JP4572602B2 - Non-aqueous electrolyte and non-aqueous electrolyte secondary battery and their production method - Google Patents

Non-aqueous electrolyte and non-aqueous electrolyte secondary battery and their production method Download PDF

Info

Publication number
JP4572602B2
JP4572602B2 JP2004193679A JP2004193679A JP4572602B2 JP 4572602 B2 JP4572602 B2 JP 4572602B2 JP 2004193679 A JP2004193679 A JP 2004193679A JP 2004193679 A JP2004193679 A JP 2004193679A JP 4572602 B2 JP4572602 B2 JP 4572602B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
battery
electrolyte
lithium
ionic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004193679A
Other languages
Japanese (ja)
Other versions
JP2006019070A (en
JP2006019070A5 (en
Inventor
徹 松井
正樹 出口
浩司 芳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004193679A priority Critical patent/JP4572602B2/en
Publication of JP2006019070A publication Critical patent/JP2006019070A/en
Publication of JP2006019070A5 publication Critical patent/JP2006019070A5/ja
Application granted granted Critical
Publication of JP4572602B2 publication Critical patent/JP4572602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質および、それを使用する電気化学デバイス、特に電池、そしてそれらの製造法の改良に関する。   The present invention relates to a non-aqueous electrolyte and an electrochemical device using the non-aqueous electrolyte, in particular, a battery, and an improvement of the manufacturing method thereof.

非水電解質電池に用いられる電解液には、非水溶媒に溶質を溶解させたものが用いられており、非水溶媒には、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられる。ここで、環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられ、鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。また、環状カルボン酸エステルとしては、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)などが挙げられる。さらに、溶質として、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CF3SO22)等が用いられている。 The electrolyte used for the non-aqueous electrolyte battery uses a solute dissolved in a non-aqueous solvent. For the non-aqueous solvent, a cyclic carbonate, a chain carbonate, a cyclic carboxylate, or the like is used. It is done. Here, examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC). Examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). Etc. Examples of the cyclic carboxylic acid ester include γ-butyrolactone (GBL) and γ-valerolactone (GVL). Furthermore, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium bistrifluoromethanesulfonate imide (LiN (CF 3 SO 2 ) 2 ) and the like are used as solutes. .

これらの非水溶媒および溶質からなる非水電解質は、いわゆるリチウムイオン電池のような高エネルギー密度を有する非水電解質二次電池用として、これまで、盛んに開発されてきた。ここで、リチウムイオン電池には、正極活物質として、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24、LiMnO2)、鉄酸リチウム(LiFeO2)などの遷移金属酸化物が用いられ、また、負極活物質には、非晶質炭素、2000℃以上の温度で焼成した人造黒鉛、天然黒鉛などの、リチウムイオンやナトリウムイオンを吸蔵・放出するホスト材料が用いられる。 Nonaqueous electrolytes composed of these nonaqueous solvents and solutes have been actively developed so far for nonaqueous electrolyte secondary batteries having a high energy density such as so-called lithium ion batteries. Here, in a lithium ion battery, as a positive electrode active material, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 , LiMnO 2 ), lithium ferrate (LiFeO 2 ) Transition metal oxides such as amorphous carbon, artificial graphite fired at a temperature of 2000 ° C. or higher, natural graphite, and other hosts that occlude and release lithium ions and sodium ions. Material is used.

以上のような有機溶媒を主成分とする非水電解質では、その可燃性のため従来から電池の安全性が危惧されており、安全性を確保するために、過充電や過放電を阻止するための保護回路が併用されてきた。   Non-aqueous electrolytes based on organic solvents such as those described above have traditionally been concerned about battery safety due to their flammability, and to prevent overcharge and overdischarge to ensure safety. The protection circuit has been used together.

一方、上記のような非水電解質の可燃性の問題を避けるために、常温で液体であるが蒸気圧が極めて低いために燃えにくいイオン性液体が提案された。このイオン性液体には、1−エチル−3−メチルイミダゾリウムクロリドとAlCl3を混合したものが、従来から周知であるが、近年は、AlCl4アニオンの代わりに非アルミナート系アニオンを用いたイオン性液体が研究されている。 On the other hand, in order to avoid the flammability problem of the non-aqueous electrolyte as described above, an ionic liquid that is liquid at room temperature but hardly burns due to extremely low vapor pressure has been proposed. As this ionic liquid, a mixture of 1-ethyl-3-methylimidazolium chloride and AlCl 3 is conventionally known, but in recent years, a non-aluminate anion was used instead of the AlCl 4 anion. Ionic liquids have been studied.

その中で、オニウムカチオンの一種であるトリメチルヘキシルアンモニウムイオン(+)と、N(CF3SO22(−)のアニオンからなるイオン性液体に、LiN(CF3SO22を溶解させた電解質を用いることで、リチウム金属の析出溶解が可能なことが提案されている。(例えば特許文献1参照)
特開平11−297355号公報
Among them, LiN (CF 3 SO 2 ) 2 is dissolved in an ionic liquid composed of trimethylhexylammonium ion (+) which is a kind of onium cation and an anion of N (CF 3 SO 2 ) 2 (−). It has been proposed that lithium metal can be deposited and dissolved by using an electrolyte. (For example, see Patent Document 1)
JP-A-11-297355

しかし、提案されているようなリチウム塩を溶解させたイオン性液体からなる電解質を、リチウムを活物質とする負極を具備する非水電解質電池に適用しても、電池容量が小さくなったり、充放電サイクル寿命が短いという課題が、依然として大きかった。   However, even if the electrolyte composed of an ionic liquid in which a lithium salt is dissolved as described above is applied to a nonaqueous electrolyte battery having a negative electrode using lithium as an active material, the battery capacity is reduced or the battery is charged. The challenge of a short discharge cycle life remained significant.

例えば、リチウム金属を負極とする二次電池では、充電(リチウムが析出)の際、アン
モニウムカチオンが同時に還元分解され、充電効率が100%にならないことや、析出したリチウムがデンドライト状であるために、さらに、効率が低下した。
For example, in a secondary battery using lithium metal as a negative electrode, during charging (lithium deposition), ammonium cations are simultaneously reduced and decomposed, so that the charging efficiency does not reach 100%, and the deposited lithium is in a dendritic form. Furthermore, the efficiency decreased.

また、グラファイトなどのリチウムイオンを吸蔵・放出できる炭素材料を負極に用いるリチウムイオン電池では、充電時にリチウム金属と同様にアンモニウムカチオンの還元分解が起きるほか、著しい電極膨張のため、炭素粉末が電極より脱落し、サイクル寿命が短くなるという課題があった。   In addition, in lithium ion batteries that use a carbon material that can occlude / release lithium ions such as graphite as the negative electrode, reductive decomposition of ammonium cations occurs as well as lithium metal during charging, and carbon powder is more than the electrode due to significant electrode expansion. There was a problem that the cycle life would be shortened.

本発明の目的は、サイクル寿命と安全性に優れた非水電解質電池であって、炭素材料を負極に用い、さらにイオン性液体を非水電解質に用いた非水電解質電池を提供することにある。   An object of the present invention is to provide a nonaqueous electrolyte battery excellent in cycle life and safety, using a carbon material as a negative electrode and further using an ionic liquid as a nonaqueous electrolyte. .

上記の課題を解決するために、本発明の非水電解質は、オニウムカチオンと非アルミナート系アニオンからなるイオン性液体とリチウム塩からなる非水電解質であって、前記非水電解質中に、(化1)または(化2)で示されるルイス酸の少なくとも1種が添加剤として溶解していることを特徴とするものである。   In order to solve the above problems, the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte composed of an ionic liquid composed of an onium cation and a non-aluminate anion and a lithium salt, and the non-aqueous electrolyte comprises ( It is characterized in that at least one of the Lewis acids represented by chemical formula 1) or chemical formula 2 is dissolved as an additive.

Figure 0004572602
Figure 0004572602

Figure 0004572602
Figure 0004572602

ここで、オニウムカチオンとは、ルイス塩基が、その非結合電子対を用いて配位結合を作ってできた陽イオンのことで、例えば、NR4 +、PR4 +、SR3 +などがある。 Here, the onium cation is a cation formed by a Lewis base using a non-bonded electron pair to form a coordinate bond, such as NR 4 + , PR 4 + , SR 3 + and the like. .

この非水電解質を非水電解質電池に適用するとサイクル特性の優れた電池が提供できる。   When this nonaqueous electrolyte is applied to a nonaqueous electrolyte battery, a battery having excellent cycle characteristics can be provided.

さらに、コストの点から、(化1)のルイス酸がBF3であり、かつ、(化2)のルイス酸がPF5であることことが好ましい。 Further, from the viewpoint of cost, it is preferable that the Lewis acid of (Chemical Formula 1) is BF 3 and the Lewis acid of (Chemical Formula 2) is PF 5 .

この添加量は、少量でも本発明の効果を示すが、オニウムカチオン1molに対し4mmol以上あるのが好ましい。上限は、飽和するまで添加しても特に悪影響は無く、コストがかかるだけである。   This addition amount shows the effect of the present invention even in a small amount, but it is preferably 4 mmol or more per 1 mol of the onium cation. Even if the upper limit is added until saturation, there is no particular adverse effect, and only the cost is increased.

また、上記構成において、前記非水電解質中に前記イオン性液体以外に、さらにエチレンカーボネート,プロピレンカーボネート,ブチレンカーボネートおよびγ−ブチロラクトンからなる群より選択される少なくとも1種を含むことが、サイクル特性をさらに、向上させるため好ましい。   Further, in the above configuration, the non-aqueous electrolyte contains at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone in addition to the ionic liquid, Furthermore, it is preferable for improving.

上記構成のルイス酸は、オニウムカチオンと非アルミナート系アニオンからなるイオン性液体に直接溶解させてもよいが、LiBF4またはLiPF6などのリチウム塩を溶解させ、溶解物全体を加熱することにより前記イオン性液体中にBF3またはPF5などのルイス酸を発生させることもできる。この時、ルイス酸が発生した後に生成するLiFなどのリチウム塩は、沈殿するか、あるいは、その構造によりイオン伝導性の塩として寄与する。 The Lewis acid having the above structure may be directly dissolved in an ionic liquid composed of an onium cation and a non-aluminate anion, but by dissolving a lithium salt such as LiBF 4 or LiPF 6 and heating the entire solution. Lewis acids such as BF 3 or PF 5 can also be generated in the ionic liquid. At this time, a lithium salt such as LiF produced after the generation of Lewis acid precipitates or contributes as an ion conductive salt depending on its structure.

また、この加熱温度については、常温以上であれば、反応が進むが、それぞれのリチウム塩の分解温度以上になれば、顕著な効果が得られるため好ましい。また、この加熱温度が、300℃を超えると、オニウムカチオンが分解を始めるため、300℃以下が好ましい。   In addition, the reaction proceeds when the heating temperature is normal temperature or higher, but it is preferable that the heating temperature is equal to or higher than the decomposition temperature of each lithium salt because a remarkable effect can be obtained. Further, when the heating temperature exceeds 300 ° C., the onium cation starts to decompose, and therefore 300 ° C. or less is preferable.

本発明の非水電解質電池は、以上のようにして調製した非水電解質を、炭素材料からなる負極を具備する電池に用いるものである。   The nonaqueous electrolyte battery of the present invention uses the nonaqueous electrolyte prepared as described above for a battery including a negative electrode made of a carbon material.

さらに、ルイス酸を溶解していなくても、LiPF6などの電解質塩を溶解させてき、電池組み立て後に電池全体を加熱することにより、電池内でPF5のようなルイス酸を発生させることもできる。 Furthermore, even without dissolving the Lewis acid, you can contact by dissolving an electrolyte salt such as LiPF 6, by heating the entire battery after the battery assembly, thereby generating a Lewis acid such as PF 5 in the battery You can also.

この場合には、ルイス酸が発生した後に生成するLiFなどのリチウム塩は、電解質に不溶であれば正極および負極の保護皮膜として機能し、溶解性であればイオン伝導性の塩として働く。   In this case, the lithium salt such as LiF produced after the generation of the Lewis acid functions as a protective film for the positive electrode and the negative electrode if it is insoluble in the electrolyte, and acts as an ion conductive salt if it is soluble.

本発明によれば、イオン性液体からなる非水電解質にルイス酸を溶解させることにより、サイクル特性に優れた非水電解質電池を得ることができる。また、このような効果のあるルイス酸は、LiBF4やLiPF6の熱分解で容易に発生させることができ、信頼性にすぐれた電池を低コストで提供できるようになる。 According to the present invention, a non-aqueous electrolyte battery having excellent cycle characteristics can be obtained by dissolving a Lewis acid in a non-aqueous electrolyte made of an ionic liquid. In addition, a Lewis acid having such an effect can be easily generated by thermal decomposition of LiBF 4 or LiPF 6 , and a battery having excellent reliability can be provided at a low cost.

本発明の特別な技術的特徴は、NR4 +、PR4 +、SR3 +等のオニウムカチオンと非アルミナート系アニオンからなるイオン性液体に、(化3)または(化4)で示されるルイス酸を溶解するものである。 A special technical feature of the present invention is represented by (chemical formula 3) or (chemical formula 4) in an ionic liquid composed of an onium cation such as NR 4 + , PR 4 + , SR 3 + and a non-aluminate anion. It dissolves Lewis acid.

Figure 0004572602
Figure 0004572602

Figure 0004572602
Figure 0004572602

イオン性液体からなる非水電解質にルイス酸を溶解させることにより、リチウムなどのアルカリ金属を活物質とする負極の性能を向上させることができる理由は、以下のように推察される。すなわち、オニウムカチオンが還元される前に、ルイス酸が還元分解され負極上に皮膜が形成される。この皮膜はオニウムカチオンの還元分解を抑制するが、リチウムイオン伝導性があるので、良好な充放電が可能になる。また、このような皮膜効果に加え、リチウムイオンを吸蔵・放出する炭素材料を用いた場合には、たとえオニウムカチオンが還元されNR3のようなルイス塩基が生成しても、ルイス酸との配位結合により嵩が大きくなるため、ルイス塩基が炭素材料の層間に侵入できなくなる。したがって、炭素材料負極の容量低下や負荷特性の低下を抑制することが可能になる。 The reason why the performance of the negative electrode using an alkali metal such as lithium as an active material can be improved by dissolving Lewis acid in a non-aqueous electrolyte composed of an ionic liquid is presumed as follows. That is, before the onium cation is reduced, the Lewis acid is reduced and decomposed to form a film on the negative electrode. Although this film suppresses the reductive decomposition of the onium cation, since it has lithium ion conductivity, good charge / discharge is possible. In addition to such a film effect, when a carbon material that occludes / releases lithium ions is used, even if the onium cation is reduced to form a Lewis base such as NR 3 , it is coordinated with the Lewis acid. Since the bulk increases due to the coordinate bond, the Lewis base cannot penetrate between the layers of the carbon material. Accordingly, it is possible to suppress a decrease in capacity and load characteristics of the carbon material negative electrode.

このような作用効果を示す(化3)または(化4)で示されるルイス酸には、トリブトキシボレート(R1=R2=R3=C49O)、トリフェノキシボレート(R1=R2=R3=PhO)、トリベンジロキシボレート(R1=R2=R3=PhCH2O)、トリス(トリフルオロアセチル)ボレート(R1=R2=R3=CF3C(=O)O)、トリス(ペンタフルオロアセチル)ボレート(R1=R2=R3=CF3CF2(C=O)O)、トリス(トリフルオロメチル)ボレート(R1=R2=R3=CF3)、トリフルオロメチルジフルオロボレート(R1=R2=F,R3=CF3)、ビス(トリフルオロメチル)フルオロボレート(R1=F,R2=R3=CF3)、トリス(ペンタフルオロエチル)ボレート(R1=R2=R3=C25)、トリス(ペンタフルオロメチル)ジフルオロホスフェート(R4=R5=F,R6=R7=R8=CF3)、トリス(ペンタフルオロエチル)ジフルオロホスフェート(R4=R5=F,R6=R7=R8=C25)またはフッ化ホスホリル(R4=R5=R6=F,R7=O、R8無し)などがあるが、コスト的にBF3またはPF5であることことが好ましい。ここで、フッ化ホスホリルは、(化4)に含まれる化合物で、R7の官能基がOのため、R8が無しとなっている。 The Lewis acid represented by indicating such action and effect (Formula 3) or (Formula 4), tributoxyethyl Chevrolet preparative (R1 = R2 = R3 = C 4 H 9 O), triphenoxide Chevrolet preparative (R1 = R2 = R3 = PhO), tribenzylidene Loki Chevrolet preparative (R1 = R2 = R3 = PhCH 2 O), tris (trifluoroacetyl) borate (R1 = R2 = R3 = CF 3 C (= O) O), tris (pentafluorophenyl acetyl) borate (R1 = R2 = R3 = CF 3 CF 2 C (C = O) O), tris (trifluoromethyl) borate (R1 = R2 = R3 = CF 3), trifluoromethyl difluoromethyl borate (R1 = R2 = F , R3 = CF 3), bis (trifluoromethyl) tetrafluoroborate (R1 = F, R2 = R3 = CF 3), tris (pentafluoroethyl) borate (R1 = 2 = R3 = C 2 F 5 ), tris (pentafluorophenyl methyl) difluoro phosphate (R4 = R5 = F, R6 = R7 = R8 = CF 3), tris (pentafluoroethyl) difluoro phosphate (R4 = R5 = F, R6 = R7 = R8 = C 2 F 5 ) or phosphoryl fluoride (R4 = R5 = R6 = F, R7 = O, no R8), but BF 3 or PF 5 is preferable in terms of cost. . Here, phosphoryl fluoride is a compound contained in (Chemical Formula 4), and since the functional group of R7 is O, R8 is absent.

以下に、本発明の実施例を示す。実施例の非水電解質二次電池の負極には、リチウムの吸蔵・放出が可能な炭素材料を用いたが、他のリチウムと合金化する単金属や合金、複合酸化物を用いても、また、リチウムやナトリウムなどのアルカリ金属を用いても、同様な効果が得られる。   Examples of the present invention are shown below. For the negative electrode of the nonaqueous electrolyte secondary battery of the example, a carbon material capable of occluding and releasing lithium was used. However, a single metal, alloy, or composite oxide that forms an alloy with other lithium may be used. The same effect can be obtained by using an alkali metal such as lithium or sodium.

《実施例1》
(i)非水電解質の調製
イオン性液体として、TMPA・TFSI(トリメチルプロピルアンモニウム・ビス[トリフルオロメタンスルホニル]イミド)を用いた。また、リチウム塩として、LiTFSI(リチウム・ビス[トリフルオロメタンスルホニル]イミド)を用いた。
Example 1
(I) Preparation of non-aqueous electrolyte TMPA · TFSI (trimethylpropylammonium bis [trifluoromethanesulfonyl] imide) was used as the ionic liquid. LiTFSI (lithium bis [trifluoromethanesulfonyl] imide) was used as the lithium salt.

TMPA・TFSIとLiTFSIをモル比で1/0.1になるよう秤量して混合することで均一な電解液を得た。この電解液にPF5ガスをバブリングし、TMPAイオンに1モルに対し、50mmol溶解させた。
(ii)正極シートの作製
LiCoO2(コバルト酸リチウム)粉末85重量部と、導電剤であるアセチレンブラック10重量部と、結着剤のポリフッ化ビニリデン樹脂5重量部とを混合し、これらを脱水N−メチル−2−ピロリドンに分散させてスラリー状の正極合剤を調製した。この正極合剤をアルミニウム箔からなる正極集電体上に塗布し、乾燥後、圧延して、正極シートを得た。
(iii)負極シートの作製
人造黒鉛粉末75重量部と、導電剤であるアセチレンブラック20重量部と、結着剤のポリフッ化ビニリデン樹脂5重量部とを混合し、これらを脱水N−メチル−2−ピロリドンに分散させてスラリー状の負極合剤を調製した。この負極合剤を銅箔からなる負極集電体上に塗布し、乾燥後、圧延して、負極シートを得た。
(iv)電池の組み立て
正極シートおよび負極シートを35mmX35mmの大きさに切りだし、それぞれ、リード付きのアルミ板および銅板に超音波溶接した。ポリプロピレン製のセパレータを間に、各電極シートが対向するようにアルミ板および銅板をテープ固定して一体化した。次に、この一体化物を両端が空いている筒状のアルミラミネート袋に納め、リード部分において、袋の一方の開口部を溶着した。そして、他方の開口部から調製しておいた電解液を滴下した。
TMPA · TFSI and LiTFSI were weighed so as to have a molar ratio of 1 / 0.1 and mixed to obtain a uniform electrolyte. PF 5 gas was bubbled into this electrolytic solution, and 50 mmol was dissolved in 1 mol of TMPA ions.
(Ii) Production of positive electrode sheet 85 parts by weight of LiCoO 2 (lithium cobaltate) powder, 10 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of polyvinylidene fluoride resin as a binder were mixed and dehydrated. A slurry-like positive electrode mixture was prepared by dispersing in N-methyl-2-pyrrolidone. This positive electrode mixture was applied onto a positive electrode current collector made of an aluminum foil, dried and rolled to obtain a positive electrode sheet.
(Iii) Production of negative electrode sheet 75 parts by weight of artificial graphite powder, 20 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of polyvinylidene fluoride resin as a binder were mixed, and these were dehydrated N-methyl-2 -A slurry-like negative electrode mixture was prepared by dispersing in pyrrolidone. This negative electrode mixture was applied onto a negative electrode current collector made of copper foil, dried and then rolled to obtain a negative electrode sheet.
(Iv) Battery assembly The positive electrode sheet and the negative electrode sheet were cut into a size of 35 mm × 35 mm and ultrasonically welded to an aluminum plate with a lead and a copper plate, respectively. The aluminum plate and the copper plate were taped and integrated so that each electrode sheet was opposed to the polypropylene separator. Next, this integrated product was placed in a cylindrical aluminum laminated bag having both ends open, and one opening of the bag was welded at the lead portion. And the electrolyte solution prepared from the other opening part was dripped.

このようにして組み立てた電池を、0.35mAの電流で20時間充電した後、−750mmHgで10秒間、脱気し、さらに、注液した開口部を溶着により封止した。 The thus assembled cells were charged for 20 hours at a current of 0.35 mA, 10 sec at -750 mmHg, degassed and further, was sealed by welding the opening was injected.

以上のようにして組み立てた実施例1および比較例1の電池を用いて、0.35mAの定電流で、上限電圧が4.2V、下限電圧が3.0Vの間で充放電を行った。図1は、実施例1および比較例1の電池の各サイクルにおける放電容量をプロットしたものである。ここで、1の丸印を結んだ線が、実施例1の電池の放電容量をプロットしたもので、2の三角印を結んだ線が比較例1の電池の放電容量をプロットしたものである。なお、放電容量
は、正極の活物質の重量に換算して表記している。
Using the batteries of Example 1 and Comparative Example 1 assembled as described above, charging and discharging were performed with a constant current of 0.35 mA and an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V. FIG. 1 is a plot of the discharge capacity in each cycle of the batteries of Example 1 and Comparative Example 1. Here, a line connecting 1 circles is a plot of the discharge capacity of the battery of Example 1, and a line connecting 2 triangles is a plot of the discharge capacity of the battery of Comparative Example 1. . The discharge capacity is expressed in terms of the weight of the positive electrode active material.

比較例1の電池では、サイクル初期から放電容量が少ない。これは、PF5を溶解していないために負極上に安定な皮膜形成が起きず、イオン性液体と負極(中のリチウム)が反応することにより、容量が少なくなったためである。また、比較例1の電池でサイクル劣化が大きいのは、安定な皮膜が少ないため、サイクル途中でも負極とイオン性液体が反応し続けることにより容量が減少していくからと推察される。 In the battery of Comparative Example 1, the discharge capacity is small from the beginning of the cycle. This is because PF 5 is not dissolved, so that a stable film formation does not occur on the negative electrode, and the capacity is reduced by the reaction between the ionic liquid and the negative electrode (lithium in it). In addition, it is presumed that the cycle deterioration is large in the battery of Comparative Example 1 because there are few stable films, and the capacity decreases as the negative electrode and the ionic liquid continue to react even during the cycle.

《実施例2》
(i)非水電解質の調製
イオン性液体として、TMPA・TFSI(トリメチルプロピルアンモニウム・ビス[トリフルオロメタンスルホニル]イミド)を用いた。また、リチウム塩として、LiTFSI(リチウム・ビス[トリフルオロメタンスルホニル]イミド)およびLiPF6を用いた。
Example 2
(I) Preparation of non-aqueous electrolyte TMPA · TFSI (trimethylpropylammonium bis [trifluoromethanesulfonyl] imide) was used as the ionic liquid. Further, LiTFSI (lithium bis [trifluoromethanesulfonyl] imide) and LiPF6 were used as lithium salts.

TMPA・TFSI、LiTFSI、および、LiPF6を、1/0.1/0.01のモル比で秤量して混合し、均一な電解液を得た。この溶液を110℃で24時間加熱した。加熱後、遠心分離を行ったところLiFが沈降したことから、PF5が電解液に溶解していることを確認した。 TMPA · TFSI, LiTFSI, and LiPF 6 were weighed and mixed at a molar ratio of 1 / 0.1 / 0.01 to obtain a uniform electrolyte. The solution was heated at 110 ° C. for 24 hours. Centrifugation was performed after the heating, and LiF settled, so it was confirmed that PF 5 was dissolved in the electrolyte.

以上のようにして電解液を調製した以外は、実施例1と同様にして組み立てた。
《比較例2》
電解液を加熱していない以外は、実施例2と同様にして電池を組み立てた。
The assembly was performed in the same manner as in Example 1 except that the electrolytic solution was prepared as described above.
<< Comparative Example 2 >>
A battery was assembled in the same manner as in Example 2 except that the electrolytic solution was not heated.

以上のようにして組み立てた実施例2および比較例2の電池を用いて、0.35mAの定電流で、上限電圧が4.2V、下限電圧が3.0Vの間で充放電を行った。そして、(数1)に基づいて、各電池のサイクル劣化率を計算した。
Using the batteries of Example 2 and Comparative Example 2 assembled as described above, charging and discharging were performed at a constant current of 0.35 mA and an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V. Based on (Equation 1), the cycle deterioration rate of each battery was calculated.

Figure 0004572602
Figure 0004572602

実施例2のサイクル劣化率は、1.7%/サイクルであり、比較例2のサイクル劣化率は、2.8%/サイクルであった。なお、実施例1の電池のサイクル劣化率は、1.0%/サイクルであり、比較例1でのサイクル劣化率は、3.0%/サイクルである。   The cycle deterioration rate of Example 2 was 1.7% / cycle, and the cycle deterioration rate of Comparative Example 2 was 2.8% / cycle. The cycle deterioration rate of the battery of Example 1 is 1.0% / cycle, and the cycle deterioration rate of Comparative Example 1 is 3.0% / cycle.

なお、実施例2では、電解液をLiPF6の分解温度以上である110℃で加熱したが、分解温度(約100℃)より下の温度で加熱を行った場合でも効果はあるが、顕著な効果は認められなかった。 In Example 2, the electrolyte was heated at 110 ° C., which is higher than the decomposition temperature of LiPF 6 , but it is effective even when heated at a temperature lower than the decomposition temperature (about 100 ° C.), but is remarkable. No effect was observed.

《実施例3》
(i)非水電解質の調製
イオン性液体として、TMPA・TFSI(トリメチルプロピルアンモニウム・ビス[
トリフルオロメタンスルホニル]イミド)を用いた。また、リチウム塩として、LiTFSI(リチウム・ビス[トリフルオロメタンスルホニル]イミド)およびLiPF6を用いた。
Example 3
(I) Preparation of nonaqueous electrolyte As an ionic liquid, TMPA · TFSI (trimethylpropylammonium bis [
Trifluoromethanesulfonyl] imide). Further, LiTFSI (lithium bis [trifluoromethanesulfonyl] imide) and LiPF 6 were used as lithium salts.

TMPA・TFSIを19g(50mmol)、LiTFSIを1.4g(5mmol)、および、(表1)に示すように、LiPF6を1.5mg(0.01mmol)〜0.76g(5mmol)秤量して混合し、リチウム塩を溶解した。そして、これらの溶液を110℃で24時間加熱した。ここで、加熱後沈降したLiFの量を定量することで、溶液内に発生したPF5の量を計算した。なお、LiPF6量が5mmolを越えると、溶液は室温で固化し、評価することができなかった。 As shown in (Table 1), 19 mg (50 mmol) of TMPA · TFSI, 1.4 g (5 mmol) of LiTFSI, and 1.5 mg (0.01 mmol) to 0.76 g (5 mmol) of LiPF 6 were weighed. Mix and dissolve lithium salt. These solutions were then heated at 110 ° C. for 24 hours. Here, the amount of PF5 generated in the solution was calculated by quantifying the amount of LiF precipitated after heating. When the amount of LiPF 6 exceeded 5 mmol, the solution solidified at room temperature and could not be evaluated.

以上のようにして電解液を調製した以外は、実施例1と同様にして組み立てた。
《比較例3》
電解液を110℃に加熱していない以外は、実施例3と同様にして、電池を組み立てた。
The assembly was performed in the same manner as in Example 1 except that the electrolytic solution was prepared as described above.
<< Comparative Example 3 >>
A battery was assembled in the same manner as in Example 3 except that the electrolytic solution was not heated to 110 ° C.

以上のようにして組み立てた実施例3および比較例3の電池を用いて、0.35mAの定電流で、上限電圧が4.2V、下限電圧が3.0Vの間で充放電を行った。そして、各電池のサイクル劣化率を計算し、(表1)にまとめた。(表1)に実施例3および比較例3の電池におけるサイクル劣化率を示す。   Using the batteries of Example 3 and Comparative Example 3 assembled as described above, charging and discharging were performed at a constant current of 0.35 mA and an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V. Then, the cycle deterioration rate of each battery was calculated and summarized in (Table 1). Table 1 shows the cycle deterioration rates of the batteries of Example 3 and Comparative Example 3.

Figure 0004572602
Figure 0004572602

(表1)より、110℃加熱した電解液においてサイクル劣化率が低減していることがわかるまた、サイクル劣化率の低減は、LiPF6量が多いほど効果が大きくなっていることがわかる。これは、LiPF6量が多いほど、電解液中で解離していないLiPF6が増加し、LiFとPF5に分解しやすくなるためであると考えられる。 From (Table 1), it can be seen that the cycle deterioration rate is reduced at 110 ° C. the heated electrolyte. Further, it can be seen that the effect of reducing the cycle deterioration rate increases as the amount of LiPF 6 increases. This is considered to be because as the amount of LiPF 6 increases, the amount of LiPF 6 not dissociated in the electrolytic solution increases and is easily decomposed into LiF and PF 5 .

《実施例4》
(i)非水電解質の調製
イオン性液体として、TMPA・TFSI(トリメチルプロピルアンモニウム・ビス[トリフルオロメタンスルホニル]イミド)を用いた。また、リチウム塩として、LiTFSI(リチウム・ビス[トリフルオロメタンスルホニル]イミド)およびLiBF4を用いた。
Example 4
(I) Preparation of non-aqueous electrolyte TMPA · TFSI (trimethylpropylammonium bis [trifluoromethanesulfonyl] imide) was used as the ionic liquid. Further, LiTFSI (lithium bis [trifluoromethanesulfonyl] imide) and LiBF 4 were used as lithium salts.

TMPA・TFSIを19g(50mmol)、LiTFSIを1.4g(5mmol)、および、(表2)に示すように、LiBF4を0.94mg(0.01mmol)〜0.47g(5mmol)秤量して混合し、リチウム塩を溶解した。ここで、LiBF4が5mmolを越える場合には、すべてのリチウム塩を溶解させることができず、混合物は、室温で固化した。これらの均一に溶解した電解液を230℃で24時間加熱した。そして、加熱後沈降したLiFの量を定量することで、電解液内に発生したBF3の量を計算した。 As shown in (Table 2), 19 g (50 mmol) of TMPA · TFSI, 1.4 g (5 mmol) of LiTFSI, and LiBF 4 were weighed from 0.94 mg (0.01 mmol) to 0.47 g (5 mmol). Mix and dissolve lithium salt. Here, when LiBF 4 exceeded 5 mmol, not all lithium salts could be dissolved, and the mixture solidified at room temperature. These uniformly dissolved electrolytes were heated at 230 ° C. for 24 hours. Then, to quantify the amount of precipitated after heating LiF, and calculate the amount of BF 3 generated in the electrolytic solution.

以上のようにして電解液を調製した以外は、実施例1と同様にして組み立てた。
《比較例4》
電解液を230℃に加熱していない以外は、実施例4と同様にして、電池を組み立てた。
The assembly was performed in the same manner as in Example 1 except that the electrolytic solution was prepared as described above.
<< Comparative Example 4 >>
A battery was assembled in the same manner as in Example 4 except that the electrolytic solution was not heated to 230 ° C.

以上のようにして組み立てた実施例4および比較例4の電池を用いて、0.35mAの定電流で、上限電圧が4.2V、下限電圧が3.0Vの間で充放電を行った。そして、各電池のサイクル劣化率を計算し、(表2)にまとめた。(表2)に実施例4および比較例4の電池におけるサイクル劣化率を示す。   Using the batteries of Example 4 and Comparative Example 4 assembled as described above, charging and discharging were performed with a constant current of 0.35 mA and an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V. Then, the cycle deterioration rate of each battery was calculated and summarized in (Table 2). Table 2 shows the cycle deterioration rates of the batteries of Example 4 and Comparative Example 4.

Figure 0004572602
Figure 0004572602

(表2)より、230℃加熱した電解液においてサイクル劣化率が低減していることがわかるまた、サイクル劣化率の低減はLiBF4量が多いほど効果が大きくなっていることがわかる。これは、LiBF4量が多いほど、電解液中で解離していないLiBF4が増加し、LiFとBF3に分解しやすくなるためであると考えられる。 From (Table 2), it can be seen that the cycle deterioration rate is reduced at 230 ° C. the heated electrolyte. It can also be seen that the effect of reducing the cycle deterioration rate increases as the amount of LiBF 4 increases. This is because as LiBF 4 amount is large, LiBF 4 undissociated in the electrolytic solution is increased, presumably because easily decomposed into LiF and BF 3.

なお、実施例4では、電解液をLiBF4の分解温度以上である230℃で加熱したが、分解温度(約200℃)より下の温度で加熱を行った場合でも効果はあるが、顕著な効果は認められなかった。 In Example 4, the electrolytic solution was heated at 230 ° C., which is higher than the decomposition temperature of LiBF 4 , but even when heated at a temperature lower than the decomposition temperature (about 200 ° C.), there is an effect, but remarkable. No effect was observed.

《実施例5》
(i)非水電解質の調製
イオン性液体として、TMPA・TFSI(トリメチルプロピルアンモニウム・ビス[トリフルオロメタンスルホニル]イミド)を用いた。また、リチウム塩として、LiTFSI(リチウム・ビス[トリフルオロメタンスルホニル]イミド)およびLiPF6を用
いた。
Example 5
(I) Preparation of non-aqueous electrolyte TMPA · TFSI (trimethylpropylammonium bis [trifluoromethanesulfonyl] imide) was used as the ionic liquid. Further, LiTFSI (lithium bis [trifluoromethanesulfonyl] imide) and LiPF 6 were used as lithium salts.

TMPA・TFSIを19g(50mmol)、LiTFSIを1.4g(5mmol)、および、LiPF6を0.38g(2.5mmol)秤量して混合し、リチウム塩を溶解した。
(iv)電池の組み立て
実施例1と同様に、正極シートおよび負極シートを切りだし、それぞれ、リード付きのアルミ板および銅板に超音波溶接した後、ポリプロピレン製のセパレータを間に、各電極シートが対向するようにアルミ板および銅板をテープ固定して一体化した。次に、この一体化物を両端が空いている筒状のアルミラミネート袋に納め、リード部分において、袋の一方の開口部を溶着した。そして、他方の開口部から調製しておいた電解液を滴下した。
TMPA · TFSI (19 g, 50 mmol), LiTFSI (1.4 g, 5 mmol), and LiPF 6 (0.38 g, 2.5 mmol) were weighed and mixed to dissolve the lithium salt.
(Iv) Battery assembly As in Example 1, the positive electrode sheet and the negative electrode sheet were cut out and ultrasonically welded to an aluminum plate and a copper plate with leads, respectively, and each electrode sheet was placed between polypropylene separators. The aluminum plate and the copper plate were taped and integrated so as to face each other. Next, this integrated product was placed in a cylindrical aluminum laminated bag having both ends open, and one opening of the bag was welded at the lead portion. And the electrolyte solution prepared from the other opening part was dripped.

このようにして組み立てた電池を、85℃で10時間加熱した。そして、0.35mAの電流で20時間充電した後、−750mmHgで10秒間、脱気し、さらに、注液した開口部を溶着により封止した。 The battery thus assembled was heated at 85 ° C. for 10 hours. Then, after charging 20 hours at a current of 0.35 mA, 10 sec at -750 mmHg, degassed and further, it was sealed by welding the opening was injected.

以上のようにして組み立てた以外は、実施例1と同様にして電池を作製した。
《比較例5》
組み立て時に電池を85℃に加熱していない以外は、実施例5と同様にして、電池を組み立てた。
A battery was fabricated in the same manner as in Example 1 except for assembling as described above.
<< Comparative Example 5 >>
A battery was assembled in the same manner as in Example 5 except that the battery was not heated to 85 ° C. during assembly.

以上のようにして組み立てた実施例5および比較例5の電池を用いて、0.35mAの定電流で、上限電圧が4.2V、下限電圧が3.0Vの間で充放電を行った。そして、各電池のサイクル劣化率を計算した。その結果、実施例5の電池でのサイクル劣化率は、0.6%/サイクルであり、比較例5では、2.4%/サイクルであった。   Using the batteries of Example 5 and Comparative Example 5 assembled as described above, charging and discharging were performed with a constant current of 0.35 mA and an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V. And the cycle deterioration rate of each battery was calculated. As a result, the cycle deterioration rate in the battery of Example 5 was 0.6% / cycle, and in Comparative Example 5, it was 2.4% / cycle.

ここで、実施例2や4のように電解液をリチウム塩の分解温度以上で加熱していないのに、サイクル劣化率が低減している理由であるが、電池の中で電極やセパレータなどが有する水分がリチウム塩と反応しルイス酸を発生しやすくなったためと推察される。   Here, although the electrolytic solution is not heated at a temperature higher than the decomposition temperature of the lithium salt as in Example 2 or 4, the cycle deterioration rate is reduced. It is presumed that the moisture contained therein reacts with the lithium salt to easily generate a Lewis acid.

《実施例6》
(i)非水電解質の調製
イオン性液体として、TMPA・TFSI(トリメチルプロピルアンモニウム・ビス[トリフルオロメタンスルホニル]イミド)を用いた。また、リチウム塩として、LiTFSI(リチウム・ビス[トリフルオロメタンスルホニル]イミド)を用いた。
Example 6
(I) Preparation of non-aqueous electrolyte TMPA · TFSI (trimethylpropylammonium bis [trifluoromethanesulfonyl] imide) was used as the ionic liquid. LiTFSI (lithium bis [trifluoromethanesulfonyl] imide) was used as the lithium salt.

TMPA・TFSIを19g(50mmol)、LiTFSIを1.4g(5mmol)秤量して混合し、リチウム塩を溶解した。この電解液に、(表3)で示すようなルイス酸を、それぞれ、2.5mmol添加した。(表3)に実施例6における、ルイス酸を添加した電解液を使用した電池のサイクル劣化率を示す。   TMPA · TFSI (19 g, 50 mmol) and LiTFSI (1.4 g, 5 mmol) were weighed and mixed to dissolve the lithium salt. To this electrolyte solution, 2.5 mmol of Lewis acid as shown in (Table 3) was added. Table 3 shows the cycle deterioration rate of the battery using the electrolytic solution to which Lewis acid was added in Example 6.

Figure 0004572602
Figure 0004572602

以上のように、PF5の代わりに(表3)に示したルイス酸を添加した以外は、実施例1と同様にして電池を作製した。そして、0.35mAの定電流で、上限電圧が4.2V、下限電圧が3.0Vの間で充放電を行い、各電池のサイクル劣化率を計算した。結果を表3に示す。 As described above, a battery was fabricated in the same manner as in Example 1 except that the Lewis acid shown in (Table 3) was added instead of PF 5 . Then, charging and discharging were performed while the upper limit voltage was 4.2 V and the lower limit voltage was 3.0 V at a constant current of 0.35 mA, and the cycle deterioration rate of each battery was calculated. The results are shown in Table 3.

(表3)より、ルイス酸を添加した電池では、サイクル劣化率が低減していることがわかる。(表3)より、BやPに結合している官能基が大きいほど、また、電子吸引性が大きいほど、サイクル劣化率が低減していることがわかる。   (Table 3) shows that the cycle deterioration rate is reduced in the battery to which the Lewis acid is added. From Table 3, it can be seen that the larger the functional group bonded to B or P and the greater the electron withdrawing property, the lower the cycle deterioration rate.

《実施例7》
(i)非水電解質の調製
イオン性液体として、TMPA・TFSI(トリメチルプロピルアンモニウム・ビス[トリフルオロメタンスルホニル]イミド)を用いた。また、有機溶媒として、表4に示した化合物を用いた。さらに、リチウム塩として、LiTFSI(リチウム・ビス[トリフルオロメタンスルホニル]イミド)およびLiPF6を用いた。
Example 7
(I) Preparation of non-aqueous electrolyte TMPA · TFSI (trimethylpropylammonium bis [trifluoromethanesulfonyl] imide) was used as the ionic liquid. Moreover, the compound shown in Table 4 was used as an organic solvent. Further, LiTFSI (lithium bis [trifluoromethanesulfonyl] imide) and LiPF 6 were used as lithium salts.

TMPA・TFSIを12g、それぞれの有機溶媒を7g、LiTFSIを1.4g(5mmol)、および、LiPF6を76mg(0.5mmol)秤量して混合し、リチウム塩を溶解した。この電解液を110℃で24時間加熱した。 以上のようにして電解液を調製した以外は、実施例1と同様にして組み立てた。(表4)に実施例7における、有
機溶媒を混合した電池のサイクル劣化率を示す。
12 g of TMPA · TFSI, 7 g of each organic solvent, 1.4 g (5 mmol) of LiTFSI, and 76 mg (0.5 mmol) of LiPF 6 were weighed and mixed to dissolve the lithium salt. This electrolyte was heated at 110 ° C. for 24 hours. The assembly was performed in the same manner as in Example 1 except that the electrolytic solution was prepared as described above. Table 4 shows the cycle deterioration rate of the battery mixed with the organic solvent in Example 7.

Figure 0004572602
Figure 0004572602

(表4)より、電解質塩を溶解する媒体としてイオン性液体のみを用いるよりも、表4に示したような有機溶媒を混合することで、サイクル劣化率が低減する。この原因は明らかではないが、ルイス酸の存在により、有機溶媒が開環し負極上で良好な皮膜を形成しやすくなったためと思われる。   From Table 4, the cycle deterioration rate is reduced by mixing an organic solvent as shown in Table 4 rather than using only an ionic liquid as a medium for dissolving the electrolyte salt. The cause of this is not clear, but it is thought that the presence of the Lewis acid facilitated the formation of a good film on the negative electrode due to the ring opening of the organic solvent.

《実施例8》
(i)非水電解質の調製
イオン性液体として、表5に示すようなイオン性液体を用いた。また、リチウム塩として、LiTFSI(リチウム・ビス[トリフルオロメタンスルホニル]イミド)およびLiPFを用いた。
Example 8
(I) Preparation of non-aqueous electrolyte As the ionic liquid, an ionic liquid as shown in Table 5 was used. Further, LiTFSI (lithium bis [trifluoromethanesulfonyl] imide) and LiPF 6 were used as lithium salts.

それぞれのイオン性液体を12g、エチレンカーボネートを7g、LiTFSIを1.4g(5mmol)、および、LiPF6を76mg(0.5mmol)秤量して混合し、リチウム塩を溶解した。そして、この電解液を110℃で24時間加熱した。 12 g of each ionic liquid, 7 g of ethylene carbonate, 1.4 g (5 mmol) of LiTFSI, and 76 mg (0.5 mmol) of LiPF 6 were weighed and mixed to dissolve the lithium salt. And this electrolyte solution was heated at 110 degreeC for 24 hours.

以上のようにして電解液を調製した以外は、実施例2と同様にして電池を組み立てた。《比較例8》
電解液を加熱していない以外は、実施例8と同様にして電池を組み立てた。
(表5)に実施例8における、イオン性液体を使用した電池のサイクル劣化率を示す。
A battery was assembled in the same manner as in Example 2 except that the electrolytic solution was prepared as described above. << Comparative Example 8 >>
A battery was assembled in the same manner as in Example 8 except that the electrolytic solution was not heated.
Table 5 shows the cycle deterioration rate of the battery using the ionic liquid in Example 8.

Figure 0004572602
Figure 0004572602

以上のようにして組み立てた実施例8および比較例8の電池を用いて、0.35mAの定電流で、上限電圧が4.2V、下限電圧が3.0Vの間で充放電を行った。そして、各電池のサイクル劣化率を計算した。   Using the batteries of Example 8 and Comparative Example 8 assembled as described above, charging and discharging were performed with a constant current of 0.35 mA and an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V. And the cycle deterioration rate of each battery was calculated.

(表5)より、種々のイオン性液体を用いる電解質において、ルイス酸を溶解させることで、サイクル劣化率が低減することがわかる。   (Table 5) shows that the cycle deterioration rate is reduced by dissolving the Lewis acid in the electrolyte using various ionic liquids.

なお、実施例8では、イオン性液体のアニオンとしてTFSIを用いたが、BF4 -、PF6 -、(C25SO22-のような他のアニオン種からなるイオン性液体を用いても、同様な効果が得られた。 In Example 8, TFSI was used as the anion of the ionic liquid, but the ionic liquid composed of other anionic species such as BF 4 , PF 6 , (C 2 F 5 SO 2 ) 2 N −. The same effect was obtained even when using.

本発明の非水電解質を使用した非水電解質電池は、安全性が高く、サイクル特性も良いので、携帯電話等のポータブル機器の電源として有用である。   A nonaqueous electrolyte battery using the nonaqueous electrolyte of the present invention is useful as a power source for portable equipment such as a mobile phone because it has high safety and good cycle characteristics.

本発明の実施例である非水電解質電池および比較例の電池のサイクル特性を示す図The figure which shows the cycling characteristics of the battery of the nonaqueous electrolyte battery which is an Example of this invention, and a comparative example

符号の説明Explanation of symbols

1 実施例1の電池の放電容量
2 比較例1の電池の放電容量


1 Discharge capacity of the battery of Example 1 2 Discharge capacity of the battery of Comparative Example 1


Claims (6)

オニウムカチオンと非アルミナート系アニオンからなるイオン性液体とリチウム塩からなる非水電解質であって、前記非水電解質中に、(化1)または(化2)で示されるルイス酸の少なくとも1種が添加剤として溶解していることを特徴とする非水電解質。
Figure 0004572602
Figure 0004572602
An ionic liquid comprising an onium cation and a non-aluminate anion and a non-aqueous electrolyte comprising a lithium salt, wherein the non-aqueous electrolyte contains at least one of Lewis acids represented by (Chemical Formula 1) or (Chemical Formula 2) Is dissolved as an additive, a non-aqueous electrolyte.
Figure 0004572602
Figure 0004572602
(化1)のルイス酸がBF3であり、かつ、(化2)のルイス酸がPF5であることを特徴とする請求項1記載の非水電解質。 The non-aqueous electrolyte according to claim 1, wherein the Lewis acid of (Chemical formula 1) is BF 3 and the Lewis acid of (Chemical formula 2) is PF 5 . 前記非水電解質中に前記イオン性液体以外に、さらにエチレンカーボネート,プロピレンカーボネート,ブチレンカーボネートおよびγ−ブチロラクトンからなる群より選択される少なくとも1種を含むことを特徴とする請求項1記載の非水電解質。 2. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte further contains at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone, in addition to the ionic liquid. Electrolytes. オニウムカチオンと非アルミナート系アニオンからなるイオン性液体に、リチウム塩としてLiBF4またはLiPF6を溶解して非水電解質を作製し、さらに前記非水電解質全体を加熱して前記非水電解質中にBF3またはPF5を発生させることを特徴とする非水電解質の製造法。 LiBF 4 or LiPF 6 as a lithium salt is dissolved in an ionic liquid composed of an onium cation and a non-aluminate anion to prepare a non-aqueous electrolyte, and the whole non-aqueous electrolyte is heated to enter the non-aqueous electrolyte. A method for producing a non-aqueous electrolyte, characterized by generating BF 3 or PF 5 . 正極と、炭素材料からなる負極と、前記請求項1〜3のいずれかに記載の非水電解質を具備した非水電解質電池。 The nonaqueous electrolyte battery which comprised the positive electrode, the negative electrode which consists of carbon materials, and the nonaqueous electrolyte in any one of the said Claims 1-3. 正極と、炭素材料からなる負極と、前記請求項1〜3のいずれかに記載の非水電解質を具備した非水電解質電池であって、電池組み立て後に電池全体を加熱することにより、前記
非水電解質電池内でルイス酸を発生させることを特徴とする非水電解質電池の製造法。
A nonaqueous electrolyte battery comprising a positive electrode, a negative electrode made of a carbon material, and the nonaqueous electrolyte according to any one of claims 1 to 3, wherein the nonaqueous electrolyte battery is heated by heating the entire battery after the battery is assembled. A method for producing a non-aqueous electrolyte battery, characterized by generating a Lewis acid in an electrolyte battery.
JP2004193679A 2004-06-30 2004-06-30 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery and their production method Expired - Fee Related JP4572602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193679A JP4572602B2 (en) 2004-06-30 2004-06-30 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery and their production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193679A JP4572602B2 (en) 2004-06-30 2004-06-30 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery and their production method

Publications (3)

Publication Number Publication Date
JP2006019070A JP2006019070A (en) 2006-01-19
JP2006019070A5 JP2006019070A5 (en) 2007-05-31
JP4572602B2 true JP4572602B2 (en) 2010-11-04

Family

ID=35793157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193679A Expired - Fee Related JP4572602B2 (en) 2004-06-30 2004-06-30 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery and their production method

Country Status (1)

Country Link
JP (1) JP4572602B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070072085A1 (en) * 2005-09-26 2007-03-29 Zonghai Chen Overcharge protection for electrochemical cells
JP5032773B2 (en) * 2006-02-03 2012-09-26 第一工業製薬株式会社 Lithium secondary battery using ionic liquid
JP5232988B2 (en) * 2006-02-27 2013-07-10 国立大学法人名古屋大学 Method for producing nanoparticles
JP5426809B2 (en) * 2006-05-30 2014-02-26 本田技研工業株式会社 Secondary battery, electronic equipment using secondary battery and transportation equipment
JP2008034256A (en) * 2006-07-28 2008-02-14 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
KR100984577B1 (en) 2007-04-11 2010-09-30 주식회사 엘지화학 A secondary battery comprising ternary eutectic mixtures and preparation method thereof
DE102007027666A1 (en) * 2007-06-15 2008-12-18 Robert Bosch Gmbh Additives for lithium-ion batteries
KR100925913B1 (en) 2007-08-28 2009-11-09 현대자동차주식회사 Non-aqueous Polymer Electrolyte Membrane by Coated compounds as anion binding agents and Polymer Electrolyte Membrane Fuel Cell using it
JP2009123576A (en) * 2007-11-16 2009-06-04 Sony Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte composition
JP2014112524A (en) * 2012-11-12 2014-06-19 Ricoh Co Ltd Nonaqueous electrolyte electricity storage element
JP6370142B2 (en) 2014-07-23 2018-08-08 株式会社ブリヂストン Overlap amount measuring apparatus and overlap amount measuring method
JP6955876B2 (en) * 2017-03-16 2021-10-27 積水化学工業株式会社 Electrolyte for non-water secondary battery and non-water secondary battery
EP3503268B1 (en) * 2017-12-22 2020-09-16 Belenos Clean Power Holding AG Liquid electrolyte formulation for lithium metal secondary battery and lithium metal secondary battery comprising the same
JP7446657B2 (en) * 2018-04-05 2024-03-11 エルジー エナジー ソリューション リミテッド Electrodes for secondary batteries, electrolyte layers for secondary batteries, and secondary batteries
CN111971843A (en) 2018-04-09 2020-11-20 日产化学株式会社 Additive for nonaqueous electrolyte solution, and lithium ion secondary battery
CN112020788A (en) 2018-04-09 2020-12-01 日产化学株式会社 Lithium ion secondary battery
CN112349951B (en) * 2019-08-08 2022-06-03 杉杉新材料(衢州)有限公司 Non-aqueous electrolyte containing sulfur-containing lithium salt derivative additive and lithium ion battery
JPWO2021065844A1 (en) 2019-10-01 2021-04-08
KR20220170456A (en) * 2021-06-23 2022-12-30 솔브레인 주식회사 Electrolyte solution for battery and secondary battery comprising the same

Also Published As

Publication number Publication date
JP2006019070A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP4572602B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery and their production method
JP4151060B2 (en) Non-aqueous secondary battery
JP4830279B2 (en) Nonaqueous electrolyte secondary battery
JP2008539548A (en) Nonaqueous electrolyte containing mixed salt
JP2011222193A (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using it
WO2014010526A1 (en) Non-aqueous electrolyte secondary battery
US11631894B2 (en) Electrolytic solution, electrochemical device, secondary cell, and module
JP5165862B2 (en) Non-aqueous electrolyte and electrochemical energy storage device using the same
CN105789703A (en) Lithium difluoborate containing sulfonate group and battery employing lithium salt
US20240290973A1 (en) Electrode plate, lithium-ion battery, battery module, battery pack and electric device
CN106450427A (en) Electrolyte containing oxalic acid lithium phosphate and lithium ion battery adopting electrolyte
WO2022196266A1 (en) Secondary battery
CN116706230B (en) High-voltage electrolyte for lithium battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4449269B2 (en) Lithium battery
JP2011249152A (en) Lithium battery electrode active material composition and lithium battery
JP4565287B2 (en) Non-aqueous electrolyte secondary battery
WO2023162852A1 (en) Secondary battery electrolyte and secondary battery
WO2023162431A1 (en) Secondary battery electrolyte and secondary battery
WO2023162430A1 (en) Secondary battery electrolyte and secondary battery
WO2023162429A1 (en) Secondary battery electrolyte and secondary battery
WO2023119945A1 (en) Secondary battery electrolyte solution and secondary battery
WO2023162428A1 (en) Secondary battery
WO2022196238A1 (en) Electrolyte solution for secondary battery, and secondary battery
WO2023162432A1 (en) Secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees