JP4253921B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4253921B2
JP4253921B2 JP13142199A JP13142199A JP4253921B2 JP 4253921 B2 JP4253921 B2 JP 4253921B2 JP 13142199 A JP13142199 A JP 13142199A JP 13142199 A JP13142199 A JP 13142199A JP 4253921 B2 JP4253921 B2 JP 4253921B2
Authority
JP
Japan
Prior art keywords
graphite
carbon material
secondary battery
methyl
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13142199A
Other languages
Japanese (ja)
Other versions
JP2000323169A (en
Inventor
泰爾 井川
亨 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP13142199A priority Critical patent/JP4253921B2/en
Publication of JP2000323169A publication Critical patent/JP2000323169A/en
Application granted granted Critical
Publication of JP4253921B2 publication Critical patent/JP4253921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【技術分野】
本発明は,リチウム二次電池,特に,温度特性に優れたリチウム二次電池に関する。
【0002】
【従来技術】
リチウム二次電池は,これまでの種々の二次電池の中でも重量が軽く,充放電電圧が高く,充放電容量も大きいという特徴を有しており,種々の用途に活用できる二次電池として期待されている。
従来のリチウム二次電池は,金属リチウムを負極として用いるものが主流であった。これに対し,近年では,新しい活物質として炭素材料が注目されている。炭素材料としては,黒鉛やコークス等が代表例として挙げられる。
【0003】
【解決しようとする課題】
ところで,上記炭素材料は,有機溶媒からなる電解液を分解しやすい。特に,温度特性に優れるプロピレンカーボネート(炭酸プロピレン)を含有する電解液を使用した場合,プロピレンカーボネートと炭素材料が激しく反応して容量が大幅に低下してしまうという問題を抱えていた。
【0004】
この問題を解決するために,プロピレンカーボネートに代わる溶媒として,エチレンカーボネート(炭酸エチレン)を主溶媒とする電解液が一般に用いられている。
エチレンカーボネートを主溶媒とする電解液は,炭素材料との反応性が比較的低く,電池容量やサイクル特性に優れる。しかし,エチレンカーボネートは,室温で固体であるという性質を有しているため,低温になるとエチレンカーボネートが析出,あるいは電解液が凝固するという状況が起こり,低温での充放電特性を低下させるという問題を抱えている。
【0005】
また,りん酸エステルに代表されるようなりんを含有する分子や,分子内にハロゲン原子を含む分子など,難燃性の高い分子を電解液溶媒として適用しようとした場合においても,やはり炭素材料との激しい反応により,放電容量の減少,サイクル特性の悪化等の問題が生じる。
【0006】
炭素材料と電解液溶媒との反応を抑制する手段として,次に挙げるような手法が知られている。
例えば,特開平4−237638号公報,特開平5−121066号公報,特開平9−237638号公報等に見られるように,黒鉛の表面に非晶質炭素を付着させて黒鉛表面の反応性の高い部位を被い,電解液溶媒との反応を抑制する手法がある。
【0007】
しかしながら,このような手法では,炭素材料としての黒鉛の表面に非晶質炭素を付着させるという煩雑な工程を経る必要があり,コスト面での問題がある。また,非晶質炭素によって黒鉛表面を完全に被覆することが困難であるという問題を抱えている。
【0008】
また,特開平10−255836号公報,特開平9−22722号公報に見られるように,安息香酸エステルを電解液に添加あるいは電解液溶媒として適用し,その炭素材料表面に生成する被膜により炭素材料を安定化してサイクル特性の改善を図るという手法がある。しかし,この場合には,例えば,プロピレンカーボネートのような反応性の高い溶媒を用いる場合には,炭素材料とプロピレンカーボネートとの反応を抑制するには充分ではなく,放電容量の減少などの問題が生じる。
【0009】
また,特開平9−180721号公報に見られるように,フッ素置換炭酸エステルに代表されるフッ素置換化合物を溶媒とする電解液中で黒鉛電極を酸化還元処理した後に,プロピレンカーボネートあるいはりん酸エステルを含有する電解液に変更する方法が挙げられる。この方法では電気化学的処理を行った後に電解液を変更するという煩雑な工程を必要とし,また,フッ素置換化合物の適用範囲が溶媒全体に対して10体積%から90体積%程度必要であることが記述されており,コストの問題を抱えるフッ素置換化合物を大量に使用する必要がある。
【0010】
なお,上記炭素材料と電解液との反応の問題は,炭素材料を負極活物質として用いる場合だけでなく,これを正極活物質として用いる場合にも同様に生じうる。
【0011】
本発明は,かかる従来の問題点に鑑みてなされたもので,炭素材料を電極活物質とするリチウム二次電池において,炭素材料と電解液の反応を抑制して充放電効率を向上し,さらに,従来適用できなかった溶媒を電解液に適用することができる手法を容易にかつ低コストで提供し,温度特性や難燃性に優れるリチウム二次電池を提供しようとするものである。
【0012】
【課題の解決手段】
請求項1の発明は,炭素材料を活物質として含有すると共に,リチウム塩を有機溶媒に溶解した非水電解液を有するリチウム二次電池において,
上記非水電解液は,「図1」に示す一般式(I)により表され,該式(I)におけるR1〜R5はH,F,CF3のうちのいずれかであると共に少なくとも1つはFまたはCF3であり,かつRHはCn2n+1(1≦n≦3)であるフッ素化またはトリフルオロメチル化した安息香酸エステル化合物を含有していることを特徴とするリチウム二次電池にある。
【0013】
本発明において最も注目すべきことは,上記非水電解液に,芳香環をフッ素基またはトリフルオロメチル基により置換した安息香酸エステル化合物を含有させていることである。
【0014】
このフッ素化あるいはトリフルオロメチル化安息香酸エステル化合物は,これが,炭素材料の表面で電気化学的にかつ局所的に分解した場合に生じるアニオンが,フッ素基またはトリフルオロメチル基で置換した芳香環により安定化されることに特徴がある。なお,炭素材料表面で局所的に分解させるためには,芳香環に結合する官能基がエステル基であることが必要である。
この場合の式(I)で表される化合物(図1)の推定反応機構は,次の式(II)により表される。
式(II):RF(Ar)COORH+e → RF(Ar)COO+・RH
ここで,RF(Ar)は式(I)における芳香環を表している。
【0015】
生成したカルボン酸アニオンは,フッ素基またはトリフルオロメチル基によって電子吸引性が強化された芳香環によって安定化する。そのため,式(I)におけるR1〜R5のうち少なくとも一つは,電子吸引性の強いフッ素基(−F)またはトリフルオロメチル基(−CF3)である必要がある。また,置換基であるフッ素基またはトリフルオロメチル基の数が多いほどカルボン酸アニオンの安定性が増加する。また,フッ素基とトリフルオロメチル基が混在して置換されていても良い。
【0016】
また,式(I)におけるRHとしてのCn2n+1において1>nの場合には,プロトン酸となるため,電解液溶媒を重合させてしまったり,電極活物質から元素を溶解させたり,バインダーを分解させたりするという問題が生じる。また,n>3では,分子の粘性が高くなるため,微小量の添加であっても電解液の粘度が増大し,イオン導電性が低下したり,分解時に発生するガスが,電極や電極活物質を破壊するという弊害が生じる。
【0017】
本発明は,炭素材料からなる電極活物質の初回還元反応時にフッ素化またはトリフルオロメチル化した安息香酸エステル化合物を活物質表面で電気化学的に分解させて,安定なアニオンからなる被膜を活物質の表面に選択的に形成することに特徴がある。あらかじめフッ素化またはトリフルオロメチル化した安息香酸塩を電解液に添加する手法では,活物質表面に選択的に被膜を形成させるのは困難である。
【0018】
次に,上記非水電解液は,溶媒と支持塩とより構成される。本発明は,この溶媒と支持塩を合わせた全体重量を100%とした場合に,その中に0.05〜5重量%のフッ素化またはトリフルオロメチル化した安息香酸エステル化合物を含有させることが好ましい。このフッ素化またはトリフルオロメチル化した安息香酸エステル化合物は,1種類でもよく,2種以上を混合させてもよい。
【0019】
フッ素化またはトリフルオロメチル化した安息香酸エステル化合物は,上記の0.05〜5.0wt%程度の微少量で十分な効果を発揮し,比較的高価であるフッ素化合物を大量に使用することなく,炭素材料表面に被膜を形成することができる。
上記添加量が0.05wt%未満では,炭素材料の表面に十分に被膜を形成することができず,十分な効果が得られないおそれがある。また,5.0wt%を超える場合には,電池特性に影響を及ぼすおそれがある。
【0020】
なお,フッ素化またはトリフルオロメチル化した安息香酸エステル化合物を含む電解液中で炭素材料の表面を電気化学的に被覆した後に,他の電解液に入れ替えて使用することも可能である。しかし,この方法では生産コストなどに問題を抱えるため,目的の機能を持った電解液にフッ素化またはトリフルオロメチル化した安息香酸エステル化合物を最初に添加してそのまま使用することが望ましい。
【0021】
上記特定のフッ素化またはトリフルオロメチル化した安息香酸エステル化合物としては,例えば,2−フルオロ安息香酸メチル,3−フルオロ安息香酸メチル,4−フルオロ安息香酸メチル,2,6−ジフルオロ安息香酸メチル,2,3,4,5,6−ペンタフルオロ安息香酸メチル,2−トリフルオロメチル安息香酸メチル,3,トリフルオロメチル安息香酸メチル,4−トリフルオロメチル安息香酸メチル,2,6−ジトリフルオロメチル安息香酸メチル,2,6−ジフルオロ安息香酸エチル,2,6−ジフルオロ安息香酸プロピル等が挙げられる。
【0022】
また,本発明は,上記フッ素化またはトリフルオロメチル化した安息香酸エステル化合物を電解液へ添加することにより,これまで炭素材料を電極活物質として含むリチウム二次電池に適用が困難であった電解液溶媒を適用可能にするものである。本発明により,炭素材料を含有するリチウム二次電池に適用可能となる溶媒としては,例えば次のものがある。
【0023】
プロピレンカーボネート,ブチレンカーボネート,ビニレンカーボネートに代表される環状炭酸エステル,ガンマブチロラクトン,ガンマバレロラクトンなどに代表される環状エステル,ジエチルカーボネート,ジメチルカーボネート,エチルメチルカーボネートに代表される鎖状炭酸エステル,酢酸メチル,酢酸エチル,プロピオン酸メチルに代表される鎖状エステル,1,2−ジメトキシエタン,テトラヒドロフラン,メチルテトラヒドロフランに代表されるエーテル類などが挙げられる。
【0024】
また,スルホラン,3−メテルスルホラン,ブタンスルトン,ジメチルサルファイトなどに代表される分子内に硫黄原子を含む分子,ジメチルホルムアミドに代表される分子内に窒素を含む分子,りん酸トリメチルに代表される分子内にりんを含む分子,上記した分子の一部をフッ素,塩素,臭素などのハロゲン元素で置換した分子なども挙げることができる。
【0025】
これらの分子は,炭素材料との反応性が高く,単独あるいはエチレンカーボネートなどと混合した場合においても電解液溶媒として用いることが困難であった。上述した分子のうち,幾種類かは,エチレンカーボネートと混合して電解液溶媒として一般に用いられているものもあるが,本発明によりエチレンカーボネートと混合することなく電解液溶媒として用いることができるようになる。
【0026】
また,プロピレンカーボネート,スルホラン,りん酸トリメチルなどのように,エチレンカーボネートと混合した上でも炭素材料と反応してしまい,溶媒として用いることができない分子も,本発明により適用可能となる。これらの分子は,その使用目的に応じてエチレンカーボネートとの混合溶媒として用いることができる。
【0027】
また,上記フッ素化またはトリフルオロメチル化した安息香酸エステル化合物を添加した溶媒と,エチレンカーボネートとの混合により,より炭素材料電極との安定性が増し,サイクル特性,エネルギー密度等が向上する。エチレンカーボネートを混合する場合には,その含有率が高すぎると電解液の低温特性が悪化してしまうので,その含有率は50%以下が望ましい。
【0028】
また,上記負極活物質に用いる炭素材料としては,例えば,黒鉛,コークス類,生コークスを焼成したカーボン穎などを用いることができる。
また,上記黒鉛としては,コークス,メソカーボンマイクロビーズ(MCMB),メソフェーズピッチ系炭素繊維,熱分解気相成長炭素繊維などの易黒鉛化炭素を原料としてそれらを熱処理し黒鉛性を高めた炭素材料,黒鉛ウィスカー,天然黒鉛などが挙げられる。
【0029】
また,上記炭素材料としては,黒鉛結晶表面をアモルファス系の炭素材料で被覆したものを適用することができる。さらに,黒鉛結晶表面を銀や錫化合物などの微粒子で被覆したものを適用することもできる。このような被覆材は,電解液溶媒と炭素材料との反応性を更に減少させることができる。
【0030】
また,上記炭素材料は,正極活物質として用いられても良く,負極活物質として用いられても良い。
正極活物質に炭素材料を用いた電池として代表的なものに,正極に黒鉛,負極にリチウム金属を用いたリチウム二次電池が挙げられる。一方,負極活物質に炭素材料を用いた電池として代表的なものに,負極に黒鉛,正極にマンガン酸リチウム,コバルト酸リチウム,ニッケル酸リチウムに代表されるリチウム金属酸化物を用いたリチウム二次電池などが挙げられる。
【0031】
また,上記支持塩としては,例えば,LiPF6,LiBF4,LiClO4,LiAsF6,LiN(CF3SO22,LiN(CF3CF2SO22などのリチウム塩が挙げられるが,この限りではない。
また,例えばLiBF4のように負極活物質と反応して被膜を作りサイクル劣化が著しい支持塩においても,本発明により,支持塩と炭素材料との反応を抑制することができる。それ故,本発明では,これまで炭素材料と反応してサイクル劣化が著しいなどの理由から適用が困難であった支持塩も適用することが可能となる。
【0032】
次に,本発明の作用効果につき説明する。
本発明は,上記非水電解液に上記特定のフッ素化またはフルオロアルキル化した安息香酸エステル化合物を含有させてある。そのため,上記のごとく,炭素材料を活物質とした場合に炭素材料と電解液の反応を抑制して充放電効率を向上し,さらに,従来適用することができなかった優れた溶媒を電解液に適用することができる。それ故,本発明によれば,温度特性や難燃性に優れるリチウム二次電池を提供することができる。
【0033】
即ち,炭素材料を電極活物質として含むリチウム二次電池において,上記式(I)で表されるフッ素化またはトリフルオロメチル化した安息香酸エステル化合物を電解液に添加した場合には,初回還元時に,炭素材料の電位が1.3−1.1V(対Li/Li)に変位した時点で,炭素材料の表面においてフッ素化またはトリフルオロメチル化した安息香酸エステル化合物を分解させて,炭素材料の表面に選択的に被膜を形成させることができる。
【0034】
その被膜は,リチウムイオンの透過性が高く,かつ,電解液溶媒と炭素材料との反応を抑制する。そのため,従来黒鉛系炭素材料には適用が困難であるとされてきたプロピレンカーボネートなどの様々な溶媒を電解液溶媒として適用することができる。
【0035】
次に,請求項2の発明のように,上記炭素材料は黒鉛であることが好ましい。炭素材料としては,上記のごとく,黒鉛やコークス等が代表例として挙げられる。このうち,特に黒鉛は結晶性が高い炭素材料であり,結晶性の低いコークスなどとの比較において,電位が平坦であり,不可逆容量が小さい等の利点を有している。そのため,黒鉛を活物質として用いることでエネルギー密度の高い有用なリチウム二次電池を得ることができる。
【0036】
また,請求項3の発明のように,負極活物質としては上記炭素材料を,正極活物質としてはリチウム金属複合酸化物を用いることが好ましい。この場合には,特に,例えば気温60℃を超えるような高温下での充放電サイクル特性に優れたリチウム二次電池を提供することができる。
【0037】
この理由は以下のように考えることができる。
まず,電池や電極材料の電流−電位曲線の解析から,本発明におけるフッ素化またはフルオロアルキル化した安息香酸エステル化合物は,電池の1サイクル目の充電時に負極電位が1.3−1.1V(対Li/Li)付近で,負極の炭素材料と反応していることが明らかになった。また,2サイクル目以降,その反応は観測されなかった。以上の結果から,1サイクル目の充電時に負極活物質とフッ素化またはフルオロアルキル化した安息香酸エステル化合物とが反応して負極表面に被膜を形成していると予想される。
そして,この被膜が非常に良好な性質を持っており,例えば,電解液溶媒と負極活物質との反応を抑止する効果や,正極より溶出した金属イオンの負極上での析出を防止する効果があると考えられる。
【0038】
なお,上記正極活物質として用いるリチウム金属複合酸化物としては,例えば,LiMn24,LiV24等のスピネル構造のもの,LiMnO2,LiCoO2,LiNiO2等の層状化合物,これら化合物を異種元素で置換したもの等がある。
【0039】
【発明の実施の形態】
実施形態例1
本例では,本発明における作用のメカニズムを解明すべく,炭素材料とプロピレンカーボネート(PC)を含有する非水電解液との反応を明らかにした。即ち,三極式セルを用いたサイクリックボルタモグラム(CV)測定により,黒鉛を活物質とする正極と,フッ素化安息香酸エステル化合物を添加したPCを含有する非水電解液との反応を明らかにした。そして,フッ素化安息香酸エステル化合物がPCと黒鉛の反応を抑制し,PCを溶媒とする電解液中においても黒鉛がスムーズに充放電することを示した。
以下,実施例E1と3つの比較例C1〜C3とを用いて説明する。
【0040】
(実施例E1)
先ず,黒鉛製電極の作製方法を述べる。
球状人造黒鉛(大阪ガス製,MCMB25−28)を電極活物質として95重量部,結着材としてポリフッ化ビニリデンを5重量部混合し,さらに,N−メチル−2−ピロリドンで混練し,電極材ペーストを得た。これを帯状の銅箔の片面に塗工し,N−メチル−2−ピロリドンを気化させて除いた後,圧縮成形し帯状電極シートを得た。電極シートを18mmφの円盤状に打ち抜き電極とした。
【0041】
次に,CV測定用セルについて述べる。上述した黒鉛を活物質とする電極を作用極とし,19mmφの円盤状リチウム箔を対極として,ポリエチレンセパレーターを介してはさみ,参照極としてリチウムチップを備えたコイン型三極式セルに納めた。
【0042】
その後,エチレンカーボネート(EC;富山薬品工業製),PC(富山薬品工業製)とジエチルカーボネート(DEC;富山薬品工業製)を体積比(3:4:7)の割合で混合した溶媒に,LiPF6(富山薬品工業製)を1モル/リットルの濃度に溶解させた。この電解液に,2,6−ジフルオロ安息香酸メチル(シンクエスト製)を0.5wt%の濃度で溶解させ,電解液を調製した。この電解液を上記コイン型三極式セルに注入した後,これを封かんした。
【0043】
CV測定は,次のように行った。
北斗電工製HA3001型ポテンシオスタットを用いて,黒鉛電極の自然電極電位である(約3V/対Li/Li+)より,掃引速度0.1mV/secで0V(対Li/Li+)まで掃引し,0Vに到達したら直ちに電位の掃引方向を逆転し,約3Vまで掃引することにより,CV測定を行った。
【0044】
(比較例C1)
電解液に,2,6−ジフルオロ安息香酸メチルの代わりに安息香酸メチルを0.5wt%で添加したこと以外は,実施例E1と同様にして,コイン型三極式セルを作製し,CV測定を行った。
【0045】
(比較例C2)
2,6−ジフルオロ安息香酸メチルを添加しなかったこと以外は,実施例E1と同様にして,コイン型3極式セルを作製し,CV測定を行った。
【0046】
(比較例C3)
電解液溶媒にECとDECを体積比(3:7)の割合で混合した溶媒を用いて,2,6−ジフルオロ安息香酸メチルを添加しなかったこと以外は,実施例E1と同様にして,コイン型三極式セルを作製し,CV測定を行った。
表1にCV測定用に用いた電解液の組成をまとめた。
【0047】
【表1】

Figure 0004253921
【0048】
図2には実施例E1と比較例C1の,図3には比較例C2とC3のCV測定結果をそれぞれ示す。
図2及び図3は,横軸に電位(V(対Li/Li+)を,縦軸に電流(mA)をとったものである。
【0049】
図3の比較例C3に見られるように,ECとDECの混合溶媒を用いた一般的な電解液では,0.9V(対Li/Li+)において還元電流(マイナス側)が流れ始め,0.5V(対Li/Li+)以下の電位領域において強く還元電流が流れる。それに対応する酸化電流(プラス側)が0〜0.88(対Li/Li+)に流れる様子が観測されるがこれらの電流は,黒鉛層間へのリチウムイオンの挿入・脱離反応に対応する。
【0050】
それに対して,比較例C2にみられるように,PCを溶媒として用いた電解液は,初回掃引時に,0.9V(対Li/Li+)より,C3よりも大きな還元電流が流れる。この還元電流は,電気化学62巻,1023頁(1994)や電気化学61巻,421頁(1993)等によれば,黒鉛の表面におけるPCの分解反応に起因して生じる電流である。このPC分解により黒鉛層が破壊されて,リチウムイオンの脱離に対応する酸化電流値が小さくなっている。
【0051】
一方,図2の実施例E1に見られるように,2,6−ジフルオロ安息香酸メチルを添加した電解液では,初回掃引時に,1.3〜1.1V(対Li/Li+)において,小さな還元電流のピークが観測される。これは,2,6−ジフルオ口安息香酸メチルの還元分解に起因する電流である。比較例C2に観測された0.9V(対Li/Li+)より生じるPCの分解電流は,E1においては観測されなかった。しかも,リチウムイオンの脱離・挿入反応に対応する酸化・還元電流が比較例C3と同様に観測された。
【0052】
ところが,比較例C1の芳香環がフッ素基で置換されていない安息香酸メチルを添加した電解液においては1.1V(対Li/Li+)より還元電流が流れ始め,0.8−0.9V(対Li/Li+)にピークを持つ強い還元電流が観測された。また,実施例E1に対してリチウムイオンの脱離に対応する酸化電流値が小さくなっている。
実施例E1と比較例C1の比較から.安息香酸メチルよりも安息香酸メチルの芳香環をフッ素化した2,6−ジフルオロ安息香酸メチルを添加することで高い充放電効率が得られることが明らかである。
【0053】
以上の結果より,次のような反応機構が推定される。
2,6−ジフルオロ安息香酸メチルを添加すると,初回掃引時に,1.3−1.1V(対Li/Li+)の電位において2,6−ジフルオロ安息香酸メチルが還元分解する。その還元分解生成物が黒鉛表面を被う被膜となり,PCと黒鉛の反応を抑制する。その被膜は,リチウムイオンの透過性が高く,黒鉛層間へのリチウムイオンの脱離,挿入はスムーズに進行する。
【0054】
一方,安息香酸メチルを添加した場合には,安息香酸メチルの還元分解反応が1.1V(対Li/Li+)より生じるが,PCと黒鉛の反応を抑制するような被膜は生成せず,PCの分解と安息香酸メチルの分解反応が同時に起こり,黒鉛層を破壊していく。それにより,容量が低下してリチウムイオンの脱離に対応する酸化電流値が小さくなっている。
【0055】
このように,芳香環がフッ素化された安息香酸メチルを添加すると,黒鉛とPCの反応を抑制し,高い充放電効率が得られることが明らかになった。
尚,本例の実施例E1では,添加剤として2,6−ジフルオロ安息香取メチルを挙げたが,安息香酸メチルの芳香環をトリフルオロメチル化した安息香酸エステル類を用いた場合にも本例と同様の効果が得られる。
また,溶媒としてPCを代表例に挙げたが,りん酸エステルやガンマブチロラクトンのような黒鉛との反応性が高い溶媒においても,本例の実施例E1と同様の効果が得られる。
【0056】
実施形態例2
本例では,正極活物質としてリチウムマンガン酸化物を,負極活物質として黒鉛を,電解液としてフルオロ安息香酸エステル化合物を添加したPCを合有する電解液を用いたリチウム二次電池の60℃サイクル特性について調べ,黒鉛を負極活物質とするリチウム二次電池にPC溶媒系電解液を適用することができることを示した。
以下,実施例E2と3つの比較例C4,C5及びC6を用いて説明する。
【0057】
(実施例E2)
次のように,円筒型リチウム二次電池を作製した。
先ず,正極の作製法を以下に述べる。
Li1.10Mn1.904(本荘ケミカル製)の組成式で表されるリチウムマンガン酸化物を正極活物質として85重量部,導電剤として黒鉛を10重量部,結着剤としてポリフッ化ビニリデンを5重量部混合し,さらに,N−メチル−2−ピロリドンを加えて混練し,正極材ペーストを得た。これを帯状のアルミニウム箔の両面に塗工し,N−メチル−2−ピロリドンを気化させ除いた後,圧縮成形し,帯状正極を得た。
【0058】
次に,負極の作製法を以下に述べる。
球状人造黒鉛(大阪ガス製,MCMB25−28)を負極活物質として95重量部,結着剤としてポリフッ化ビニリデンを5重量部混合し,さらに,N−メチル−2−ピロリドンを加えて混練し,負極材ペーストを得た。これを帯状の銅箔の両面に塗工し,N−メチル−2−ピロリドンを気化させ除いた後,圧縮成形し,帯状負極を得た。
【0059】
正極と負極の集電を得るため,帯状正極にはアルミニウム製の正極リード線を溶接し,帯状負極にはニッケル製の負極リード線を溶接した。その後,厚さ25μmの微孔性ポリエチレンフィルムからなるセパレータを用いて,正極−セパレータ−負極の順に積層し,ニッケルメッキした鉄製電池缶(外径18mm,高さ65mm)に収まるように渦巻き状電極を作製した。
【0060】
電極を電池缶に収めた後,負極リード線を電池缶に溶接し,正極リード線を,アルミニウム端子を備えたポリエチレン製電池蓋の端子に溶接した。
その後,EC(富山薬品工業製)とPC(富山薬品工業製)とDEC(富山薬品工業製)を体積混合比3:4:7の割合で混合した溶媒に,LiPF6(富山薬品工業製)を1モル/リットルの濃度に溶解させた。
【0061】
この電解液に,2,6−ジフルオロ安息香酸メチル(シンクエスト製)を0.5wt%の濃度で溶解させ,その電解液を電池缶に注入した。電池缶と電池蓋をかしめることで電池蓋を固定し,直径18mm,高さ65mmの円筒形非水電解液二次電池(リチウム二次電池)を作製した。
【0062】
その後,このリチウム二次電池を用いて次の高温サイクル試験を行った。
即ち,上述のように作製した円筒型非水電解液二次電池を,温度25℃の条件下で,電流密度1mA/cm2の定電流で4.20Vまで充電した後,4.20Vの定電圧で2.5時間充電を行った。この総電流量を初回充電容量とする。その後,電流密度0.33mA/cm2の定電流で3.00Vまで放電を行った。この総放電流量を初回族電容量とする。
【0063】
次に,その電池を,温度60℃の条件下で,電流密度1mA/cm2の定電流で4.20Vまで充電した後,電流密度1mA/cm2の定電流で3.00Vまで放電を行った。この60℃における充放電サイクルを100サイクルまで行った。以下,この60℃におけるサイクル試験を高温サイクル試験と表記する。
【0064】
(比較例C4)
2,6−ジフルオロ安息香酸メチルの代わりに安息香酸メチル(和光製)を用いたこと以外は実施例E2と同様にして,非水電解液二次電池を作製し,高温サイクル試験を行った。
【0065】
(比較例C5)
2,6−ジフルオロ安息香酸メチルを添加しなかったこと以外は実施例E2と同様にして,非水電解液二次電池を作製し,高温サイクル試験を行った。
【0066】
(比較例C6)
ECとDECを体積混合比3:7の割合で混合した溶媒を用い,2,6−ジフルオロ安息香酸メチルを添加しなかったこと以外は実施例E2と同様にして,非水電解液二次電池を作製し,高温サイクル試験を行った。
表2に,実施例E2並びに比較例C4〜C6に用いた電解液の構成を示す。
【0067】
【表2】
Figure 0004253921
【0068】
表3に,各電解液を用いた電池の初回充電容量と初回放電容量を示す。また,60℃の高温サイクル試験の結果を図4にまとめた。同図は,横軸に充放電サイクル数を,縦軸に正極活物質あたりの放電容量(mAh/g)をとったものである。
【0069】
表3より明らかなように,2,6−ジフルオロ安息香酸メチルを添加した実施例E2は,一般的に用いられている電解液を用いた比較例C6と同等の放電容量を示した。それに対して,比較例C5の電解液を用いた場合には,黒鉛負極がPCの分解によって破壊され,放電容量が少ない。また,比較例C4のように,安息香酸メチルを添加すると,無添加のC5よりも放電容量が増加するものの,実施例E2には及ばない。
【0070】
また,図4の60℃の高温サイクル特性に見られるように,実施例E2の電解液は,一般に使用されている比較例C6の電解液よりも高温サイクル特性に優れていることが明らかになった。
【0071】
以上の結果から,2,6−ジフルオロ安息香酸メチルを添加することにより,PCを溶媒として用いた電解液を,黒鉛を活物質とするリチウム二次電池に適用できることが明らかになった。
尚,本例の実施例E2においては,添加剤として2,6−ジフルオロ安息香酸メチルを挙げたが,安息香酸メチルの芳香環をトリフルオロメチル化した安息香酸エステル類を用いた場合にも,実施例E2と同様の効果が得られる。また,溶媒としてPCを代表例に挙げたが,リン酸エステルやガンマプチロラクトンのような黒鉛との反応性が高い溶媒においても,実施例E2と同様の効果が得られる。
【0072】
【表3】
Figure 0004253921
【0073】
【発明の効果】
上述のごとく,本発明によれば,炭素材料と電解液との反応を抑制して充放電効率を向上し,炭素材料を電極活物質とするリチウム二次電池に適用できなかった溶媒を電解液に適用することができる手法を容易にかつ低コストで提供することができる。そして,温度特性や難燃性に優れるリチウム二次電池を提供することができる。
【図面の簡単な説明】
【図1】フッ素化またはフルオロアルキル化した安息香酸エステル化合物の一般式を示す説明図。
【図2】実施形態例1における,実施例E1,比較例C1のCV測定結果を示す説明図。
【図3】実施形態例1における,比較例C2,C3のCV測定結果を示す説明図。
【図4】実施形態例2における,高温サイクル試験結果を示す説明図。[0001]
【Technical field】
The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having excellent temperature characteristics.
[0002]
[Prior art]
Lithium secondary batteries are characterized by their light weight, high charge / discharge voltage, and large charge / discharge capacity, and are expected to be used as secondary batteries for various applications. Has been.
Conventional lithium secondary batteries mainly use metallic lithium as a negative electrode. On the other hand, in recent years, carbon materials have attracted attention as a new active material. Typical examples of carbon materials include graphite and coke.
[0003]
[Problems to be solved]
By the way, the carbon material is easy to decompose an electrolytic solution made of an organic solvent. In particular, when an electrolytic solution containing propylene carbonate (propylene carbonate) having excellent temperature characteristics is used, there is a problem in that the capacity is greatly reduced due to a violent reaction between propylene carbonate and the carbon material.
[0004]
In order to solve this problem, an electrolytic solution containing ethylene carbonate (ethylene carbonate) as a main solvent is generally used as a solvent instead of propylene carbonate.
Electrolytic solutions containing ethylene carbonate as the main solvent have relatively low reactivity with carbon materials, and are excellent in battery capacity and cycle characteristics. However, since ethylene carbonate has the property of being solid at room temperature, the situation where ethylene carbonate precipitates or the electrolyte solution solidifies at low temperatures, which reduces the charge / discharge characteristics at low temperatures. Have
[0005]
In addition, even when trying to apply a highly flame retardant molecule as an electrolyte solvent, such as a molecule containing phosphorus, such as a phosphate ester, or a molecule containing a halogen atom in the molecule, it is still a carbon material. Causes severe problems such as a decrease in discharge capacity and deterioration of cycle characteristics.
[0006]
The following techniques are known as means for suppressing the reaction between the carbon material and the electrolyte solvent.
For example, as seen in JP-A-4-237638, JP-A-5-121066, JP-A-9-237638, etc., the amorphous carbon is adhered to the surface of the graphite so that the reactivity of the graphite surface is improved. There is a technique to cover the high part and suppress the reaction with the electrolyte solvent.
[0007]
However, in such a method, it is necessary to go through a complicated process of attaching amorphous carbon to the surface of graphite as a carbon material, and there is a problem in terms of cost. In addition, there is a problem that it is difficult to completely cover the graphite surface with amorphous carbon.
[0008]
Further, as seen in JP-A-10-255836 and JP-A-9-22722, a benzoic acid ester is added to an electrolytic solution or applied as an electrolytic solvent, and a carbon material is formed by a coating formed on the surface of the carbon material. There is a method of stabilizing the cycle and improving the cycle characteristics. However, in this case, for example, when a highly reactive solvent such as propylene carbonate is used, it is not sufficient to suppress the reaction between the carbon material and propylene carbonate, and there are problems such as a reduction in discharge capacity. Arise.
[0009]
Further, as seen in JP-A-9-180721, after oxidation-reduction treatment of a graphite electrode in an electrolytic solution using a fluorine-substituted compound typified by a fluorine-substituted carbonate as a solvent, propylene carbonate or phosphate is added. The method of changing to the electrolyte solution to contain is mentioned. This method requires a complicated process of changing the electrolytic solution after the electrochemical treatment, and the application range of the fluorine-substituted compound is required to be about 10% to 90% by volume with respect to the entire solvent. Therefore, it is necessary to use a large amount of fluorine-substituted compounds that have a cost problem.
[0010]
The problem of the reaction between the carbon material and the electrolytic solution can occur not only when the carbon material is used as the negative electrode active material but also when the carbon material is used as the positive electrode active material.
[0011]
The present invention has been made in view of such conventional problems, and in a lithium secondary battery using a carbon material as an electrode active material, the reaction between the carbon material and the electrolytic solution is suppressed to improve the charge and discharge efficiency. Therefore, an object of the present invention is to provide a lithium secondary battery that provides an easy and low-cost method capable of applying a solvent that could not be applied in the past to an electrolytic solution, and is excellent in temperature characteristics and flame retardancy.
[0012]
[Means for solving problems]
The invention of claim 1 is a lithium secondary battery having a non-aqueous electrolyte containing a carbon material as an active material and a lithium salt dissolved in an organic solvent.
The non-aqueous electrolyte is represented by the general formula (I) shown in “FIG. 1”, and R in the formula (I)1~ RFiveIs H, F, CFThreeAnd at least one is F or CFThreeAnd RHIs CnH2n + 1A lithium secondary battery comprising a fluorinated or trifluoromethylated benzoic acid ester compound satisfying (1 ≦ n ≦ 3).
[0013]
What is most remarkable in the present invention is that the non-aqueous electrolyte contains a benzoic acid ester compound in which an aromatic ring is substituted with a fluorine group or a trifluoromethyl group.
[0014]
This fluorinated or trifluoromethylated benzoic acid ester compound is an aromatic ring in which an anion generated when it is electrochemically and locally decomposed on the surface of a carbon material is substituted with a fluorine group or a trifluoromethyl group. It is characterized by being stabilized. In order to decompose locally on the surface of the carbon material, it is necessary that the functional group bonded to the aromatic ring is an ester group.
In this case, the presumed reaction mechanism of the compound represented by the formula (I) (FIG. 1) is represented by the following formula (II).
Formula (II): RF(Ar) COORH+ E  → RF(Ar) COO+ RH
Where RF(Ar) represents an aromatic ring in formula (I).
[0015]
The produced carboxylate anion is stabilized by an aromatic ring whose electron withdrawing property is enhanced by a fluorine group or a trifluoromethyl group. Therefore, R in formula (I)1~ RFiveAt least one of them is a fluorine group (-F) or trifluoromethyl group (-CF) having a strong electron-withdrawing property.Three). In addition, the stability of the carboxylate anion increases as the number of substituent fluorine groups or trifluoromethyl groups increases. Further, a fluorine group and a trifluoromethyl group may be mixed and substituted.
[0016]
R in formula (I)HAs CnH2n + 1In the case of 1> n, since it becomes a protonic acid, there are problems that the electrolyte solvent is polymerized, the element is dissolved from the electrode active material, and the binder is decomposed. In addition, when n> 3, the viscosity of the molecule increases, so that even when a minute amount is added, the viscosity of the electrolyte increases, the ionic conductivity decreases, or the gas generated during decomposition is not generated in the electrode or the electrode activity. The harmful effect of destroying the substance occurs.
[0017]
In the present invention, a benzoic acid ester compound fluorinated or trifluoromethylated in an initial reduction reaction of an electrode active material made of a carbon material is electrochemically decomposed on the surface of the active material to form a coating made of a stable anion. It is characterized in that it is selectively formed on the surface. With the technique of adding fluorinated or trifluoromethylated benzoate to the electrolyte, it is difficult to selectively form a film on the active material surface.
[0018]
Next, the non-aqueous electrolyte is composed of a solvent and a supporting salt. In the present invention, when the total weight of the solvent and the supporting salt is 100%, 0.05 to 5% by weight of a fluorinated or trifluoromethylated benzoic acid ester compound may be contained therein. preferable. This fluorinated or trifluoromethylated benzoic acid ester compound may be one kind or a mixture of two or more kinds.
[0019]
A fluorinated or trifluoromethylated benzoic acid ester compound exhibits a sufficient effect even in a very small amount of about 0.05 to 5.0 wt%, and without using a large amount of a relatively expensive fluorine compound. , A film can be formed on the surface of the carbon material.
If the addition amount is less than 0.05 wt%, a film cannot be sufficiently formed on the surface of the carbon material, and a sufficient effect may not be obtained. Moreover, when it exceeds 5.0 wt%, there exists a possibility of affecting a battery characteristic.
[0020]
In addition, after the surface of the carbon material is electrochemically coated in an electrolytic solution containing a fluorinated or trifluoromethylated benzoic acid ester compound, it can be used by being replaced with another electrolytic solution. However, since this method has a problem in production cost and the like, it is desirable to add a fluorinated or trifluoromethylated benzoic acid ester compound first to an electrolytic solution having a target function and use it as it is.
[0021]
Examples of the specific fluorinated or trifluoromethylated benzoic acid ester compound include, for example, methyl 2-fluorobenzoate, methyl 3-fluorobenzoate, methyl 4-fluorobenzoate, methyl 2,6-difluorobenzoate, Methyl 2,3,4,5,6-pentafluorobenzoate, methyl 2-trifluoromethylbenzoate, methyl 3, trifluoromethylbenzoate, methyl 4-trifluoromethylbenzoate, 2,6-ditrifluoromethyl Examples include methyl benzoate, ethyl 2,6-difluorobenzoate, and propyl 2,6-difluorobenzoate.
[0022]
In addition, the present invention provides an electrolytic solution that has been difficult to apply to lithium secondary batteries that previously include a carbon material as an electrode active material by adding the fluorinated or trifluoromethylated benzoic acid ester compound to the electrolytic solution. The liquid solvent can be applied. Examples of the solvent that can be applied to a lithium secondary battery containing a carbon material according to the present invention include the following.
[0023]
Cyclic carbonates typified by propylene carbonate, butylene carbonate, vinylene carbonate, cyclic esters typified by gamma butyrolactone, gamma valerolactone, etc., chain carbonates typified by diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl acetate , Ethyl acetate, chain esters typified by methyl propionate, 1,2-dimethoxyethane, tetrahydrofuran, ethers typified by methyltetrahydrofuran, and the like.
[0024]
In addition, molecules containing sulfur atoms in molecules represented by sulfolane, 3-methylsulfolane, butane sultone, dimethyl sulfite, etc., molecules containing nitrogen in molecules represented by dimethylformamide, molecules represented by trimethyl phosphate Examples thereof include molecules containing phosphorus, and molecules obtained by substituting a part of the above molecules with halogen elements such as fluorine, chlorine and bromine.
[0025]
These molecules are highly reactive with carbon materials and are difficult to use as electrolyte solvents when used alone or when mixed with ethylene carbonate. Some of the molecules mentioned above are commonly used as electrolyte solvents by mixing with ethylene carbonate, but according to the present invention, they can be used as electrolyte solvents without mixing with ethylene carbonate. become.
[0026]
In addition, molecules such as propylene carbonate, sulfolane, trimethyl phosphate, etc., which react with the carbon material even when mixed with ethylene carbonate and cannot be used as a solvent, can be applied by the present invention. These molecules can be used as a mixed solvent with ethylene carbonate depending on the purpose of use.
[0027]
Further, by mixing ethylene carbonate with a solvent to which the fluorinated or trifluoromethylated benzoic acid ester compound is added, stability with the carbon material electrode is further increased, and cycle characteristics, energy density, and the like are improved. When ethylene carbonate is mixed, if the content is too high, the low-temperature characteristics of the electrolyte solution deteriorate, so the content is preferably 50% or less.
[0028]
In addition, as the carbon material used for the negative electrode active material, for example, graphite, cokes, carbon soot obtained by calcining raw coke, or the like can be used.
In addition, as the above graphite, carbon materials that have been graphitized by heat-treating easily graphitized carbon such as coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, and pyrolytic vapor-grown carbon fiber. , Graphite whiskers, natural graphite and the like.
[0029]
Further, as the carbon material, a material in which the graphite crystal surface is coated with an amorphous carbon material can be applied. Further, a graphite crystal surface coated with fine particles such as silver or tin compound can be applied. Such a coating material can further reduce the reactivity between the electrolyte solvent and the carbon material.
[0030]
Moreover, the said carbon material may be used as a positive electrode active material, and may be used as a negative electrode active material.
A typical example of a battery using a carbon material as a positive electrode active material is a lithium secondary battery using graphite as a positive electrode and lithium metal as a negative electrode. On the other hand, a typical battery using a carbon material as the negative electrode active material is a lithium secondary using graphite as the negative electrode, lithium metal oxide as typified by lithium manganate, lithium cobaltate and lithium nickelate as the positive electrode. A battery etc. are mentioned.
[0031]
Examples of the supporting salt include LiPF.6, LiBFFour, LiClOFour, LiAsF6, LiN (CFThreeSO2)2, LiN (CFThreeCF2SO2)2Lithium salt such as, but not limited to.
For example, LiBFFourEven in the case of a supporting salt that reacts with the negative electrode active material to form a coating and has a significant cycle deterioration, the reaction between the supporting salt and the carbon material can be suppressed by the present invention. Therefore, in the present invention, it is also possible to apply a supporting salt that has been difficult to apply for reasons such as a significant cycle deterioration caused by reaction with a carbon material.
[0032]
Next, the effects of the present invention will be described.
In the present invention, the non-aqueous electrolyte contains the fluorinated or fluoroalkylated benzoic acid ester compound. Therefore, as described above, when a carbon material is used as an active material, the reaction between the carbon material and the electrolytic solution is suppressed to improve the charge / discharge efficiency, and an excellent solvent that could not be applied to the electrolytic solution is added to the electrolytic solution. Can be applied. Therefore, according to the present invention, a lithium secondary battery excellent in temperature characteristics and flame retardancy can be provided.
[0033]
That is, in a lithium secondary battery containing a carbon material as an electrode active material, when the fluorinated or trifluoromethylated benzoate compound represented by the above formula (I) is added to the electrolyte, , The potential of the carbon material is 1.3-1.1 V (vs. Li / Li+When the benzoic acid ester compound fluorinated or trifluoromethylated on the surface of the carbon material is decomposed, a film can be selectively formed on the surface of the carbon material.
[0034]
The coating has high lithium ion permeability and suppresses the reaction between the electrolyte solvent and the carbon material. Therefore, various solvents such as propylene carbonate, which have been conventionally difficult to apply to graphite-based carbon materials, can be applied as the electrolyte solvent.
[0035]
Next, as in the invention of claim 2, the carbon material is preferably graphite. Typical examples of carbon materials include graphite and coke as described above. Among these, graphite is a carbon material with high crystallinity, and has advantages such as a flat potential and small irreversible capacity compared with coke with low crystallinity. Therefore, a useful lithium secondary battery with high energy density can be obtained by using graphite as an active material.
[0036]
As in the invention of claim 3, it is preferable to use the carbon material as the negative electrode active material and the lithium metal composite oxide as the positive electrode active material. In this case, in particular, it is possible to provide a lithium secondary battery excellent in charge / discharge cycle characteristics at a high temperature exceeding, for example, 60 ° C.
[0037]
The reason can be considered as follows.
First, from the analysis of the current-potential curve of the battery or electrode material, the fluorinated or fluoroalkylated benzoic acid ester compound of the present invention has a negative electrode potential of 1.3-1.1 V (when charging the battery in the first cycle). Li / Li+) Near the carbon material of the negative electrode. Moreover, the reaction was not observed after the 2nd cycle. From the above results, it is expected that the negative electrode active material reacts with the fluorinated or fluoroalkylated benzoate compound during the first cycle to form a film on the negative electrode surface.
This film has very good properties, for example, an effect of inhibiting the reaction between the electrolyte solvent and the negative electrode active material and an effect of preventing the precipitation of metal ions eluted from the positive electrode on the negative electrode. It is believed that there is.
[0038]
Examples of the lithium metal composite oxide used as the positive electrode active material include LiMn.2OFour, LiV2OFourSpinel structure such as LiMnO2, LiCoO2, LiNiO2Layered compounds such as those obtained by substituting these compounds with different elements.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
In this example, in order to elucidate the mechanism of action in the present invention, the reaction between a carbon material and a non-aqueous electrolyte containing propylene carbonate (PC) was clarified. In other words, the cyclic voltammogram (CV) measurement using a three-electrode cell reveals the reaction between a positive electrode using graphite as an active material and a non-aqueous electrolyte containing PC to which a fluorinated benzoate compound is added. did. It was shown that the fluorinated benzoic acid ester compound suppressed the reaction between PC and graphite, and that graphite was smoothly charged and discharged even in an electrolytic solution using PC as a solvent.
Hereinafter, description will be given by using Example E1 and three comparative examples C1 to C3.
[0040]
(Example E1)
First, a method for producing a graphite electrode will be described.
95 parts by weight of spherical artificial graphite (manufactured by Osaka Gas, MCMB25-28) as an electrode active material, 5 parts by weight of polyvinylidene fluoride as a binder, and kneaded with N-methyl-2-pyrrolidone A paste was obtained. This was applied to one side of a strip-shaped copper foil, and N-methyl-2-pyrrolidone was vaporized and removed, followed by compression molding to obtain a strip-shaped electrode sheet. The electrode sheet was punched into a disk shape of 18 mmφ and used as an electrode.
[0041]
Next, the CV measurement cell will be described. The above-mentioned electrode using graphite as an active material was used as a working electrode, and a 19 mmφ disc-shaped lithium foil was sandwiched through a polyethylene separator and placed in a coin-type triode cell equipped with a lithium chip as a reference electrode.
[0042]
Then, LiPF was added to a solvent in which ethylene carbonate (EC; manufactured by Toyama Pharmaceutical Co., Ltd.), PC (manufactured by Toyama Pharmaceutical Co., Ltd.) and diethyl carbonate (DEC; manufactured by Toyama Pharmaceutical Co., Ltd.) were mixed at a volume ratio (3: 4: 7).6(Toyama Pharmaceutical Co., Ltd.) was dissolved at a concentration of 1 mol / liter. In this electrolyte solution, methyl 2,6-difluorobenzoate (manufactured by Synquest) was dissolved at a concentration of 0.5 wt% to prepare an electrolyte solution. After this electrolyte was injected into the coin-type triode cell, it was sealed.
[0043]
CV measurement was performed as follows.
Using the Hokuto Denko HA3001 type potentiostat, it is the natural electrode potential of the graphite electrode (about 3 V / vs Li / Li+) To 0 V (vs. Li / Li) at a sweep rate of 0.1 mV / sec.+CV measurement was performed by reversing the potential sweep direction as soon as 0V was reached and sweeping to about 3V.
[0044]
(Comparative Example C1)
A coin-type triode cell was prepared and subjected to CV measurement in the same manner as in Example E1 except that methyl benzoate was added at 0.5 wt% instead of methyl 2,6-difluorobenzoate to the electrolyte. Went.
[0045]
(Comparative Example C2)
A coin type tripolar cell was prepared and CV measurement was performed in the same manner as in Example E1 except that methyl 2,6-difluorobenzoate was not added.
[0046]
(Comparative Example C3)
Except that methyl 2,6-difluorobenzoate was not added using a solvent obtained by mixing EC and DEC in a volume ratio (3: 7) with the electrolyte solvent, the same as in Example E1, A coin-type tripolar cell was fabricated and CV measurement was performed.
Table 1 summarizes the composition of the electrolytic solution used for CV measurement.
[0047]
[Table 1]
Figure 0004253921
[0048]
FIG. 2 shows the CV measurement results of Example E1 and Comparative Example C1, and FIG. 3 shows the results of CV measurement of Comparative Examples C2 and C3, respectively.
2 and 3, the horizontal axis represents potential (V (vs. Li / Li+) And current (mA) on the vertical axis.
[0049]
As seen in Comparative Example C3 in FIG. 3, in a general electrolyte using a mixed solvent of EC and DEC, 0.9 V (vs. Li / Li+), A reduction current (minus side) begins to flow, and 0.5V (vs. Li / Li+) A strong reduction current flows in the following potential region. The corresponding oxidation current (positive side) is 0 to 0.88 (vs. Li / Li+These currents correspond to lithium ion insertion / extraction reactions between graphite layers.
[0050]
On the other hand, as seen in Comparative Example C2, the electrolytic solution using PC as a solvent was 0.9 V (vs. Li / Li) at the first sweep.+), A reduction current larger than C3 flows. According to Electrochemical Vol. 62, page 1023 (1994), Electrochemical Vol. 61, page 421 (1993), etc., this reduction current is a current generated due to the decomposition reaction of PC on the surface of graphite. The graphite layer is destroyed by this PC decomposition, and the oxidation current value corresponding to the desorption of lithium ions is reduced.
[0051]
On the other hand, as can be seen in Example E1 of FIG. 2, in the electrolyte solution to which methyl 2,6-difluorobenzoate was added, 1.3 to 1.1 V (vs. Li / Li) at the first sweep.+), A small reduction current peak is observed. This is an electric current resulting from the reductive decomposition of methyl 2,6-difluo-mouth benzoate. 0.9 V (vs. Li / Li) observed in Comparative Example C2.+The resulting PC decomposition current was not observed in E1. Moreover, oxidation / reduction currents corresponding to lithium ion desorption / insertion reactions were observed as in Comparative Example C3.
[0052]
However, in the electrolyte solution to which methyl benzoate in which the aromatic ring of Comparative Example C1 was not substituted with a fluorine group was added, 1.1 V (vs. Li / Li)+), The reduction current begins to flow, and 0.8-0.9V (vs. Li / Li+A strong reduction current with a peak at) was observed. Further, the oxidation current value corresponding to the desorption of lithium ions is smaller than that in Example E1.
From a comparison of Example E1 and Comparative Example C1. It is clear that higher charge / discharge efficiency can be obtained by adding methyl 2,6-difluorobenzoate having a fluorinated aromatic ring of methyl benzoate than methyl benzoate.
[0053]
From the above results, the following reaction mechanism is estimated.
When methyl 2,6-difluorobenzoate was added, 1.3-1.1 V (vs. Li / Li) was obtained during the initial sweep.+), Methyl 2,6-difluorobenzoate undergoes reductive decomposition. The reductive decomposition product becomes a film covering the graphite surface and suppresses the reaction between PC and graphite. The coating is highly permeable to lithium ions, and the detachment and insertion of lithium ions between the graphite layers proceeds smoothly.
[0054]
On the other hand, when methyl benzoate is added, the reductive decomposition reaction of methyl benzoate is 1.1 V (vs. Li / Li).+However, a film that suppresses the reaction between PC and graphite is not formed, and the decomposition of PC and the decomposition reaction of methyl benzoate occur simultaneously, destroying the graphite layer. As a result, the capacity decreases and the oxidation current value corresponding to the desorption of lithium ions decreases.
[0055]
Thus, it has been clarified that the addition of methyl benzoate having a fluorinated aromatic ring suppresses the reaction between graphite and PC and provides high charge / discharge efficiency.
In Example E1 of this example, 2,6-difluorobenzoic acid methyl was mentioned as an additive. However, this example is also applicable when benzoic acid esters obtained by trifluoromethylating the aromatic ring of methyl benzoate are used. The same effect can be obtained.
Moreover, although PC was mentioned as a representative example as a solvent, the same effect as Example E1 of this example can be obtained even in a solvent having high reactivity with graphite such as phosphate ester and gamma butyrolactone.
[0056]
Embodiment 2
In this example, 60 ° C. cycle characteristics of a lithium secondary battery using an electrolytic solution including a combination of lithium manganese oxide as a positive electrode active material, graphite as a negative electrode active material, and PC added with a fluorobenzoic acid ester compound as an electrolytic solution. The results show that the PC solvent electrolyte can be applied to lithium secondary batteries using graphite as a negative electrode active material.
Hereinafter, description will be given by using Example E2 and three comparative examples C4, C5, and C6.
[0057]
(Example E2)
A cylindrical lithium secondary battery was fabricated as follows.
First, a method for producing a positive electrode is described below.
Li1.10Mn1.90OFour85 parts by weight of lithium manganese oxide represented by the composition formula (made by Honjo Chemical Co., Ltd.) as a positive electrode active material, 10 parts by weight of graphite as a conductive agent, and 5 parts by weight of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone was added and kneaded to obtain a positive electrode material paste. This was coated on both sides of a strip-shaped aluminum foil, and N-methyl-2-pyrrolidone was vaporized and removed, followed by compression molding to obtain a strip-shaped positive electrode.
[0058]
Next, a method for producing a negative electrode is described below.
95 parts by weight of spherical artificial graphite (manufactured by Osaka Gas Co., Ltd., MCMB25-28) as a negative electrode active material, 5 parts by weight of polyvinylidene fluoride as a binder, and further kneaded with N-methyl-2-pyrrolidone, A negative electrode material paste was obtained. This was coated on both sides of a strip-shaped copper foil, and N-methyl-2-pyrrolidone was vaporized and removed, followed by compression molding to obtain a strip-shaped negative electrode.
[0059]
In order to obtain a current collector for the positive electrode and the negative electrode, a positive electrode lead wire made of aluminum was welded to the strip-like positive electrode, and a negative electrode lead wire made of nickel was welded to the strip-like negative electrode. Then, using a separator made of a microporous polyethylene film with a thickness of 25 μm, the cathode-separator-negative electrode are laminated in this order, and the spiral electrode is placed in a nickel-plated iron battery can (outer diameter 18 mm, height 65 mm). Was made.
[0060]
After the electrode was placed in the battery can, the negative electrode lead wire was welded to the battery can, and the positive electrode lead wire was welded to the terminal of the polyethylene battery lid provided with the aluminum terminal.
Then, LiPF was added to a solvent in which EC (manufactured by Toyama Pharmaceutical), PC (manufactured by Toyama Pharmaceutical) and DEC (manufactured by Toyama Pharmaceutical) were mixed at a volume mixing ratio of 3: 4: 7.6(Toyama Pharmaceutical Co., Ltd.) was dissolved at a concentration of 1 mol / liter.
[0061]
In this electrolytic solution, methyl 2,6-difluorobenzoate (manufactured by Synquest) was dissolved at a concentration of 0.5 wt%, and the electrolytic solution was poured into a battery can. The battery lid was fixed by caulking the battery can and the battery lid to produce a cylindrical non-aqueous electrolyte secondary battery (lithium secondary battery) having a diameter of 18 mm and a height of 65 mm.
[0062]
Then, the following high temperature cycle test was conducted using this lithium secondary battery.
That is, the cylindrical non-aqueous electrolyte secondary battery manufactured as described above was subjected to a current density of 1 mA / cm at a temperature of 25 ° C.2After charging to 4.20V with a constant current of, charging was performed for 2.5 hours at a constant voltage of 4.20V. This total current amount is defined as the initial charge capacity. Then, current density 0.33mA / cm2Discharge was performed at a constant current of 3.00V. This total discharge flow rate is defined as the initial group capacity.
[0063]
Next, the battery was subjected to a current density of 1 mA / cm at a temperature of 60 ° C.2After charging to 4.20V at a constant current of 1 mA / cm, the current density is 1 mA / cm.2Discharge was performed at a constant current of 3.00V. This charge / discharge cycle at 60 ° C. was performed up to 100 cycles. Hereinafter, this cycle test at 60 ° C. is referred to as a high temperature cycle test.
[0064]
(Comparative Example C4)
A nonaqueous electrolyte secondary battery was fabricated and subjected to a high-temperature cycle test in the same manner as in Example E2 except that methyl benzoate (manufactured by Wako) was used instead of methyl 2,6-difluorobenzoate.
[0065]
(Comparative Example C5)
A nonaqueous electrolyte secondary battery was prepared and subjected to a high-temperature cycle test in the same manner as in Example E2 except that methyl 2,6-difluorobenzoate was not added.
[0066]
(Comparative Example C6)
Nonaqueous electrolyte secondary battery in the same manner as in Example E2, except that a solvent in which EC and DEC were mixed at a volume mixing ratio of 3: 7 was used, and methyl 2,6-difluorobenzoate was not added. And a high-temperature cycle test was conducted.
Table 2 shows the configurations of the electrolytic solutions used in Example E2 and Comparative Examples C4 to C6.
[0067]
[Table 2]
Figure 0004253921
[0068]
Table 3 shows the initial charge capacity and initial discharge capacity of a battery using each electrolytic solution. The results of the high-temperature cycle test at 60 ° C. are summarized in FIG. In the figure, the horizontal axis represents the number of charge / discharge cycles, and the vertical axis represents the discharge capacity (mAh / g) per positive electrode active material.
[0069]
As is clear from Table 3, Example E2 to which methyl 2,6-difluorobenzoate was added exhibited a discharge capacity equivalent to that of Comparative Example C6 using a commonly used electrolyte. On the other hand, when the electrolytic solution of Comparative Example C5 is used, the graphite negative electrode is destroyed by the decomposition of the PC, and the discharge capacity is small. Further, as in Comparative Example C4, when methyl benzoate is added, the discharge capacity increases as compared with C5 without addition, but it does not reach Example E2.
[0070]
Further, as can be seen from the high-temperature cycle characteristics at 60 ° C. in FIG. 4, it is clear that the electrolyte solution of Example E2 is superior to the electrolyte solution of Comparative Example C6 that is generally used. It was.
[0071]
From the above results, it became clear that by adding methyl 2,6-difluorobenzoate, an electrolytic solution using PC as a solvent can be applied to a lithium secondary battery using graphite as an active material.
In Example E2 of this example, methyl 2,6-difluorobenzoate was mentioned as an additive. However, even when benzoic acid esters obtained by trifluoromethylating the aromatic ring of methyl benzoate were used, The same effects as in Example E2 are obtained. Moreover, although PC was mentioned as a typical example as a solvent, the same effect as Example E2 is acquired also in a solvent with high reactivity with graphite, such as a phosphate ester and a gamma ptyrolactone.
[0072]
[Table 3]
Figure 0004253921
[0073]
【The invention's effect】
As described above, according to the present invention, the reaction between the carbon material and the electrolytic solution is suppressed to improve the charge / discharge efficiency, and the solvent that cannot be applied to the lithium secondary battery using the carbon material as an electrode active material is used as the electrolytic solution. It is possible to provide a method that can be applied to the above easily and at low cost. And the lithium secondary battery excellent in a temperature characteristic and a flame retardance can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a general formula of a fluorinated or fluoroalkylated benzoic acid ester compound.
2 is an explanatory diagram showing CV measurement results of Example E1 and Comparative Example C1 in Embodiment Example 1. FIG.
FIG. 3 is an explanatory diagram showing CV measurement results of Comparative Examples C2 and C3 in Example 1 of the embodiment.
FIG. 4 is an explanatory view showing a high-temperature cycle test result in Example 2 of the embodiment.

Claims (3)

炭素材料を活物質として含有すると共に,リチウム塩を有機溶媒に溶解した非水電解液を有するリチウム二次電池において,
上記非水電解液は,「図1」に示す一般式(I)により表され,該式(I)におけるR1〜R5はH,F,CF3のうちのいずれかであると共に少なくとも1つはFまたはCF3であり,かつRHはCn2n+1(1≦n≦3)であるフッ素化またはトリフルオロメチル化した安息香酸エステル化合物を含有していることを特徴とするリチウム二次電池。
In a lithium secondary battery having a non-aqueous electrolyte containing a carbon material as an active material and a lithium salt dissolved in an organic solvent,
The non-aqueous electrolyte is represented by the general formula (I) shown in “FIG. 1”. In the formula (I), R 1 to R 5 are any one of H, F, and CF 3 and at least 1 One is F or CF 3 and R H contains a fluorinated or trifluoromethylated benzoic acid ester compound which is C n H 2n + 1 (1 ≦ n ≦ 3) Lithium secondary battery.
請求項1において,上記炭素材料は黒鉛であることを特徴とするリチウム二次電池。The lithium secondary battery according to claim 1, wherein the carbon material is graphite. 請求項1又は2において,負極活物質としては上記炭素材料を,正極活物質としてはリチウム金属複合酸化物を用いることを特徴とするリチウム二次電池。3. The lithium secondary battery according to claim 1, wherein the carbon material is used as a negative electrode active material, and a lithium metal composite oxide is used as a positive electrode active material.
JP13142199A 1999-05-12 1999-05-12 Lithium secondary battery Expired - Fee Related JP4253921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13142199A JP4253921B2 (en) 1999-05-12 1999-05-12 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13142199A JP4253921B2 (en) 1999-05-12 1999-05-12 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000323169A JP2000323169A (en) 2000-11-24
JP4253921B2 true JP4253921B2 (en) 2009-04-15

Family

ID=15057578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13142199A Expired - Fee Related JP4253921B2 (en) 1999-05-12 1999-05-12 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4253921B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417084B1 (en) * 2001-05-08 2004-02-05 주식회사 엘지화학 New additives for electrolyte and lithium ion battery using the same
JP4140251B2 (en) * 2002-03-13 2008-08-27 宇部興産株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
JP4543394B2 (en) 2003-09-17 2010-09-15 宇部興産株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
KR101082152B1 (en) 2006-06-20 2011-11-09 주식회사 엘지화학 Electrolyte for improving life characteristics at a high temperature and lithium secondary battery comprising the same
JP5359277B2 (en) * 2007-02-02 2013-12-04 宇部興産株式会社 Ester compound, non-aqueous electrolyte and lithium secondary battery using the same
KR101128654B1 (en) * 2010-08-19 2012-03-26 삼성전기주식회사 Method of pre-doping Lithium ion into electrode and method of manufacturing electrochemical capacitor using the same
JP2012178320A (en) * 2011-02-28 2012-09-13 Itm Co Ltd Porous sheet

Also Published As

Publication number Publication date
JP2000323169A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
KR101430615B1 (en) Cathode and lithium battery using the same
JP4607488B2 (en) Nonaqueous electrolyte for lithium battery, method for producing the same, and lithium ion secondary battery
JP5127706B2 (en) High voltage rechargeable non-aqueous electrolyte secondary battery
USRE43724E1 (en) Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery including the same
JP4320914B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US20050287442A1 (en) Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery including the same
US7976988B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
CN103250296B (en) Nonaqueous electrolytic solution and employ the electrochemical element of this nonaqueous electrolytic solution
JP4423277B2 (en) Lithium secondary battery
WO2008138132A1 (en) Dinitrile-based liquid electrolytes
JP2002528882A (en) Non-aqueous electrolyte for electrochemical system and lithium secondary battery containing the same
JP2016136498A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery including the same
JPH0997627A (en) Nonaqueous electrolyte and lithium secondary battery
JP3883726B2 (en) Non-aqueous electrolyte secondary battery
CN113381072A (en) Electrolyte and battery containing the same
JP2000138072A (en) Nonaqueous electrolyte secondary battery
JP2002343426A (en) Nonaqueous electrolyte and secondary battery using the same
US20170162909A1 (en) Nonaqueous electrolytic solution including ester having 3,3,3-trifluoropropionate group and nonaqueous electrolyte battery using same
JP2003007336A (en) Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution for use in the same
JP4253921B2 (en) Lithium secondary battery
JP2000348765A (en) Nonaqueous electrolytic solution and secondary battery using it
JP3949337B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JP2003163029A (en) Secondary non-aqueous electrolyte battery
JP5159268B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees