JPS62217578A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPS62217578A
JPS62217578A JP61061824A JP6182486A JPS62217578A JP S62217578 A JPS62217578 A JP S62217578A JP 61061824 A JP61061824 A JP 61061824A JP 6182486 A JP6182486 A JP 6182486A JP S62217578 A JPS62217578 A JP S62217578A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
general formula
additive
tertiary amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61061824A
Other languages
Japanese (ja)
Inventor
Satoshi Kitagawa
聡 北川
Kazumi Yoshimitsu
由光 一三
Kozo Kajita
梶田 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61061824A priority Critical patent/JPS62217578A/en
Publication of JPS62217578A publication Critical patent/JPS62217578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance the heat stability of an electrolyte, and to increase storage life and charge-discharge performance when used as a secondary battery by using dicyclic tertiary amine as an additive. CONSTITUTION:A battery has a positive electrode and a negative electrode comprising lithium or lithium alloy and uses a lithium salt of Lewis acid indicated in the formula I as a solute and an organic solvent. An organic electrolyte added with dicyclic tertiary amine indicated in the formula II is used. Since increase in the content of the additive more stabilizes the electrolyte, the larger content of the additive is preferable. However, the larger content of the additive causes decrease in conductivity and in charge-discharge performance preferable content of the additive is 0.05-2 times in mol based on the lithium salt of Lewis acid indicated in the formula I.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム電池に係わり、さらに詳しくはその電
解液の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to lithium batteries, and more particularly to improvements in their electrolytes.

〔従来の技術〕[Conventional technology]

近年、一般式(り LiMFn     (1) (式中、MはP、As、SbまたはBで、nはMがP、
AsまたはSbのとき6であり、MがBのとき4である
)で示されるルイス酸リチウム塩を溶質として用いた有
機電解液が、高電導性で、かつ過塩素酸塩系のものより
安全性が優れていることから、リチウム電池の電解液、
特にリチウム二次電池の電解液として多用されるように
なってきた。
In recent years, the general formula (LiMFn (1) (where M is P, As, Sb or B, n is M is P,
An organic electrolyte using a Lewis acid lithium salt (6 when As or Sb is 4 when M is B) as a solute has high conductivity and is safer than a perchlorate-based one. Due to its excellent properties, electrolyte for lithium batteries,
In particular, it has come to be widely used as an electrolyte for lithium secondary batteries.

ところが、上記のようなルイス酸リチウム塩を溶質とす
る電解液は、熱安定性に問題があり、高温貯蔵において
電解液溶媒の分解や重合を引き起こし、電池の内部抵抗
を増加させ、電池性能を低下させるという問題があった
However, electrolytes containing Lewis acid lithium salts as solutes have problems with thermal stability, causing decomposition and polymerization of the electrolyte solvent during high-temperature storage, increasing the internal resistance of the battery and impairing battery performance. There was a problem of lowering the

そのため、電解液にヘキサメチルホスホリックトリアミ
ドを添加して、電解液の熱安定性を高めることが提案さ
れている(例えば特開昭60−175380号)。
Therefore, it has been proposed to add hexamethylphosphoric triamide to the electrolytic solution to improve the thermal stability of the electrolytic solution (for example, JP-A-60-175380).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のようにヘキサメチルホスホリック
トリアミドを添加した電解液は、二次電池の電解液とし
て用いた場合に、その分子構造中に含まれるP=O結合
が充電時の活性な電着リチウムと反応して、充放電特性
を低下させるという問題があった。
However, when the electrolytic solution to which hexamethylphosphoric triamide is added as described above is used as an electrolytic solution for a secondary battery, the P=O bond contained in its molecular structure becomes active during charging. There was a problem in that it reacted with lithium and deteriorated charge/discharge characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記一般式(I)で示されるルイス酸リチウ
ム塩を溶質とする有機電解液に、一般式(II) (式中、ρは3〜6、mは0〜2、nは3〜6であり、
Rは水素原子または炭素数1〜3のアルキル基である)
で示される二環性の三級アミンを添加することによって
、二次電池に適用した場合でも充放電特性の低下を招く
ことなく、しかも前記へキサメチルホスホリックトリア
ミドを添加する場合よりも電解液の熱安定性を向上させ
たものである。
The present invention provides an organic electrolyte having a Lewis acid lithium salt represented by the general formula (I) as a solute, and an organic electrolyte having the general formula (II) (where ρ is 3 to 6, m is 0 to 2, and n is 3). ~6,
R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms)
By adding the bicyclic tertiary amine represented by the above, even when applied to secondary batteries, there is no deterioration in charge/discharge characteristics, and the electrolytic performance is better than when adding the hexamethylphosphoric triamide. This improves the thermal stability of the liquid.

上記一般式(U)で示される二環性の三級アミンとして
は、例えば、次に構造式を示すようなピロリジジン、ピ
ロコリジン、キノリジノン、フルルビナンB110−メ
チルキノリジジンなどがあげられる。
Examples of the bicyclic tertiary amine represented by the above general formula (U) include pyrrolizidine, pyrocollidine, quinolidinone, and flurvinan B110-methylquinolizidine as shown in the following structural formula.

ピロリジジン: ビロコリジン: キノリジノン: 10−メチルキノリジジン: 上記一般式(II)で示される二環性の三級アミンは、
高沸点の油状液体であり、電解液溶媒に熔解する。そし
て、これら一般式(n)で示される二環性の三級アミン
は、上記ピロリジジン、ピロコリジン、キノリジノン、
ノルルビナンB、10−メチルキノリジジンの構造式か
らも明らかなように、その分子構造中に立体的に大きな
三級アミンを有している。
Pyrrolizidine: Virocollidine: Quinolidinone: 10-methylquinolizidine: The bicyclic tertiary amine represented by the above general formula (II) is
It is an oily liquid with a high boiling point and dissolves in the electrolyte solvent. These bicyclic tertiary amines represented by general formula (n) include the above-mentioned pyrrolizidine, pyrocollidine, quinolidinone,
As is clear from the structural formula of norrubinane B, 10-methylquinolizidine, it has a sterically large tertiary amine in its molecular structure.

そのため、この一般式(II)で示される二環性の三級
アミンを電解液に添加すると、立体的に大きな三級アミ
ンが、電解液中で電離しているLiPF6などのルイス
酸リチウム塩のLi+イオンに配位して安定な錯体を形
成し、Li+イオンとF−イオン(このF−イオンはL
iPF6から電離して生じるPF5−イオンの分解によ
り生成する)との反応を抑制し、LiSbF6などのル
イス酸リチウム塩の分解を抑制して、電解液を安定化さ
せる。また、これら一般式(II)で示される二環性の
三級アミンは大きな分子であるため、二次電池の正極活
物質として好用される二硫化チタンの結晶構造の眉間に
入りに<(、少ない使用量でも電解液を効率よく安定化
させる。また[、1PFBなどの分解で生じるHF(フ
ッ化水素)の酸性度を中和できる塩基度を有していて、
HFの生成を抑制し、それによってl、1PF6の分解
を抑制し、この面からも電解液を安定化させる。
Therefore, when the bicyclic tertiary amine represented by the general formula (II) is added to the electrolyte, the sterically large tertiary amine will react with the ionized Lewis acid lithium salt such as LiPF6 in the electrolyte. It coordinates with Li+ ion to form a stable complex, and Li+ ion and F- ion (this F- ion is
The electrolytic solution is stabilized by suppressing the reaction with PF5 (produced by decomposition of PF5- ions generated by ionization from iPF6) and suppressing the decomposition of Lewis acid lithium salts such as LiSbF6. In addition, since these bicyclic tertiary amines represented by general formula (II) are large molecules, they appear between the eyebrows of the crystal structure of titanium disulfide, which is commonly used as a positive electrode active material for secondary batteries. , efficiently stabilizes the electrolyte even in small amounts.It also has a basicity that can neutralize the acidity of HF (hydrogen fluoride) generated by the decomposition of 1PFB, etc.
The generation of HF is suppressed, thereby suppressing the decomposition of 1,1PF6, and the electrolyte is stabilized from this aspect as well.

また、上記一般式(II)で示される二環性の三級アミ
ンはその分子構造中にヘキサメチルホスホリ・7クトリ
アミドのP=○結合などのように電着リチウムと反応し
やすい官能基を有しないので、これを添加した電解液を
二次電池の電解液として用いた場合にも、何らのトラブ
ルを生じない。
In addition, the bicyclic tertiary amine represented by the above general formula (II) has a functional group that easily reacts with electrodeposited lithium, such as the P=◯ bond of hexamethylphosphoryl 7-cutotriamide, in its molecular structure. Therefore, even when an electrolytic solution to which this is added is used as an electrolytic solution for a secondary battery, no trouble will occur.

上記一般式(11)で示される二環性の三級アミンは、
その添加量を多くすればするほど電解液を安定化させる
効果が大きく、その面からは添加量の多いほど好ましい
が、多すぎると低温での電導性を低下や二次電池に適用
した場合に充放電特性の低下を引き起こすので、その添
加量としては一般式(1)で示されるルイス酸リチウム
塩の0.05〜2倍モルが好ましい。
The bicyclic tertiary amine represented by the above general formula (11) is
The larger the amount added, the greater the effect of stabilizing the electrolyte, and from that point of view, the larger the amount added, the better, but if it is too large, the conductivity at low temperatures may decrease, and when applied to secondary batteries. Since it causes a deterioration in charge/discharge characteristics, the amount added is preferably 0.05 to 2 times the mole of the Lewis acid lithium salt represented by the general formula (1).

本発明において、電解液の溶質として用いる一般式(1
)で示されるルイス酸リチウム塩の具体例は、MがP(
リン)であるLiPF5  (六フッ化リン酸リチウム
)、MがSb (アンチモン)であるLiSbF6  
(六フッ化アンチモン酸リチウム)、MがAs(砒素)
である1−iAsF6  (六フッ化砒素酸リチウム)
、MがB(ホウ素)であるLiBF4  (四フッ化ホ
ウ酸リチウム)である。
In the present invention, the general formula (1
), M is P(
LiPF5 (lithium hexafluorophosphate) which is phosphorus), LiSbF6 where M is Sb (antimony)
(lithium hexafluoroantimonate), M is As (arsenic)
1-iAsF6 (lithium hexafluoroarsenate)
, is LiBF4 (lithium tetrafluoroborate) in which M is B (boron).

そして、電解液はこれら一般式CI)で示されるルイス
酸リチウム塩を例えばプロピレンカーボネート、γ−ブ
チロラクトン、テトラヒドロフラン、1.2−ジメトキ
シエタン、1.2−ジェトキシエタン、1.3−ジオキ
ソラン、4−メチル−1,3−ジオキソランなどの有機
溶媒の単独もしくは2種以上の混合溶媒に1g解し、そ
れに前記の一般式(II)で示される二環性の三級アミ
ンを添加するか、あるいは有機溶媒に一般式(II)で
示される二環性の三級アミンを添加してから、一般式(
りで示されるルイス酸リチウム塩を溶解することによっ
て調製される。要するに、本発明においては、電解液中
に前記の一般式(「)で示される二環性の三級アミンが
含まれていればよく、一般式(n)で示される二環性の
三級アミンと一般式(1)で示されるルイス酸リチウム
塩との添加の順序は問わない。なお、一般式(1)で示
されるルイス酸リチウム塩の量は、通常、電解液中0.
1〜3 not/da3にするのが好ましい。
The electrolytic solution is a Lewis acid lithium salt represented by the general formula CI), for example, propylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-jethoxyethane, 1.3-dioxolane, 4-methyl - Dissolve 1 g in an organic solvent such as 1,3-dioxolane alone or in a mixture of two or more, and add thereto the bicyclic tertiary amine represented by the general formula (II), or After adding the bicyclic tertiary amine represented by the general formula (II) to the general formula (
It is prepared by dissolving the Lewis acid lithium salt shown below. In short, in the present invention, it is sufficient that the electrolytic solution contains a bicyclic tertiary amine represented by the general formula ('), and a bicyclic tertiary amine represented by the general formula (n). The order of addition of the amine and the Lewis acid lithium salt represented by the general formula (1) does not matter.The amount of the Lewis acid lithium salt represented by the general formula (1) is usually 0.
It is preferable to set it to 1-3 not/da3.

本発明の電池において、負極にはリチウムまたはリチウ
ム合金が用いられる。リチウム合金としては、例えばリ
チウム−アルミニウム、リチウム−鉛、リチウム−ガリ
ウム、リチウム−インジウム、リチウム−ガリウム−イ
ンジウム、リチウム−マグネシウム、リチウム−亜鉛な
どのリチウム合金が用いられる。そして、正極の活物質
とじては、例えば二硫化チタン(TiSz)・二硫化ゞ
リブデン(MoS2)、三硫化モリブデン(M。
In the battery of the present invention, lithium or a lithium alloy is used for the negative electrode. As the lithium alloy, for example, lithium alloys such as lithium-aluminum, lithium-lead, lithium-gallium, lithium-indium, lithium-gallium-indium, lithium-magnesium, and lithium-zinc are used. Examples of the active material of the positive electrode include titanium disulfide (TiSz), molybdenum disulfide (MoS2), and molybdenum trisulfide (M.

S3)、硫化ジルコニウム(ZrS2)、二硫化ニオブ
(NbS2)、三硫化リンニッケル(NiPS3)、バ
ナジウムセレナイド(VSez)、硫化鉄、酸化銅、フ
ッ化炭素などが用いられる。
S3), zirconium sulfide (ZrS2), niobium disulfide (NbS2), phosphorous nickel trisulfide (NiPS3), vanadium selenide (VSez), iron sulfide, copper oxide, carbon fluoride, etc. are used.

特に二次電池化に際しては、二硫化チタンが層状の結晶
構造を有していて、リチウムの拡散定数が大きいことか
ら、好用される。
Particularly in the production of secondary batteries, titanium disulfide is preferably used because it has a layered crystal structure and has a large diffusion constant for lithium.

〔実施例) つぎに、実施例をあげて本発明をさらに詳細に説明する
[Example] Next, the present invention will be explained in more detail by giving examples.

実施例1 電解液としては4−メチル−!、3−ジオキソラン58
.1容量%、1.2−ジメトキシエタン38.7容量%
およびピロリジジン3.2容量%からなる混合溶媒にL
iPF6を1.0 mol / dm3となるように溶
解した有機電解液を用い、負極にリチウム36原子%の
リチウム−アルミニウム合金、正極に二硫化チタンを正
極活物質とする成形合剤を用いて、第1図に示すような
リチウム電池を組み立てた。上記電解液において、ピロ
リジジンはLiPF5の約0.3倍モルに相当する。
Example 1 4-methyl-! as the electrolyte! , 3-dioxolane 58
.. 1% by volume, 1,2-dimethoxyethane 38.7% by volume
and 3.2% by volume of pyrrolizidine.
Using an organic electrolyte in which iPF6 was dissolved at a concentration of 1.0 mol/dm3, a lithium-aluminum alloy containing 36 at% lithium was used as the negative electrode, and a molding mixture containing titanium disulfide as the positive electrode active material was used as the positive electrode. A lithium battery as shown in FIG. 1 was assembled. In the above electrolytic solution, pyrrolizidine is equivalent to about 0.3 times the mole of LiPF5.

第1図において、1は負極缶で、この負極缶lはステン
レス鋼製で、表面にニッケルメッキが施されており、2
はステンレス鋼製網からなる負極側の集電体で、上記負
極缶1の内面にスポット溶接されている。3は前述のリ
チウム−アルミニウム合金よりなる負極である。4は微
孔性ポリプロピレンフィルムよりなるセパレータで、5
はポリプロピレン不織布よりなる電解液吸収体であり、
前記電解液は45μl電池内に注入するが、その大部分
はこの電解液吸収体5とセパレータ4に吸蔵されている
。6は二硫化チタンを正極活物質とする合剤をペレット
状に加圧成形してなる正極であり、7はステンレス鋼製
網からなる正極側の集電体である。8はステンレスtI
製で表面にニッケルメッキを施した正極缶で、9はポリ
プロピレン製の環状ガスゲットである。そして、この電
池の負極の理論電気量は約20mAhで、正極の理論電
気量は約8mAhである。
In Fig. 1, 1 is a negative electrode can, this negative electrode can l is made of stainless steel, and the surface is nickel plated, and 2
is a current collector on the negative electrode side made of a stainless steel mesh, and is spot welded to the inner surface of the negative electrode can 1. 3 is a negative electrode made of the aforementioned lithium-aluminum alloy. 4 is a separator made of microporous polypropylene film;
is an electrolyte absorber made of polypropylene nonwoven fabric,
45 μl of the electrolytic solution is injected into the battery, but most of it is occluded by the electrolytic solution absorber 5 and the separator 4. 6 is a positive electrode formed by pressure molding a mixture containing titanium disulfide as a positive electrode active material into a pellet shape, and 7 is a current collector on the positive electrode side made of a stainless steel mesh. 8 is stainless steel tI
The positive electrode can has a nickel-plated surface, and 9 is a polypropylene annular gas get. The theoretical amount of electricity of the negative electrode of this battery is about 20 mAh, and the theoretical amount of electricity of the positive electrode is about 8 mAh.

実施例2 電解液として4−メチル−1,3−ジオキソラン57.
8容量%、1.2−ジメトキシエタン38.6容量%お
よびとココリジン3.6容量%からなる混合溶媒にLi
PF6を1,0猷01/dm3となるように溶解した有
機電解液を用いたほかは実施例1と同様のリチウム電池
を組み立てた。上記電解液においてピロコリジンはLi
PF6の約0.3倍モルに相当する。
Example 2 4-methyl-1,3-dioxolane 57.
Li was added to a mixed solvent consisting of 8% by volume, 38.6% by volume of 1,2-dimethoxyethane, and 3.6% by volume of cocolidine.
A lithium battery was assembled in the same manner as in Example 1, except that an organic electrolyte in which PF6 was dissolved at a concentration of 1.0 01/dm3 was used. In the above electrolyte, pyrocollidine is Li
It corresponds to about 0.3 times the mole of PF6.

実施例3 電解液に4−メチル−1,3−ジオキソラン57.6容
量%、1,2−ジメトキシエタン38.4容量%、キノ
リノジン4.0容量%の混合溶媒にl、1PF6を1、
Omol/da3 となるように溶解した有機電解液を
用いたほかは実施例1と同様のリチウム電池を組み立て
た。上記電解液においてキノリジノンは1.1PF6の
約0.3倍モルである。
Example 3 An electrolytic solution containing 57.6% by volume of 4-methyl-1,3-dioxolane, 38.4% by volume of 1,2-dimethoxyethane, and 4.0% by volume of quinolinodine was mixed with 1 liter of PF6,
A lithium battery was assembled in the same manner as in Example 1, except that an organic electrolyte dissolved in Omol/da3 was used. In the above electrolytic solution, quinolidinone is about 0.3 times mole of 1.1PF6.

比較例1 電解液として4−メチル−1,3−ジオキソラン60容
量%、1.2−ジメトキシエタン40容量%からなる混
合溶媒にl、1PFsを1.0 mol/c1w3とな
るように溶解した有機電解液を用いたほかは実施例1と
同様のリチウム電池を組み立てた。
Comparative Example 1 An organic electrolyte in which 1PFs was dissolved at 1.0 mol/c1w3 in a mixed solvent consisting of 60% by volume of 4-methyl-1,3-dioxolane and 40% by volume of 1,2-dimethoxyethane. A lithium battery similar to that in Example 1 was assembled except that an electrolytic solution was used.

比較例2 電解液として4−メチル−1,3−ジオキソラン60容
量%、1,2−ジメトキシエタン34.8容量%および
ヘキサメチルホスホリックトリアミド5.2容量%から
なる混合溶媒にl、1PF6を1.Omol/d+e3
となるように熔解した有機電解液を用いたほかは実施例
1と同様のリチウム電池を組み立てた。上記電解液にお
いてへキサメチルホスホリックトリアミドは1−iPF
6の約0.3倍モルに相当する。
Comparative Example 2 In a mixed solvent consisting of 60% by volume of 4-methyl-1,3-dioxolane, 34.8% by volume of 1,2-dimethoxyethane and 5.2% by volume of hexamethylphosphoric triamide as an electrolytic solution, 1PF6 was added. 1. Omol/d+e3
A lithium battery was assembled in the same manner as in Example 1, except that an organic electrolyte was used which was melted so as to be as follows. In the above electrolyte, hexamethylphosphoric triamide is 1-iPF
This corresponds to about 0.3 times the mole of 6.

上記実施例1〜3の電池および比較例1〜2の電池を6
0℃で貯蔵し、貯蔵に伴う10kHz内部抵抗変化を調
べた。その結果を第2図に示す、また、実施例1〜3の
電池および比較例2の電池について1.0m Aの定電
流で0.5mAhの充放電を1.5〜2.5■の電圧範
囲でサイクルさせた時の0.5mAh放電終了時の放電
終止電圧とサイクル数との関係を第3図に示す。
The batteries of Examples 1 to 3 and the batteries of Comparative Examples 1 to 2 were
It was stored at 0°C, and the change in internal resistance at 10 kHz due to storage was examined. The results are shown in Figure 2.For the batteries of Examples 1 to 3 and the battery of Comparative Example 2, charging and discharging of 0.5mAh at a constant current of 1.0mA was performed at a voltage of 1.5 to 2.5μ. FIG. 3 shows the relationship between the end-of-discharge voltage at the end of 0.5 mAh discharge and the number of cycles when cycled within the range.

第2図に示すように、添加剤を何ら添加していない比較
例1の電池では貯蔵日数の増加に伴って内部抵抗の著し
い増加が生じたが、本発明の実施例1〜3の電池ではそ
のような大きな内部抵抗の増加は見られず、貯蔵性が優
れていた。これは電解液中に添加したピロリジジン、ピ
ロコリジン、キノリジノンなどにより電解液の熱安定性
が大きく向上したことによるものと思われる。また、本
発明の実施例1〜3の電池は、ヘキサメチルホスホリッ
クトリアミドを添加した比較例2の電池に比べても貯蔵
による内部抵抗増加が少なかった。
As shown in FIG. 2, in the battery of Comparative Example 1 to which no additives were added, the internal resistance significantly increased as the number of days of storage increased, but in the batteries of Examples 1 to 3 of the present invention, No such large increase in internal resistance was observed, and the storage property was excellent. This seems to be due to the fact that the thermal stability of the electrolyte was greatly improved by the addition of pyrrolizidine, pyrocollidine, quinolidinone, etc. to the electrolyte. Furthermore, the batteries of Examples 1 to 3 of the present invention showed less increase in internal resistance due to storage than the battery of Comparative Example 2 in which hexamethylphosphoric triamide was added.

そして、充放電特性に関しては、第3図に示すように、
ヘキサメチルホスホリックトリアミドを添加した比較例
2の電池に比べて、各サイクルにおける0、5m A 
h放電終了時の放電終止電圧が高く、また、■、5v終
止で見た場合の0.5m A h放電可能なサイクル数
も多く、充放電特性が優れていた。
As for the charge/discharge characteristics, as shown in Figure 3,
0.5 mA in each cycle compared to the battery of Comparative Example 2 with hexamethylphosphoric triamide added.
The final discharge voltage at the end of h discharge was high, and the number of cycles capable of 0.5 mA h discharge was large when viewed from ■, 5V end, and the charge/discharge characteristics were excellent.

なお、上記実施例等では、一般式(+)で示されるルイ
ス酸リチウム塩として、LiPF5を例にあげて説明し
たが、本発明の効果は、l、1PF6に代えてLiAs
F6、LiSbF6、LiBF4などを用いる場合にも
、LiPF6の場合と同様に奏されるものである。
In the above Examples, LiPF5 was used as an example of the Lewis acid lithium salt represented by the general formula (+), but the effect of the present invention is that LiAs
Even when F6, LiSbF6, LiBF4, etc. are used, the performance is similar to that of LiPF6.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、ピロリジジン、ピロ
コリジン、キノリジノンなどの二環性の三級アミンを添
加することによって、電解液の熱安定性を高め、貯蔵性
を向上させると共に、二次電池とした場合の充放電特性
を高めることができた。
As explained above, in the present invention, by adding a bicyclic tertiary amine such as pyrrolizidine, pyrocollidine, or quinolidinone, the thermal stability of the electrolytic solution is increased, the storage property is improved, and the storage capacity is improved. We were able to improve the charge/discharge characteristics when

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るリチウム電池の一例を示す断面図
である。第2図は本発明の実施例1〜3の電池と比較例
1〜2の電池の貯蔵に伴う10kHz内部抵抗変化を示
す図であり、第3図は本発明の実施例1〜3の電池と比
較例2の電池の充放電サイクルを繰り返したときの0.
5mAh放電終了時の放電終止電圧と充放電サイクル数
との関係を示す図である。 3・・・質権、 4・・・セパレータ、 5・・・電解
液吸収体、 6・・・正極 第 1 図 3− 貞柚 第2図 片放痢間(日)
FIG. 1 is a sectional view showing an example of a lithium battery according to the present invention. FIG. 2 is a diagram showing the 10 kHz internal resistance change during storage of the batteries of Examples 1 to 3 of the present invention and the batteries of Comparative Examples 1 to 2, and FIG. and 0.0 when the battery of Comparative Example 2 was repeatedly charged and discharged.
It is a figure which shows the relationship between the end-of-discharge voltage at the end of 5mAh discharge, and the number of charging/discharging cycles. 3...Pledge, 4...Separator, 5...Electrolyte absorber, 6...Positive electrode No. 1 Figure 3 - Teiyu Figure 2 Piezodiarrhea (day)

Claims (3)

【特許請求の範囲】[Claims] (1)正極と、リチウムまたはリチウム合金からなる負
極を有し、溶質が一般式(I) LiMFn(I) (式中、MはP、As、SbまたはBで、nはMがP、
AsまたはSbのとき6であり、MがBのとき4である
)で示されるルイス酸リチウム塩で、溶媒が有機溶媒で
あり、かつ添加剤として一般式(II) ▲数式、化学式、表等があります▼ (式中、lは3〜6、mは0〜2、nは3〜6であり、
Rは水素原子または炭素数1〜3のアルキル基である)
で示される二環性の三級アミンが添加された有機電解液
を用いたことを特徴とするリチウム電池。
(1) It has a positive electrode and a negative electrode made of lithium or a lithium alloy, and the solute has the general formula (I) LiMFn(I) (wherein M is P, As, Sb or B, n is M,
6 when As or Sb, 4 when M is B), the solvent is an organic solvent, and the additive is general formula (II) ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, l is 3 to 6, m is 0 to 2, n is 3 to 6,
R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms)
A lithium battery characterized by using an organic electrolyte to which a bicyclic tertiary amine represented by:
(2)一般式(II)で示される二環性の三級アミンがピ
ロリジジン、ピロコリジンまたはキノリジジンである特
許請求の範囲第1項記載のリチウム電池。
(2) The lithium battery according to claim 1, wherein the bicyclic tertiary amine represented by general formula (II) is pyrrolizidine, pyrocollidine or quinolizidine.
(3)正極活物質が二硫化チタンである特許請求の範囲
第1項または第2項記載のリチウム電池。
(3) The lithium battery according to claim 1 or 2, wherein the positive electrode active material is titanium disulfide.
JP61061824A 1986-03-18 1986-03-18 Lithium battery Pending JPS62217578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61061824A JPS62217578A (en) 1986-03-18 1986-03-18 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61061824A JPS62217578A (en) 1986-03-18 1986-03-18 Lithium battery

Publications (1)

Publication Number Publication Date
JPS62217578A true JPS62217578A (en) 1987-09-25

Family

ID=13182221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61061824A Pending JPS62217578A (en) 1986-03-18 1986-03-18 Lithium battery

Country Status (1)

Country Link
JP (1) JPS62217578A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260374A (en) * 1989-03-31 1990-10-23 Hitachi Maxell Ltd Organic electrolyte battery
WO2003007416A1 (en) * 2001-07-10 2003-01-23 Mitsubishi Chemical Corporation Non-aqueous electrolyte and secondary cell using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260374A (en) * 1989-03-31 1990-10-23 Hitachi Maxell Ltd Organic electrolyte battery
US5085954A (en) * 1989-03-31 1992-02-04 Hitachi Maxell, Ltd. Organic electrolyte solution type cell
US5356736A (en) * 1989-03-31 1994-10-18 Hitachi Maxell, Ltd. Organic electrolyte solution type cell
WO2003007416A1 (en) * 2001-07-10 2003-01-23 Mitsubishi Chemical Corporation Non-aqueous electrolyte and secondary cell using the same
US6942948B2 (en) 2001-07-10 2005-09-13 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and secondary battery employing the same

Similar Documents

Publication Publication Date Title
US6723472B2 (en) Lithium secondary battery
TW201218480A (en) Additive for electrolytes
JP6600631B2 (en) Non-aqueous electrolyte containing monofluorophosphate ester salt and non-aqueous electrolyte battery using the same
CN107799823B (en) Electrolyte additive, electrolyte containing same and lithium secondary battery
CN103641751A (en) Alkali metal salts of binary or ternary fluorine-containing sulfimide and ionic liquid and applications thereof
JP4572602B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery and their production method
JPH06333594A (en) Nonaqueous electrolyte secondary battery
JPS62290072A (en) Organic electrolyte secondary battery
JPH0997627A (en) Nonaqueous electrolyte and lithium secondary battery
JP2004022523A (en) Nonaqueous electrolyte secondary battery
JPH04349365A (en) Lithium battery
JPWO2003054986A1 (en) Non-aqueous electrolyte secondary battery
CN104659417B (en) Lithium ion battery high-voltage electrolyte
TWI493769B (en) Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JPH11111332A (en) Nonaqueous electrolyte battery
CN105428720A (en) Non-aqueous electrolyte, preparation method therefor and lithium secondary battery
JPH0630257B2 (en) Organic electrolyte battery
JPH02148665A (en) Electrolyte for lithium secondary battery
JP4253921B2 (en) Lithium secondary battery
JPS62217578A (en) Lithium battery
JPS62217575A (en) Lithium battery
JPS62217576A (en) Lithium battery
JPH0495362A (en) Nonaqueous electrolytic battery
JPS6280977A (en) Organic electrolyte battery
JPS61214377A (en) Organic electrolyte battery