容量%からなる混合溶媒に
LiPF6を1 n+ol/dm3となるように溶解し
た有機電解質溶液を用い、負極にリチウム40原子%の
リチウム−アルミニウム合金、正極に二硫化チタンを正
極活物質とする成形合剤を用いて、第1図に示すような
リチウム有機電解質電池を組み立てた。上記電解液にお
いて、4−メチルモルホリンの量はLiPF5の約0.
3倍モルに相当する。
Example 1 LiPF6 was added to a mixed solvent of 58% by volume of 4-methyl-1,3-dioxolane, 38.7% by volume of 1,2-dimethoxyethane and 3.3% by volume of 4-methylmorpholine as an electrolytic solution. Using an organic electrolyte solution dissolved to give dm3, a lithium-aluminum alloy containing 40 atomic percent lithium for the negative electrode, and a molding mixture containing titanium disulfide as the positive electrode active material for the positive electrode, a molding mixture as shown in Figure 1 was prepared. A lithium organic electrolyte battery was assembled. In the above electrolyte, the amount of 4-methylmorpholine is approximately 0.0% of LiPF5.
This corresponds to 3 times the mole.

第1図において、1は負極缶で、この負極缶1はステン
レス鋼製で表面にニッケルメッキが施されており、2は
ステンレス鋼製の負極側集電網で、上記負極缶1の内面
にスポット溶接されている。3は前述のリチウム−アル
ミニウム合金よりなる負極で、4は微孔性ポリプロピレ
ンフィルムよりなるセパレータである。5はポリプロピ
レン不織布よりなる電解液吸収体で、6は二硫化チタン
を正極活物質とする合剤をペレット状に加圧成形してな
る正極であり、7はステンレス鋼製の正極側集電網であ
る。8はステンレス鋼製で表面にニッケルメッキを施し
た正極缶で、9はポリプロピレン製の環状ガスケットで
ある。そして、この電池の負極の理論電気量は約30m
Ahで、正極の理論電気量は13mAhである。
In Fig. 1, 1 is a negative electrode can, which is made of stainless steel and has a nickel plated surface, and 2 is a negative electrode side current collection network made of stainless steel, which is spotted on the inner surface of the negative electrode can 1. Welded. 3 is a negative electrode made of the aforementioned lithium-aluminum alloy, and 4 is a separator made of microporous polypropylene film. 5 is an electrolyte absorber made of polypropylene non-woven fabric, 6 is a positive electrode formed by pressure molding a mixture containing titanium disulfide as the positive electrode active material into a pellet shape, and 7 is a positive electrode side current collector mesh made of stainless steel. be. 8 is a positive electrode can made of stainless steel and whose surface is plated with nickel, and 9 is an annular gasket made of polypropylene. The theoretical amount of electricity at the negative electrode of this battery is approximately 30 m
Ah, and the theoretical amount of electricity of the positive electrode is 13 mAh.

実施例2 電解液として4−メチル−1,3−ジオキソラン57.
8容量%、1.2−ジメトキシエタン38.5容量%お
よび4−エチルモルホリン3.7容量%からなる混合溶
媒にLiPF5をlll1O1/dI113となるよう
に溶解した有機電解質溶液を用いたほかは、実施例1と
同様のリチウム有機電解質電池を組み立てた。上記電解
液において、4−エチルモルホリンの量はLiPF6の
約0.3倍モルである。
Example 2 4-methyl-1,3-dioxolane 57.
Except for using an organic electrolyte solution in which LiPF5 was dissolved in a mixed solvent consisting of 8% by volume, 38.5% by volume of 1.2-dimethoxyethane, and 3.7% by volume of 4-ethylmorpholine so that A lithium organic electrolyte battery similar to that in Example 1 was assembled. In the above electrolytic solution, the amount of 4-ethylmorpholine is about 0.3 times the mole of LiPF6.

比較例 電解液として4−メチル−1,3−ジオキソラン60容
量%および1.2−ジメトキシエタン40容量%からな
る混合溶媒にLiPF6をL mol/dm’となるよ
うに溶解した有機電解質溶液を用いたほかは実施例1と
同様のリチウム有機電解質電池を組み立てた。
Comparative Example An organic electrolyte solution in which LiPF6 was dissolved in L mol/dm' in a mixed solvent consisting of 60% by volume of 4-methyl-1,3-dioxolane and 40% by volume of 1,2-dimethoxyethane was used as the electrolyte solution. A lithium organic electrolyte battery was assembled in the same manner as in Example 1 except for the following.

上記実施例1〜2の電池および比較例の電池を60℃で
貯蔵し、貯蔵に伴う10kHzの内部抵抗変化と、30
0Ω、5秒放電後の閉路電圧変化を調べた。10k H
z内部抵抗変化を第2図に、閉路電圧変化を第3図に示
す。なお、10kHzの内部抵抗はほぼ電解液に依存す
る抵抗である。
The batteries of Examples 1 and 2 and the batteries of Comparative Example were stored at 60°C, and the internal resistance change due to storage was 10 kHz and 30 kHz.
Changes in closed circuit voltage after 5 seconds of discharge at 0Ω were investigated. 10kH
z Changes in internal resistance are shown in Figure 2, and changes in closed circuit voltage are shown in Figure 3. Note that the internal resistance at 10 kHz is a resistance that substantially depends on the electrolyte.

第2図に示すように、従来電池である比較例の電池では
、貯蔵日数の増加に伴って著しい内部抵抗増加が生じた
が、本発明の実施例1〜2の電池では、そのような大き
な内部抵抗増加が認められなかった。
As shown in FIG. 2, in the battery of Comparative Example, which is a conventional battery, a significant increase in internal resistance occurred as the number of days of storage increased, but in the batteries of Examples 1 and 2 of the present invention, such a large increase occurred. No increase in internal resistance was observed.

また、第3図に示すように、本発明の実施例1〜2の電
池は、比較例の電池に比べて、貯蔵に伴う閉路電圧の低
下が少なく、貯蔵特性がすぐれていた。
Furthermore, as shown in FIG. 3, the batteries of Examples 1 and 2 of the present invention exhibited less decrease in closed circuit voltage during storage and had excellent storage characteristics than the batteries of Comparative Examples.

つぎに、上記実施例1〜2の電池および比較例の電池に
使用した電解液について充放電特性を調べた結果を第4
図に示す。試験は、作用極としてアルミニウム極を用い
、対極としてリチウムを用い、参照極としてリチウムを
用い、電解液には前記実施例1〜2の電池および比較例
の電池に使用した電解液を用いてそれぞれモデルセルを
組み、アルミニウム極上にリチウムを析出させることに
より、リチウム極の充放電特性を測定することによって
行った。測定は、まず0.5mA/cAの定電流で20
時間(10mAh)リチウムをアルミニウム極上に電着
し、0.2A/cdの定電流で放電を行い、電位が3v
を超えるまでの容量とサイクル数との関係を求め、第4
図にその充放電効率とサイクル数との関係を示した。
Next, the results of investigating the charging and discharging characteristics of the electrolytes used in the batteries of Examples 1 and 2 and the batteries of Comparative Example are shown in the fourth section.
As shown in the figure. The test was conducted using an aluminum electrode as a working electrode, lithium as a counter electrode, lithium as a reference electrode, and the electrolyte used in the batteries of Examples 1 and 2 and the comparative example. This was done by assembling a model cell and depositing lithium on an aluminum electrode to measure the charge/discharge characteristics of the lithium electrode. First, the measurement was carried out at a constant current of 0.5 mA/cA for 20
Time (10mAh) Lithium was electrodeposited on the aluminum electrode and discharged at a constant current of 0.2A/cd until the potential was 3V.
Find the relationship between the capacity and the number of cycles until the 4th
The figure shows the relationship between the charge/discharge efficiency and the number of cycles.

第4図に示すように、実施例1〜2の電池に用いた電解
液の充放電特性は優れている。
As shown in FIG. 4, the charging and discharging characteristics of the electrolytes used in the batteries of Examples 1 and 2 were excellent.

なお、実施例では、一般式(1)で示されるルイス酸リ
チウム塩としてLiPF6を用いた場合を示したが、本
発明がLiAsF6、LiSbF6、LiBF4などを
用いる場合にも通用されることはいうまでもない。
In addition, although the example shows the case where LiPF6 is used as the Lewis acid lithium salt represented by the general formula (1), it goes without saying that the present invention is also applicable to cases where LiAsF6, LiSbF6, LiBF4, etc. are used. Nor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、安定剤として4−ア
ルキルモルホリンを添加することにより、電解液の熱安
定性を高めて、貯蔵中における電池性能の低下を抑制す
ることができた。
As explained above, in the present invention, by adding 4-alkylmorpholine as a stabilizer, the thermal stability of the electrolytic solution can be increased and a decrease in battery performance during storage can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る有機電解質電池の一例を示す断面
図である。第2図は本発明の実施例1〜2の電池と比較
例の電池の貯蔵に伴う10kHz内部抵抗変化を示す図
であり、第3図は本発明の実施例1〜2の電池と比較例
の電池の貯蔵に伴う閉路電圧変化を示す図である。第4
図は本発明の実施例1〜2の電池および比較例の電池に
使用した電解液を用いて組み立てたモデルセルのサイク
ル数と充放電効率との関係を示す図である。 3・・・負極、 6・・・正極 第  1  図 3・・・負極 第  2  図 貯蔵期間(日) 第  3  図 貯蔵期間(日) 第  4  図 サイクル数
FIG. 1 is a sectional view showing an example of an organic electrolyte battery according to the present invention. FIG. 2 is a diagram showing the 10kHz internal resistance change during storage of the batteries of Examples 1 and 2 of the present invention and the comparative example, and FIG. FIG. 3 is a diagram showing a change in closed circuit voltage as the battery is stored. Fourth
The figure is a diagram showing the relationship between the number of cycles and the charge/discharge efficiency of model cells assembled using the electrolytes used in the batteries of Examples 1 and 2 of the present invention and the batteries of Comparative Example. 3...Negative electrode, 6...Positive electrode 1 Figure 3...Negative electrode Figure 2 Storage period (days) Figure 3 Storage period (days) Figure 4 Number of cycles

Claims (3)

【特許請求の範囲】[Claims] (1)正極と、リチウムまたはリチウム合金からなる負
極と、電解質溶液を備え、上記電解質溶液が、溶質が一
般式( I ) LiMFn( I ) (式中、MはP、As、SbまたはBで、nはMがP、
AsまたはSbのとき6で、MがBのとき4である)で
示されるルイス酸リチウム塩で、溶媒が有機溶媒であり
、かつ安定剤として4位に炭素数1〜4のアルキル基を
有するモルホリンが添加された有機電解質溶液であるこ
とを特徴とする有機電解質電池。
(1) A positive electrode, a negative electrode made of lithium or a lithium alloy, and an electrolyte solution, and the electrolyte solution has a solute of the general formula (I) LiMFn(I) (where M is P, As, Sb, or B). , n is M is P,
A Lewis acid lithium salt represented by 6 when As or Sb and 4 when M is B), the solvent is an organic solvent, and the stabilizer has an alkyl group having 1 to 4 carbon atoms at the 4-position. An organic electrolyte battery characterized by being an organic electrolyte solution containing morpholine.
(2)上記モルホリンの4位のアルキル基がメチル基ま
たはエチル基である特許請求の範囲第1項記載の有機電
解質電池。
(2) The organic electrolyte battery according to claim 1, wherein the alkyl group at the 4-position of the morpholine is a methyl group or an ethyl group.
(3)正極活物質が二硫化チタンで、一般式( I )で
示されるルイス酸リチウム塩がLiPF_6である特許
請求の範囲第1項または第2項記載の有機電解質電池。
(3) The organic electrolyte battery according to claim 1 or 2, wherein the positive electrode active material is titanium disulfide and the Lewis acid lithium salt represented by the general formula (I) is LiPF_6.
JP60218648A 1985-10-01 1985-10-01 Organic electrolyte battery Pending JPS6280977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60218648A JPS6280977A (en) 1985-10-01 1985-10-01 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60218648A JPS6280977A (en) 1985-10-01 1985-10-01 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS6280977A true JPS6280977A (en) 1987-04-14

Family

ID=16723239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60218648A Pending JPS6280977A (en) 1985-10-01 1985-10-01 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS6280977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085954A (en) * 1989-03-31 1992-02-04 Hitachi Maxell, Ltd. Organic electrolyte solution type cell
KR20150057729A (en) * 2013-11-20 2015-05-28 삼성에스디아이 주식회사 Electrolyte and rechargeable lithium battery including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085954A (en) * 1989-03-31 1992-02-04 Hitachi Maxell, Ltd. Organic electrolyte solution type cell
US5356736A (en) * 1989-03-31 1994-10-18 Hitachi Maxell, Ltd. Organic electrolyte solution type cell
KR20150057729A (en) * 2013-11-20 2015-05-28 삼성에스디아이 주식회사 Electrolyte and rechargeable lithium battery including the same
US10056647B2 (en) 2013-11-20 2018-08-21 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same

Similar Documents

Publication Publication Date Title
US7416813B2 (en) Lithium secondary battery
US6436577B1 (en) Non-aqueous electrolytic secondary cell
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JPS62290072A (en) Organic electrolyte secondary battery
JP3883726B2 (en) Non-aqueous electrolyte secondary battery
TWI493769B (en) Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JPS59134568A (en) Electrolyte for lithium battery
JPS62290071A (en) Organic electrolyne secondary battery
JPH0630257B2 (en) Organic electrolyte battery
JPH01124969A (en) Lithium secondary battery
JPH0636370B2 (en) Electrolyte for lithium secondary battery
JPS6280977A (en) Organic electrolyte battery
JPH1131526A (en) Lithium secondary battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPH01286262A (en) Electrolyte for lithium cell
JPH0495362A (en) Nonaqueous electrolytic battery
JP2004095325A (en) Lithium secondary battery
JPS62271370A (en) Electrolyte for lithium battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JPS6280976A (en) Organic electrolyte battery
JPS62217578A (en) Lithium battery
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JPH0687425B2 (en) Organic electrolyte battery
JPS62160671A (en) Nonaqueous solvent secondary battery
JP2001217004A (en) Non-aqueous electrolyte secondary battery